

Mustafa A. Amin

CIPANP 2018

motivation

anisotropies: cosmic microwave background

 $\delta T/T \sim 10^{-5}$

Planck 2015

seemingly "acausal"

~ adiabatic

inflation: a "simple" explanation?

$$a \sim e^{Ht}$$

- "acausal"
- almost gaussian
- scale invariant
- adiabatic

Guth, Linde, Starobinsky, Steinhardt, Albrecht, Mukhanov, Hawking ...

quantum fluctuations

physics of inflation and its end?

- what is the physics of inflation ?
- how did inflation end ?
- how did the universe get populated with particles after inflation ? (reheating)

eV

modeling inflation & its' aftermath

SIMPLE

problem oriented

COMPLEX

modeling inflation & its' aftermath

SIMPLE

problem oriented

simplest models: single scalar field driven inflation constraints from observations

Kallosh & Linde (2013)

detailed dynamics after inflation ?

end of inflation in "simple" models

- shape of the potential (self couplings)
- couplings to other fields ~ gravitational strength χ, ψ

$$\exists \phi = V'(\phi)$$

$$\Box \phi = V'(\phi)$$

$$\Box \phi = V'(\phi)$$

MA (2010) Khlopov, Malomed & Zeldovich (1985)

now in 3D: (iso-density surfaces)

MA, Easther, Finkel, Flaugher & Hertzberg (2011)

condition for rapid fragmentation ?

lumps ?

(1) oscillatory (2) spatially localized (3) very long lived

existence and stability:

Segur & Kruskal (1987) MA & Shirokoff (2010) MA (2013) Hertzberg (2011) Mukaido et. al (2016,17)

existence conditions

$$V(\varphi) = \frac{1}{2}\varphi^2 + \frac{1}{3}\lambda_3\varphi^3 + \frac{1}{4}\lambda_4\varphi^4 + \dots$$

symmetry breaking
$$\Delta \equiv -\lambda_4 + \frac{10}{9}\lambda_3^2 > 0$$

axions, axion monodromy

existence conditions

$$\mathcal{L} = T(X,\varphi) - V(\varphi) \qquad \qquad X = \frac{1}{2}(\partial\varphi)^2$$

$$T(X,\varphi) = X + \xi_2 X^2 + \xi_3 \varphi X^2 + \dots$$
$$V(\varphi) = \frac{1}{2}\varphi^2 + \frac{\lambda_3}{3}\varphi^3 + \frac{\lambda_4}{4}\varphi^4 + \frac{\lambda_5}{5}\varphi^5 + \dots$$

$$\Delta = \xi_2 - \lambda_4 + \frac{10}{9}\lambda_3^2 > 0.$$

MA (2013)

family of related solitons

axions, moduli fields, BECs etc

Also see: Kolb & Tkachev 1994 Mocz et. al 2017

so far : end of inflation

- equation of state/duration to radiation domination ? Lozanov & MA (2017, 2018)
- black holes ?
- gravitational waves ? Zhou et. al (2013), Antusch et. al (2015), MA et. al (2018)

primordial black holes? gravitational clustering ?

Lozanov & MA (in progress) Mocz & MA (in progress)

end of inflation in "simple" models

• shape of the potential (self couplings)

end of inflation in "simple" models

• shape of the potential (self couplings)

eq. of state w = pressure/density* after sufficient time

an upper bound on duration to radiation domination

$$\Delta N_{\rm rad} \sim \begin{cases} 1 & M \lesssim 10^{-2} m_{\rm Pl}, \\ \frac{n+1}{3} \ln \left(\frac{\kappa}{\Delta \kappa} \frac{10M}{m_{\rm Pl}} \right) & M \gtrsim 10^{-2} m_{\rm Pl}. \end{cases}$$

additional light (massless) fields can
only decrease the duration!

* decay to significantly massive fields can change this conclusion

implications for CMB observables

* non-quadratic minimum

reduction in uncertainty!

* non-quadratic minimum

stochastic gravitational waves

$$\Omega_{\rm gw}(f) = \frac{d\ln\rho_{\rm gw}}{d\ln f} \sim \frac{\rho_{\rm gw}}{\rho_{\rm crit}}$$

end of inflation

- single field
- non-trivial dynamics
- eq. of state + gravitational waves

after inflation

conundrums in the present universe, with solutions/ implications in the early universe ...

examples: dark matter abundance/ distribution, matter anti-matter asymmetry etc. See upcoming talk by E. Erikcek

Early Universe implications of Higgs Fine Tuning

LHC: Higgs, but no SUSY particles (so far). Is SUSY wrong or is the Higgs accidentally light within SUSY ?

If the Higgs potential is fine-tuned (consistent with LHC so-far), are there observable cosmological implications ?

Higgs fine tuning — implications from the early universe

after inflation

SIMPLE

problem oriented

COMPLEX

Early Universe implications of Higgs Fine Tuning

arXiv: 1802.00444

MA, Fan, Lozano & Reece

LHC: Higgs, but no SUSY particles (so far). Is SUSY wrong or is the Higgs accidentally light within SUSY ?

If the Higgs potential is fine-tuned (consistent with LHC so-far), are there observable cosmological implications ?

Higgs fine tuning — implications from the early universe

arXiv: 1802.00444

MA, Fan, Lozanov & Reece

end of inflation

complex enough: "universal" results

From Wires to Cosmology

arXiv: 1512.02637 MA & Baumann arXiv: 1706.02319 MA, Garcia, Xie & Wen

What did we do?

We developed a statistical framework to calculate stochastic particle production in the early universe in complex scenarios with multiple interacting fields.

Potential benefits:

- useful when the microphysics is uncertain, dynamics are complex and only coarse grained predictions are needed.
- hints of universality in predictions when the no. of interactions and/or components is large.
- · reduction in complexity to a few parameters

The fun bit:

By establishing a mathematical map between current conduction in wires with impurities and stochastic particle production in cosmology, we benefited a lot from work on *Anderson Localization* since the 1950s.

inflation ends, what's next ?

expansion history, baryogenesis ...

radiation dominated, thermal universe

sample probes/consequences

