

Recent Progress in Double Beta Decay & Latest Results from GERDA

Karl Tasso Knöpfle MPI Kernphysik, Heidelberg on behalf of the GERDA collaboration http://www.mpi-hd.mpg.de/GERDA

Thirteenth Conference on the Intersections of Particle and Nuclear Physics, CIPANP 2018 Palm Springs, May 29th – June 3rd, 2018

Outline

- Introduction to $2\nu\beta\beta$ and $0\nu\beta\beta$ decay
- Demonstration of recent progress
 - instrumentation
 - sensitivity / limits
- GERDA latest results
- Summary and concluding remarks

Introduction

Intersection of Particle and Nuclear Physics

<u>known</u>:

mass-squared splittings & mixing angles, m_v (heaviest) > 45 meV

wanted:

mass ordering & absolute mass scale <CP phases nature of neutrino: Dirac ($v \neq \overline{v}$) or Majorana ($v = \overline{v}$) fermion

M. Goeppert-Mayer (1935): 2 neutrino double beta ($2\nu\beta\beta$) decay (A,Z) \rightarrow (A,Z+2) + 2e⁻ +2 $\overline{\nu}$

E. Majorana (1938): neutrinoless double beta $(0v\beta\beta)$ decay $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

ΔL = 2 lepton number violation physics beyond the Standard Model

conventional 2nd order process - observed with remarkable precision

$$(T_{1/2}^{2\nu})^{-1} = (g_A^{eff})^4 \cdot G^{2\nu} \cdot |M_{GT}^{2\nu}|^2$$

isotope	2vββ half-life / yr	Experiment (year)
⁴⁸ Ca	(6.4 ± 0.7 ± 1.1) · 10 ¹⁹	NEMO-3 (2016)
⁷⁶ Ge	(1.926 ±0.094) · 10 ²¹	GERDA (2015)
⁸² Se	$(9.2 \pm 0.7) \cdot 10^{19}$	NEMO-3 (2015)
¹⁰⁰ Mo	$(6.92 \pm 0.06 \pm 0.36) \cdot 10^{18}$	LUMINEU (2018)
¹²⁸ Te	2.84 · 10 ³ x T _{1/2} (¹³⁰ Te)	*
¹³⁰ Te	$(8.2 \pm 0.2 \pm 0.6) \cdot 10^{20}$	CUORE-0 (2017)
¹³⁶ Xe	(2.165 ±0.016 ± 0.059) · 1021	EXO-200 (2014)
	$(2.21 \pm 0.02 \pm 0.07) \cdot 10^{21}$	KamLAND-Zen (2016)
150Nd	$(9.34 \pm 0.22 \pm 0.61) \cdot 10^{18}$	NEMO-3 (2016)

hypothetical $T_{1/2} > 10^{25}$ yr - if observed neutrinos are Majorana fermions !

 $(T^{0\nu}_{1/2})^{-1} = g^4_A \cdot G^{0\nu} \cdot |M^{0\nu}|^2 \cdot |\eta^{BSM}|^2$

many decay mechanisms possible, e.g.: heavy neutrinos, right-handed currents, supersymmetric particles, ..

standard interpretation: light Majorana-neutrino exchange

see also A.S. Barabash NPA 935 (2015) 52

light Majorana-neutrino exchange

$$(T_{1/2}^{0\nu})^{-1} = g_A^4 \cdot G^{0\nu} \cdot |M^{0\nu}|^2 \cdot \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

 $T_{1/2}^{0\nu}$: measured

$$g_A$$
 : axial vector coupling (=1.269)

 $G^{0\nu}$: phase space factor ($\propto Q^5$)

 $M^{0\nu}$: nuclear matrix element

 m_e : electron mass

$$<\!m_{\beta\beta}\!> \,= |\sum_{\cdot} U_{ei}^2 \cdot m_i|$$

: effective Majorana-neutrino mass

 U_{ei} : element of PMNS mixing matrix

Engel, Menéndez, arXiv:1610.06548

10 meV effective Majorana-neutrino mass

► half-life T^{0v}_{1/2} ≈10²⁸ yr

assume $T_{1/2} = 10^{27}$ yr and 100 kg Ge-76 (source=detector:) $\blacktriangleright \approx 0.5$ decays / year

Separation of inverted from normal hierarchy needs sensitivity of $\approx 10 \text{ meV}$, or $T_{1/2}^{0v} \approx 10^{28}$ years!

! Plot applies for 3 generations & light neutrinos.

Model-dependent limit from cosmology expected to improve soon. (2019: SPT-3G + DES + BOSS expect $\sigma(\Sigma m_v) < 61 \text{ meV}$) Significant cross checks become possible.

! Plot applies for 3 generations & light neutrinos.

Current Generation $0\nu\beta\beta$ Experiments

Experiment	lsotope	Technique (all calorimetric - but one)	lsotope Mass (kg)		Status
CANDLES	48 Ca	nat CaF ₂ scintillator, active veto	0.3		R&D
GERDA phase I	⁷⁶ Ge	^{enr} Ge diodes in LAr	18		complete
GERDA phase II	⁷⁶ Ge	^{enr} Ge diodes in LAr, active LAr veto	31		operating
Majorana Demo.	⁷⁶ Ge	point contact enr Ge diodes in vacuo	26	•	operating
SuperNEMO	⁸² Se	foils with tracking	7		constr.
CUPID-0	⁸² Se	Zn ^{enr} Se scintillating bolometer	5.2	٠	operating
CUPID-0/Mo	100 Mo	$Li_2^{enr}MoO_4$ scintillating bolometer	5		start: 2018
AMoRE-I	100 Mo	${}^{40}Ca^{enr}MoO_4$ scintillating bolometer	2.5		operating
CUORE	¹³⁰ Te	nat TeO $_2$ bolometer	210	•	operating
SNO+ phase I	¹³⁰ Te	0.5% <i>nat</i> TeBD in liquid scintillator	1357	٠	start: 2019
EXO-200	¹³⁶ Xe	liquid enrXe TPC	160	•	operating
KamLAND-Zen 400	¹³⁶ Xe	2.7% enrXe in liquid scintillator	380		complete
KamLAND-Zen 800	^{136}Xe	^{enr} Xe in liquid scintillator	750		start: 2018
NEXT-100	¹³⁶ Xe	high pressure enr Xe TPC	91	٠	start: 2019
LEGEND-200/1000	⁷⁶ Ge	^{enr} Ge diodes in LAr, active LAr veto	175 / 873	•	
CUPID/Se/Mo/Te	tbd	enriched scintillating bolometer	300 - 500	•	J.
SNO+ phase II	¹³⁰ Te	3% ^{nat} Te in liquid scintillator	7960	•	MEXIL
nEXO	¹³⁶ Xe	liquid ^{enr} Xe TPC	4500	•	- meratillo
KamLAND2-Zen	¹³⁶ Xe	^{enr} Xe in liquid scintillator	1000	5	JEIL C

Double beta decay isotopes – $Q_{\beta\beta}$ and natural abundances

EXO-200 / ¹³⁶Xe

WIPP, Carlsbad, NM 1624 m.w.e.

- cylindrical single phase TPC filled with ≈200 kg of liquid Xe enriched to 80.6% in ¹³⁶Xe
- fiducial volume 76.5 kg
- discrimination between single-site (signal-like) and multi-site (background) events
- 1st working hundred-kilogram-scale detector

Phase I 2011 exposure 10 kg·yr; break in 2014-2015 due to fire and radiation problems in WIPP; upgrade, restart 2016

Scintillation vs. ionization, ²²⁸Th calibration:

anti-correlation between charge and scintillation response exploited for improved energy resolution

Phase I:

$$\begin{array}{rll} T^{0\nu}_{1/2} \mbox{ sensitivity } : & 1.9 \cdot 10^{25} \mbox{ yr} \\ T^{0\nu}_{1/2} \mbox{ limit}^* & : & > 1.1 \cdot 10^{25} \mbox{ yr} \end{array}$$

* profile likelihood (90% CL)

Nature 510 (2014) 229

EXO-200 / ¹³⁶Xe

Upgrade for Phase II

Cathode voltage $-8kV \rightarrow -12kV$ Radon suppression by factor of 10 Noise reduction, improved resolution

<u>Will run up to $5 \cdot 10^{25}$ yr sensitivity</u>

Phase I and II:	
exposure	= 177.6 kg·yr
FWHM@Q _{ββ}	= 71 keV (2.9%)
$BI = (1.6 \pm 0.2)$	· 10 ⁻³ cnts/(keV ·kg ·yr)
$T_{1/2}^{0v}$ sensitivity	y : $3.7 \cdot 10^{25}$ yr
$T_{1/2}^{0v}$ limit*	: > 1.8 · 10 ²⁵ yr

* profile likelihood (90% CL)

KamLAND-Zen 400 / ¹³⁶Xe

Kamioka 2700 m.w.e.

Phase I (2011-2012) 89.5 kg·yr

 $\begin{array}{rll} T_{1/2}^{0\nu} \mbox{ sensitivity } : & 1.0 \cdot 10^{25} \mbox{ yr} \\ T_{1/2}^{0\nu} \mbox{ limit}^{*} & : & > 1.9 \cdot 10^{25} \mbox{ yr} \end{array}$

```
PRL, 062502 (2013)
```

unexpected contamination in ROI identified as ^{110m}Ag from Fukushima accident or spallation

purification reduces ^{110m}Ag by factor of 10

```
Phase II (2013-2015) 504 kg·yr
```

¹³⁶Xe (≈ 3%) loaded liquid scintillator(90% enrichment)

KamLAND-Zen 400 / ¹³⁶Xe

Phase II

Background dominated by ²¹⁴Bi decays at MIB

exposure	=	593.5 kg·yr		
FWHM@Q _{ßß}	≈ 270 keV (11%)			
$BI \approx 0.4 \cdot 10^{-3} \mathrm{cr}$	nts	s∕(keV ·kg ·yr)		
$T_{1/2}^{0v}$ sensitivity	:	5.6 · 10 ²⁵ yr		
$T_{1/2}^{0\nu}$ limit*	:	> 9.2 · 10 ²⁵ yr		
$T_{1/2}^{0v}$ limit**	:	> 10.7· 10 ²⁵ yr		

* profile likelihood (90% CL)** Phase I + II combined

PRL, 082503 (2016)

KamLAND-Zen 800 & SNO+

expected to start in 2018/19

Kamioka 2700 m.w.e.

SNOLAB 6000 m.w.e.

≈750kg of ¹³⁶Xe in liquid scintillator (LS) (90% enrichment), new Inner Balloon

Plan for Phase I: 0.5% ^{nat}Te, i.e. 1.3 tons of ¹³⁰Te, in 780 tons of LS, - all contained in the Ø12m acrylic vessel

SNO+ / ¹³⁰Te

Status:

- Te acid underground since 2015
- Detector upgrade ready in April 2017
- Water-fill phase started in May 2017
- Currently taking physics data with water fill
- Scintillator process plant under commission
- Tellurium plant under construction
- Te loading in 2019

Expected spectrum for 6 months of SNO+ search for invisible nucleon decay, e.g. $n \rightarrow 3v$.

Expected spectrum for 5 years of SNO+ search for ^{130}Te 0vßß decay, sensitivity 2x10 $^{26}\,\text{yr}$

CUORE / ¹³⁰Te

cryostat and bolometer array

LNGS 3600 m.w.e.

988 ^{nat}TeO₂ bolometers 984 working active mass: 742 kg isotope mass: 206 kg ¹³⁰Te

copper frame – heat sink

PTFE supports – thermal impedance

results

CUORE / ¹³⁰Te

complex line shape

PRL 120, 132501 (2018)

CUORE with Particle ID = CUPID

CUORE dominant BGND: surface α particles

scintillating crystal

or Cherenkov light in TeO₂

R&D for highly radiopure scintillating crystals

Zn⁸²Se CUPID-0 Zn¹⁰⁰MoO₄..... LUCIFER, LUMINEU $Li_2^{100}MoO_4$dto ${}^{40}Ca^{100}MoO_4$AMoRE 116Cd¹⁰⁰MoO₄..... KINR-ITEP-DAMA

Poda, Giuliani, arXiv:1711.01075

CUPID-0 / ⁸²Se

results

LNGS 3600 m.w.e.

Lowest BGND level ever in bolometric experiment!

⁸²Se exposure = 1.83 kg·yr FWHM@Q_{ββ} = 23 ± 0.6 keV (0.9%) BI = $(3.6 \pm ≈2)$ · 10⁻³ cnts/(keV·kg·yr)

$T_{1/2}^{0v}$ sensitivity	:	$2.3\cdot10^{24}$ yr
$T_{1/2}^{0v}$ limit*	:	$> 2.4 \cdot 10^{24} \text{ yr}$

* Bayes (90% CI)

PRL accept. May 08 (2018)

MAJORANA D & GERDA / ⁷⁶Ge

SURF 4300 m.w.e.

Ge diodes in vacuo, electro-formed copper & lead shield

≈ 44 kg Ge, 29.7 kg thereof enriched, p-type point contact HPGe detectors searching for the optimum shielding

LNGS 3600 m.w.e.

Ge diodes in active LAr shield, low-mass holders, water shield

≈ 43 kg Ge, 35.8 kg thereof enriched, semicoaxial and BEGe HPGe detectors

MAJORANA DEMONSTRATOR

Goal: prove design for ton scale w.r.t. background & modular construction

'Traditional' setup: vacuum cryostats in passive copper/lead shield with ultraclean materials

custom point contact detectors to reject surface & multi-site events

Prototyping: 2014-2015, 10 detectors Module 1 : Dec 2015 final installation Module 2: July 2016 finished

setup

MAJORANA DEMONSTRATOR

1st data release

- Best resolution of any $\beta\beta$ experiment to date: 2.52 keV at $Q_{\beta\beta}$
- Projected background rate 4 c/(FWHM·t·yr)
- Analysis of ≈ 26 kg·yr data in progress, expected sensitivity 5·10²⁵ yr

⁷⁶Ge exposure = 9.95 kg·yr FWHM@Q_{BB} = 2.52 ± 0.08 keV (0.12%) BI = $(6.7 \pm 1.4) \cdot 10^{-3} \text{ cnts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$ (total) = $(1.6 \pm 1.1) \cdot 10^{-3} \text{ cnts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$ (best)

$T_{1/2}^{0v}$ sensitivity	:	2.1· 10 ²⁵ yr
$T_{1/2}^{0v}$ limit*	:	>1.9 · 10 ²⁵ yr

* profile likelihood (90% CL)

PRL 120, 132502 (2018)

GERDA

LNGS 3600 m w.e.

Phase I from Nov 2011 to May 2013 21 kg yr

photos from commissioning

view from bottom: pilot string and part of LAr veto in open lock

assembly of detector array

GERDA

Average energy resolutions at Q_{BB}

Most data points within ±1 σ data discarded if shift >2 keV

Discrimination of signal-like single site-events and multiple interactions & surface events

- Anticoincidence with muon veto system
- anti-coincidences within detector array
- anti-coincidence with active LAr shield

Most prominent features: ³⁹Ar (<500 keV), $2\nu\beta\beta$ continuum , ⁴⁰K and ⁴²K γ lines, α particles

- Compton continuum of ^{40,42}K γ lines strongly suppressed
- ^{40,42}K γ lines useful to monitor LAr veto performance with physics data

GERDA

LAr veto acceptance 97.7(7) %

LAr time stability

Discrimination of signal-like single site-events and multiple interactions & surface events

- anti-coincidences within detector array
- anti-coincidence with active LAr shield
- pulse shape discrimination (PSD)
- future?!: anti-coincidence with active construction materials

pulse shape discrimination with BEGe detectors

most α (surface) events removed γ lines suppressed by factor of ≈ 6

efficiency for $0\nu\beta\beta$ events: (88 ± 3)%

pulse shape discrimination with semi-coaxial detectors

calibration data used for training of artificial neural network* (ANN) to distinguish single-site and multi-site events

* TVMA toolkit

pulse shape discrimination with semi-coaxial detectors

GERDA

highly efficient LAr and PSD cuts

Background index at $Q_{\beta\beta}$: coaxials & BEGe: ($0.6~^{+0.4}_{-0.3}$) \cdot $10^{-3}~$ cts / (kev kg yr)

	dataset		FWHM (keV)	efficiency	${ m BI} \over 10^{-3} { m cts}/($	(keV·kg·yr)
1	PI golden	17.9	4.3(1)	0.57(3)	11 ± 2	
2	PI silver	1.3	4.3(1)	0.57(3)	$30\pm\!10$	
3	PI BEGe	2.4	2.7(2)	0.66(2)	5^{+4}_{-3}	unblinded 13.06.2013 - ref.1)
4	PI extra PI total	$1.9 \\ 23.5$	4.2(2)	0.58(4)	5^{+4}_{-3}	
	PII coaxial	5.0	4.0(2)	0.53(5)	$3.5^{+2.1}_{-1.5}$	
	PII BEGe	5.8	3.0(2)	0.60(2)	$0.7^{+1.1}_{-0.5}$	unblinded $17.06.2016 - ref.2$)
	PII coaxial	5.0	4.0(2)	0.53(5)	$3.5^{+2.1}_{-1.5}$	
	PII BEGE	5.8				
	PII BEGe	12.4	2.9(1)	0.60(2)	$1.0\substack{+0.6\\-0.4}$	unblinded $30.06.2017 - ref.3$)
5	PII coaxial	5.0	3.57(1)	0.52(4)	$3.5^{+2.1}_{-1.5}$	
6	PII coaxial	23.1	3.57(1)	0.48(4)	$0.6\substack{+0.5 \\ -0.3}$	unblinded 03.05.2018
7	PII BEGE	5.8				0
		12.4			10.4	
		12.6	2.96(1)	0.60(2)	$0.6^{+0.4}_{-0.3}$	unblinded 03.05.2018
	PII total	58.9				

1) PRL 111 (2013) 122503 - $T^{0\nu}_{\beta\beta} > 2.1 \cdot 10^{25} yr$ (90%C.L.), sensitivity 2.4·10²⁵ yr 2) Nature 544 (2017) 47 - $T^{0\nu}_{\beta\beta} > 5.3 \cdot 10^{25} yr$ (90%C.L.), sensitivity 4.0·10²⁵ yr 3) PRL 120 (2018) 132503 - $T^{0\nu}_{\beta\beta} > 8.0 \cdot 10^{25} yr$ (90%C.L.), sensitivity 5.8·10²⁵ yr

GERDA

results in ROI after all cuts before unblinding

GERDA

like in Phase I:

- analysis window (1930-2190 keV, excl. ±5 keV around 2 known γ lines (2104, &2119 keV)
- flat background acc. to background model (EPJ C74 (2074) 2764)

Experiment	Isotope	Exposure kg x yr	Sensitivity 10 ²⁵ yr	T Limit 10 ²⁵ yr	Reference
GERDA	76 Ge	46.7	5.8	8.0	PRL 120, 132503 (2018)
GERDA	⁷⁶ Ge	71.8) 11	9.5	latest - PRELIM.
Majorana Demo.	76 Ge	10	2.1	1.9	PRL 120, 132502 (2018)
CUPID-0	⁸² Se	1.83	0.23	0.24	PRLacc. May 08 (2018)
NEMO-3	¹⁰⁰ Mo	34.3		0.11	PR D92, 072011 (2015)
CUPID-0/Mo	¹⁰⁰ Mo	0.1		0.06	AIP 1894, 020017 (2017)
CUORE	¹³⁰ Te	86.3	0.7	1.5	PRL 120, 132501 (2018)
EXO-200	^{136}Xe	177.6	3.7	1.8	PRL 120, 072701 (2018)
KamLAND-Zen 400	^{136}Xe	> 594	5.6	10.7	PRL117,082503 (2016)

<u>'Background-free' regime:</u>

If $M \cdot t \cdot BI \cdot FWHM < 1$, sensitivity scales with exposure $M \cdot t$, with sqrt($M \cdot t / BI \cdot FWHM$) if background-limited!

GERDA will be 'background-free' up to design exposure of 100 kg·yr.

achieved <m_{BB}> upper limits & sensitivities, projected sensitivities

The search for $0v2\beta$ decay is a worldwide effort. Its observation would establish the violation of lepton number and the neutrino to be a Majorana fermion.

No signal observed yet – but major experimental progress achieved including

- the successful operation of a ton-scale bolometer at 10mK
- the demonstration of scintillating bolometers for significant background reduction
- the feasibility of 'background-free' experiments up to the design exposure
- the reach of $T_{1/2}^{0v}$ sensitivities beyond 10^{26} yr

This progress justifies a next generation of experiments designed for sensitivities of $10^{27} - 10^{28}$ yr covering the inverted hierarchy region.

⁷⁶Ge experiments have demonstrated the highest resolution and the lowest background of any isotope for $0v\beta\beta$ decay searches. This motivated in 2016 the formation of the LEGEND Collaboration for a ton-scale ⁷⁶Ge experiment which will combine the best features of MAJORANA and GERDA.

The preparations for a first stage with 200 kg that will use the modified GERDA infrastructure are in full progress.

Back-up slides

GERDA Phase II is expected to stay background-free up to the design exposure of 100 kg•yr most efficient use of enriched isotope!

EXO-200 - NEXT-100

liquid Xe TPC

FWHM@Q_{$\beta\beta$} \approx 2 – 3 %

high pressure gaseous Xe TPC Ø 53cm, L= 135cm

Electroluminescent detection of the ionization

- very good energy resolution FWHM@ $Q_{\beta\beta} \approx 0.5 0.7\%$
- 3D track reconstruction for background rejection

New promising approach for tagging final ¹³⁶Ba nucleus using single-molecular fluorescence imaging

PRL 120 (2018) 132504

LUMINEU / EDELWEISS / CUPID-0/Mo

LSM Modane 4800 m w.e.

exposure = 0.1 kg·yrFWHM@Q_{$\beta\beta$} = 5-6 keV (0.2%) BI $\approx 60 \cdot 10^{-3} \text{ cnts/(keV·kg·yr)*}$

* No muon veto, no pile-up rejection

SuperNEMO

	NEMO-3	SuperNEMO demonstrator
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	7 (⁸² Se)
$T_{1/2}^{2 u}$ [y]	$7.2 imes 10^{18}$	$9.9 imes10^{19}$
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$<$ 2 μ Bq/kg
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq/kg
Level of radon A(²²² Rn)	$\sim 5.0 \ \mathrm{mBq/m^3}$	$< 0.15 \text{ mBq/m}^3$
Sensitivity after 5 y of data taking	${\sf T}_{1/2}^{0 u}>10^{24}$ y	${\sf T}_{1/2}^{0 u}>6 imes 10^{24}$ y

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Mission: 'The **LEGEND collaboration**^{*} aims to develop a phased, Ge-76-based double-beta decay experiment program with discovery potential at a half-life significantly longer than 10²⁷ years, using existing resources as appropriate to expedite physics results.'

First phase: up to 200 kg of Ge-76

modification of existing GERDA infrastructure BG goal x5 lower than GERDA, 0.6 c / (FWHM ton year) R&D underway, start could be by 2021

Subsequent stages: 1000 kg (staged) BG goal x30 lower, 0.1 c / (FWHM ton year) location: tbd - required depth (Ge-77m) under investigation timeline connected to U.S. DOE down select process

*legend-exp.org , 47 institutions, 219 scientists