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motivation 



Planck 2015

anisotropies: 
cosmic microwave background 

�T/T ⇠ 10�5



~ gaussian almost scale invariant

seemingly “acausal” ~ adiabatic



inflation: a “simple” explanation?

Guth 1980

a ⇠ eHt

a ⇠ eHt

• “acausal”
• almost gaussian
• scale invariant
• adiabatic

quantum
fluctuations

Guth, Linde, Starobinsky, Steinhardt, Albrecht, Mukhanov, Hawking … 



• what is the physics of inflation ?

• how did inflation end ?

•  how did the universe get populated with particles after 
inflation ? (reheating)

a ⇠ eHt

physics of inflation and its end?

inflation

reheating
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inflation
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with nuclei

few minutes

aftermath of inflation: a GAP in our cosmic history
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• inflation ends 

• populate the universe 
(Standard Model) 

• baryon asymmetry 

• dark matter 

• phase transition
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simplest models: single scalar field driven inflation 

constraints from observations
Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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for example:

Starobinsky Inflation (1979)
Silverstein & Westhpal (2008)
Kallosh & Linde (2013) 

p < 2



detailed dynamics after inflation ?

�, �

• shape of the potential (self couplings)

• couplings to other fields

Traschen & Brandenburger (1990)
Kofman, Linde & Starobinsky (1994, 97)
Shtanov, Traschen & Brandenberger (1995)
Kofman, Linde & Starobinsky (1997)

review: MA, Kaiser, Karouby & Hertzberg (2014)



end of inflation in “simple” models

� , �

• shape of the potential (self couplings) 

• couplings to other fields

V (�) / |�|2n

|�| ⇠ M

V (�) / |�|2

distance from minimum
where potential flattens

flattened potential �p<2

~ gravitational strength



dynamics after inflation

⇤� = V 0(�)



dynamics after inflation

⇤� = V 0(�)



dynamics after inflation

⇤� = V 0(�)

          MA (2010)
Khlopov, Malomed & Zeldovich (1985)



dynamics after inflation

⇤� = V 0(�)



now in 3D:  
(iso-density surfaces)

MA, Easther, Finkel, Flaugher & Hertzberg (2011) 

0.25H�1
end



condition for rapid fragmentation ?

          MA (2010)

V (�) / |�|2n

|�| ⇠ M

⇠ mpl

M
� 1growth-rate of fluctuations

expansion rate



lumps ?

(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland et. al (1995)

osci
llon!

existence and stability: 

Segur & Kruskal (1987)
MA & Shirokoff (2010)
MA (2013)
Hertzberg (2011)
Mukaido et. al (2016,17)



existence conditions

symmetry breaking

axions, axion monodromy
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existence conditions

MA (2013)
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family of related solitons
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axions, moduli fields, BECs etc

credit: Wayne Hu
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously

NATURE PHYSICS | VOL 10 | JULY 2014 | www.nature.com/naturephysics 497
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(a)  DM (b) CDM

Schive et. al (2014) 

Nguyen, Luo & Hulet (2017)

Also see: Kolb & Tkachev 1994  Mocz et. al 2017



so far : end of inflation

oscillatory 
phase

resonant growth

inflation

�'k(t) / eµkt
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Figure 2. The instability bands and the magnitude of the Floquet exponent (in units of the field dependent
e↵ective mass m(�̄)) are shown as functions of the oscillating condensate amplitude and the dimensionless physical
wavenumber  = k/am. The white lines indicate how a given co-moving wavenumber passes through the instability
bands as the universe expands.

Linear Instability Analysis — At the end of infla-
tion, the homogeneous inflaton condensate �̄ starts
oscillating around the minimum of its potential. In
the presence of any perturbations, such homoge-
neous oscillations are unstable: they lead to a rapid
growth in field perturbations ��(t,x ), or equiva-
lently, to non-adiabatic particle production [22–25].

A useful way of characterizing the e�ciency of
particle production is as follows. First, let us ignore
expansion. Floquet theory tells us that the gen-
eral solution for the field perturbations in Fourier
space is of the form ��

k

/ exp(±µkt), where µk is
the Floquet exponent. If <(µk) 6= 0, then there is
an ‘unstable’ solution growing exponentially with
time. In general, any nonlinearity in V (�) will
lead to resonant particle production. The real part
of the Floquet exponent, which characterizes the
particle production rate, is shown in Fig. 2 as a
function of the amplitude of the oscillating con-
denstate and the physical wavenumber  ⌘ k/am

(with a = 1). Note that we have expressed k and
µk in units of a field/time dependent e↵ective mass

scale: m2 ⌘ 2n⇤2 (⇤/M)2
�
�̄/M

�
2(n�1)

. This e↵ec-
tive mass scale m2 ⇡ @

¯�V/�̄ when �̄ ⌧ M and is
what sets the period of �̄.

The expansion of the universe can now be in-
corporated qualitatively. The amplitude of the
inflaton field oscillating in V / |�|2n decays as
�̄ / a�3/(n+1), and the dimensionless wavenumber
scales as  / a�2(2�n)/(1+n). Hence a given Fourier
mode flows through a number of Floquet bands as
shown in Fig. 2. Heuristically, the mode will grow
if the expansion rate H is much less than |<(µk)|.
Strong resonance occurs for |<(µk)|/H ⇠> O[10].

For the lowest-k band (k/am near 0):

[|<(µk)|/H]0
max

= f(n)(mPl/M), (1)

where f(n) . O[1] with a very weak dependence
on n for moderate values of n. It is M/mPl that
controls whether there is e�cient self-resonance
at low wave-numbers. In particular, for M .
2.5 ⇥ 10�2mPl, the fluctuations grow rapidly and
become energetically comparable to the homoge-
neous condensate. They backreact on the conden-
sate, leading to its complete fragmentation.

When the initial fragmentation is ine�cient
(M & 2.5 ⇥ 10�2mPl), the higher order instabil-
ity bands can play an important role. Compared
to the band near k = 0, the bands at higher k are
narrower, and < (µk) is typically smaller. However,
these narrow bands can lead to fragmentation of the
condensate at late times for two reasons. First, in
these bands

[<(µk)/H]1 / mPl/|�̄| |�̄| ⌧ M . (2)

Furthermore, the modes tend to spend a lot of
time in these narrow bands. This e↵ect can be
understood by considering the white flow lines in
Fig. 2. The flow lines cross the first narrow band
from right to left (n < 2), left to right (n > 2),
or never leave it (n = 2). The narrow resonance
will clearly persist until non-linear e↵ects become
important in the n = 2 case. Upon closer inspec-
tion, the same holds for the n < 2 and n > 2 cases
as well. For these two cases, |̇| ⇠ H. Since H

is decreasing, at some point a given k-mode will
spend su�cient time within the narrow band for
fluctuations to grow substantially. This eventually
leads to backreaction on the condensate and



consequences ?

• equation of state/duration to radiation domination ?  
Lozanov & MA (2017, 2018)

• black holes ? 

• gravitational waves ?  
Zhou et. al (2013),  Antusch et. al (2015), MA et. al (2018)



primordial black holes?  
gravitational clustering ?

October 11, 2014 23:31 WSPC/INSTRUCTION FILE AHKKv6.Reheating

23

Fig. 5: Left: Self interactions of the inflaton can lead to fragmentation and soliton
formation in the inflaton field at the end of inflation. The plot shows soliton (os-
cillon) formation after inflation where the inflaton potential flattens away from the
minimum.70 Right: Fragmentation in a model where the inflaton is governed by a
quadratic potential, and is coupled to a daughter field through a quartic interaction
term g2�2�2 [figure on the right, courtesy K. Lozanov]. The surfaces are iso-density
surfaces (several times the average density). In both cases the size of the box is
smaller than H�1 at that time.

the oscillating inflaton can fragment on a much faster timescale compared to the
gravitational one. Such self-interactions are present in all but the simplest models,
and depending on their form they can lead to complex, nonlinear phenomena.

In a class of models in which the potential opens up away from the minimum,
such fragmentation can lead to the formation of soliton-like configurations known as
“oscillons.”69,70,104–107 (See Fig. 5.) Oscillons can dominate the energy density of
the universe for some time in a class of models that are observationally consistent
and theoretically well-motivated (for example, see Ref. 70). Oscillons eventually
decay away,108 leading to a radiation-dominated universe. In models in which the
scalar field is complex, one can also get nontopological solitons called Q-balls.109,110

Oscillons and Q-balls could play an important role in baryogenesis (see, for example,
Refs. 111, 43), or generate high-frequency gravitational waves.112,113 Along with
self-interactions, non-canonical kinetic terms can also lead to nontrivial dynamics
during this phase.98,114

4.3. Nonlinear dynamics in multifield models

In models in which the inflaton’s couplings to other fields dominate the inflaton’s
self-couplings, the nonlinear evolution of the system often leads to the formation
of temporary bubble-wall-like structures which collide and fragment further.115 In
most cases the initial structures have coherence on large spatial scales (still smaller

Rsr�

P (�)

Newtonian Potential

Lozanov & MA (in progress)
Mocz & MA (in progress)



end of inflation in “simple” models

� , �

• shape of the potential (self couplings) 

• couplings to other fields

V (�) / |�|2n

|�| ⇠ M

V (�) / |�|2

quadratic minimum

flattened potential �p<2



end of inflation in “simple” models

� , �

• shape of the potential (self couplings)

• couplings to other fields

V (�) / |�|2n

|�| ⇠ M

power law at the minimum

flattened potential



result of fragmented dynamics  
* after sufficient time
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result of fragmented dynamics  
* after sufficient time
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eq. of state 
* after sufficient time

V (�) / |�|2n

|�| ⇠ M

3

Figure 3. The equation of state parameter obtained from the numerical simulations is shown for di↵erent values of
n and M . The orange curve and green curves correspond to initially e�cient (M ⇡ 7.75⇥ 10�3mPl) and ine�cient
resonance (M ⇡ 2.45mPl), with M ⇠ 2.5 ⇥ 10�2mPl separating the two regimes. The horizontal axes show the
number of e-folds after the end of inflation for e�cient (orange, bottom axis) and ine�cient (green, top axis)
resonance. The dashed line is drawn at w = 1/3 and the dotted line denotes the homogeneous equation of state.

complete fragmentation. The above statements
are quite general; however, n = 1 is special. In this
case, the higher order bands become too narrow
to allow for significant particle production at late
times, thus arresting further fragmentation.

Lattice simulations — The presence of linear
instabilities eventually leads to significant non-
linear dynamics of the fields. To study these
non-linear dynamics we solve the equations of
motion ⇤� + @�V = 0 and the Friedmann equa-
tion numerically using a parallelized version of
LatticeEasy [26]. We initialize the simulations
around the end of inflation with a homogeneous
condensate + vacuum fluctuations and evolve
them for a few�10 e-folds of expansion after this
instant. We ran di↵erent simulations (depending
on parameters) with N = 1283, 2563, 5123, and/or
10243 lattices, with the initial size of the simu-
lation volumes L ⇠ (few � 0.1)H�1

inf

. We always
terminated the simulations before resolution
e↵ects became important. Conservatively, the
lattice simulation results should be trusted for
the number of e-folds shown in Fig. 3. We also
verified that our results are independent of the
initial power spectra of field fluctuations on scales
which are not resonantly excited during the linear
stage. The details of the numerical checks and the
evolution of the power spectra will be presented
elsewhere.

The Equation of State — We now turn our
attention to the equation of state parameter
defined as

w ⌘ hpi
s

h⇢i
s

=
h�̇2/2 � (r�)2/6a2 � V i

s

h�̇2/2 + (r�)2/2a2 + V i
s

. (3)

Here, p and ⇢ are the energy density and pressure
of the inflaton field respectively. The symbol h. . .i

s

stands for spatial average. The equation of state is
often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless other-
wise stated. Note that if the spatially and tempo-
rally averaged gradient and kinetic energy densities
are equal to each other and dominate over the po-
tential energy density, we get w = 1/3.

We find the following results for the equation of
state at su�ciently late times:

w !
(

0 if n = 1 ,

1/3 if n > 1 ,
(4)

and independent of M . mPl. We explain the in-
dependence from M , the special nature of n = 1,
and the generic behavior for n > 1 below.

For e�cient initial resonance (M .
2.5 ⇥ 10�2mPl) the linear fluctuations grow
rapidly and backreact on the condensate. For
n = 1, meta-stable pseudo solitons (oscillons, see
for e.g. [27, 28]) are copiously produced within 1
e-fold of expansion. They behave as pressureless
dust, w = 0, and can lead to a long period of
matter dominated expansion. See the leftmost
panel in Fig. 3. For the n > 1 case, we still form
highly overdense field configurations that dominate
the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after

w 6= n� 1

n+ 1

n = 1 n > 1

M
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m
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independent of M

slow

fast

w = pressure/density



V (�) / |�|2n

|�| ⇠ M

an upper bound on duration  
to radiation domination

4

Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N
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aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N
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since in this case w ! 1/3 with and without
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Here, �/ ⇠ 10�2 is the fractional width of the

first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
�N

rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n

s

for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002 Mpc�1). The solid black lines use
�N

rad

calculated above, whereas the width of the

additional light (massless) fields can 
only decrease the duration!
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.
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end of inflation

credit: Wayne Hu

“SIMPLE”
- single field
- non-trivial dynamics
- eq. of state + gravitational waves



after inflation

credit: Wayne Hu

SIMPLE

problem oriented

conundrums in the present universe, with solutions/ implications in the early 
universe …

examples: dark matter abundance/ distribution, matter anti-matter asymmetry 
etc. See upcoming talk by E. Erikcek



Early Universe implications of Higgs Fine Tuning

MA, Fan, Lozano & Reece (2018)

If the Higgs potential is fine-tuned (consistent with LHC 
so-far), are there
observable cosmological implications ?

LHC: Higgs, but no SUSY particles (so far). Is SUSY wrong 
or is the Higgs accidentally light within SUSY ?
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m
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S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
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is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
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and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
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) and today (a
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), ⌦
r,0 is

the fractional energy density in relativistic species today and w
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is the mean equation of state between generation
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field flips sign during its oscillation in the early universe,
the e↵ective Higgs mass term can flip from very large
and positive to very large and negative. This could lead
to non-adiabatic, out-of-equilibrium particle production
with possible interesting consequences, such as a gener-
ation of gravitational waves and a change in the post-
inflationary expansion history.

This article serves as the first step to explore the cos-
mological signals of Higgs fine tuning.3 It intends to
open a new angle on the possible connection between
electroweak symmetry breaking and early universe cos-
mology. It also motivates further studies on the potential
of gravitational wave probes for new physics beyond the
SM.

II A Simple Model We seek a simplified model
capturing the assumption that a Higgs field h couples
to a modulus � (with characteristic field range f) such
that for typical values of �, the Higgs mass scale takes
a natural value of order M (e.g. the scale of supersym-
metry breaking), but for particular values of � the Higgs
mass may be much smaller. Such a potential could have
the form4

1

2
m2

�(� � �
1

)2 + M2

� � �
0

f
h†h + �(h†h)2 + V

0

. (1)

A priori we expect �
0

⇠ �
1

⇠ f . The value � = �
0

is the point of marginal electroweak symmetry break-
ing, whereas � = �

1

is the point where V is mini-
mized (for h = 0, ie. along the “ridge” in the po-
tential in Fig. 1). The global minimum of this po-
tential is at �

m

= (b�
0

� �
1

)/(b � 1) and |h
m

| =
M

p
(�

0

� �
1

)/(2�f(1 � b), where

b ⌘ M4

2�f2m2

�

< 1 . (2)

Note that b < 1 is necessary for the potential to be
bounded from below. This parameter will also play a
critical role in the dynamics of the fields.

There is no a-priori reason why the the global min-
imum of the potential lies near the point of marginal
electroweak breaking. The closer �

m

is to �
0

, the greater
our surprise. This means,

Fine tuning , � ⌘ �
0

� �
m

f
⌧ 1 . (3)

This is closely related to fine tuning in the usual sense:
if (1) represented a tree-level potential, loop corrections,

3 A di↵erent possible inflationary probe of fine-tuning is studied
in [13].

4 We take (1) to represent the quantum-corrected e↵ective poten-
tial rather than simply the tree-level potential, so that we do not
have to compute shifts in VEVs induced by loop corrections.

including a tadpole for �, would shift the minimum away
from marginal EWSB and spoil the coincidence.

We are not trying to explain the fine tuning. It is plau-
sible that there is a landscape of possible theories with
varying amounts of fine tuning, and we find ourselves in
a vacuum that is moderately tuned. For our purposes it
does not matter whether this is due to random chance
or anthropic selection. Our goal is to explore cosmologi-
cal dynamics correlated with the electroweak fine tuning.
An independent tuning is needed, as usual, to adjust the
constant V

0

so that the cosmological constant is small in
our vacuum.

We will mostly have in mind fine-tuned supersymmet-
ric theories, where this toy simplified potential can arise
with M2 ⇠ m2

soft

as explained in § S4 2. We consider the
hierarchy µ2

SM

⌧ m2

� . M2 ⌧ f2. Terms we have ne-

glected, such as (m2

�/f2)�4 or 1

f2

�2@µ�@µ�, could have

important e↵ects on the dynamics (such as oscillon for-
mation [14–18]). We assume that the field � stays far
from singular points in field space for all relevant times.
For now we have omitted all modulus self-interactions for
simplicity.

III Non-linear Dynamics In a typical untuned
scenario, when m� & H in the early universe, the mod-
ulus field starts to oscillate coherently along one of the
valleys of the potential, leading to an adiabatically evolv-
ing, early matter-domination epoch.5

In contrast, in a tuned universe, the modulus-Higgs
field system can undergo explosive, non-perturbative field
dynamics leading to fragmentation of the fields on short
time scales (t ⌧ H�1), and yield a non-trivial equation
of state for a number of e-folds of expansion following the
fragmentation.

For � ⌧ 1, the e↵ective Higgs mass term oscillates
between very large positive and negative values due to
the oscillation of �. One expects such oscillations to
lead to non-adiabatic, out-of-equilibrium production of
the Higgs particles. By considering tachyonic resonance
[19], and for f ⇠ �

in

⇠ m
pl

, the e�ciency of such particle
production is controlled by q ⌘ M2/m2

�. In particular,
q � 1 (as we assume) should lead to a broad range of
physical momenta for the produced Higgs particles (see
Fig. S3 in § S1).

E�cient transfer of energy from the modulus to the
Higgs field is countered by the Higgs self-interaction �.
Large self-interactions block Higgs production, whereas
at small � the Higgs field will be su�ciently populated
in non-zero momentum modes to backreact on the mod-
ulus, yielding a spatially inhomogeneous modulus (frag-
mentation). A more detailed view of the dynamics of the
modulus-Higgs system can be seen in Fig. S2 in § S1.

5 Gravitational clustering in cosmology occurs on timescales &
H�1.

MA, Fan, Lozano & Reece (2018)
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S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:

k

a
g

H
g

⌘ ��1 ⇠ q1/2

m
plp

f�
g

, (S17)

11

FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl

.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using
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where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
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are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
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) and today (a
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), ⌦
r,0 is

the fractional energy density in relativistic species today and w
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is the mean equation of state between generation
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field flips sign during its oscillation in the early universe,
the e↵ective Higgs mass term can flip from very large
and positive to very large and negative. This could lead
to non-adiabatic, out-of-equilibrium particle production
with possible interesting consequences, such as a gener-
ation of gravitational waves and a change in the post-
inflationary expansion history.

This article serves as the first step to explore the cos-
mological signals of Higgs fine tuning.3 It intends to
open a new angle on the possible connection between
electroweak symmetry breaking and early universe cos-
mology. It also motivates further studies on the potential
of gravitational wave probes for new physics beyond the
SM.

II A Simple Model We seek a simplified model
capturing the assumption that a Higgs field h couples
to a modulus � (with characteristic field range f) such
that for typical values of �, the Higgs mass scale takes
a natural value of order M (e.g. the scale of supersym-
metry breaking), but for particular values of � the Higgs
mass may be much smaller. Such a potential could have
the form4

1

2
m2

�(� � �
1

)2 + M2

� � �
0

f
h†h + �(h†h)2 + V

0

. (1)

A priori we expect �
0

⇠ �
1

⇠ f . The value � = �
0

is the point of marginal electroweak symmetry break-
ing, whereas � = �

1

is the point where V is mini-
mized (for h = 0, ie. along the “ridge” in the po-
tential in Fig. 1). The global minimum of this po-
tential is at �

m

= (b�
0

� �
1

)/(b � 1) and |h
m

| =
M

p
(�

0

� �
1

)/(2�f(1 � b), where

b ⌘ M4

2�f2m2

�

< 1 . (2)

Note that b < 1 is necessary for the potential to be
bounded from below. This parameter will also play a
critical role in the dynamics of the fields.

There is no a-priori reason why the the global min-
imum of the potential lies near the point of marginal
electroweak breaking. The closer �

m

is to �
0

, the greater
our surprise. This means,

Fine tuning , � ⌘ �
0

� �
m

f
⌧ 1 . (3)

This is closely related to fine tuning in the usual sense:
if (1) represented a tree-level potential, loop corrections,

3 A di↵erent possible inflationary probe of fine-tuning is studied
in [13].

4 We take (1) to represent the quantum-corrected e↵ective poten-
tial rather than simply the tree-level potential, so that we do not
have to compute shifts in VEVs induced by loop corrections.

including a tadpole for �, would shift the minimum away
from marginal EWSB and spoil the coincidence.

We are not trying to explain the fine tuning. It is plau-
sible that there is a landscape of possible theories with
varying amounts of fine tuning, and we find ourselves in
a vacuum that is moderately tuned. For our purposes it
does not matter whether this is due to random chance
or anthropic selection. Our goal is to explore cosmologi-
cal dynamics correlated with the electroweak fine tuning.
An independent tuning is needed, as usual, to adjust the
constant V

0

so that the cosmological constant is small in
our vacuum.

We will mostly have in mind fine-tuned supersymmet-
ric theories, where this toy simplified potential can arise
with M2 ⇠ m2

soft

as explained in § S4 2. We consider the
hierarchy µ2

SM

⌧ m2

� . M2 ⌧ f2. Terms we have ne-

glected, such as (m2

�/f2)�4 or 1

f2

�2@µ�@µ�, could have

important e↵ects on the dynamics (such as oscillon for-
mation [14–18]). We assume that the field � stays far
from singular points in field space for all relevant times.
For now we have omitted all modulus self-interactions for
simplicity.

III Non-linear Dynamics In a typical untuned
scenario, when m� & H in the early universe, the mod-
ulus field starts to oscillate coherently along one of the
valleys of the potential, leading to an adiabatically evolv-
ing, early matter-domination epoch.5

In contrast, in a tuned universe, the modulus-Higgs
field system can undergo explosive, non-perturbative field
dynamics leading to fragmentation of the fields on short
time scales (t ⌧ H�1), and yield a non-trivial equation
of state for a number of e-folds of expansion following the
fragmentation.

For � ⌧ 1, the e↵ective Higgs mass term oscillates
between very large positive and negative values due to
the oscillation of �. One expects such oscillations to
lead to non-adiabatic, out-of-equilibrium production of
the Higgs particles. By considering tachyonic resonance
[19], and for f ⇠ �

in

⇠ m
pl

, the e�ciency of such particle
production is controlled by q ⌘ M2/m2

�. In particular,
q � 1 (as we assume) should lead to a broad range of
physical momenta for the produced Higgs particles (see
Fig. S3 in § S1).

E�cient transfer of energy from the modulus to the
Higgs field is countered by the Higgs self-interaction �.
Large self-interactions block Higgs production, whereas
at small � the Higgs field will be su�ciently populated
in non-zero momentum modes to backreact on the mod-
ulus, yielding a spatially inhomogeneous modulus (frag-
mentation). A more detailed view of the dynamics of the
modulus-Higgs system can be seen in Fig. S2 in § S1.

5 Gravitational clustering in cosmology occurs on timescales &
H�1.
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complex enough: “universal” results

� 2Nf � 2NfM1 M2 MNs

|��(Ns)�|��(0)�

⌧ �!

m2
e↵(⌧)

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

complex non-perturbative particle production

occupation numbers grow exponentially 
(universality similar to Anderson localization)

universally log-normal distributions

treat as scattering problems 
(similar to that when dealing with impurities in wires)
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The fun bit:  
By establishing a mathematical map between current conduction in 
wires with impurities and stochastic particle production in 
cosmology, we benefited a lot from work on Anderson Localization 
since the 1950s.
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�
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Potential benefits: 
• useful when the microphysics is uncertain, dynamics are complex 

and only coarse grained predictions are needed.
• hints of universality in predictions when the no. of interactions 

and/or components is large.
• reduction in complexity to a few parameters

What did we do? 
We developed a statistical framework to calculate stochastic particle 
production in the early universe in complex scenarios with multiple 
interacting fields.
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl

.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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where H
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is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
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and g
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are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
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), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:

k

a
g

H
g

⌘ ��1 ⇠ q1/2

m
plp

f�
g

, (S17)

x/m

�1
� x/m

�1
� x/m

�1
� x/m

�1
�

a3/2h/mpl

a3/2�/mpl

+ dark matter abundance, 
+ baryogengesis etc.

high frequency detectors would be useful
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