Numerical simulations of neutron star mergers

Francois Foucart University of New Hampshire CIPANP18 June 1st 2018

Physics of NS mergers

(1) Inspiral/Merger:

- Need General relativity + Tides in neutron stars (Equation of state)
- Most important phase to model GWs!

Black Hole-Neutron Star

Neutron Star-Neutron Star

Physics of NS mergers

(2) Post-merger magnetic fields :

- Grow from small-scale instabilities (MRI, shear)
- Transport angular momentum, drive outflows/jets, heat remnant

Kiuchi et al. 2015

Ruiz et al. 2016

Physics of NS mergers

(3) Neutrino absorption / Antineutrino emission increase Y_e of outflows
(4) Pair annihilation deposits energy in polar regions

General Relativity

Evolution and GW production well under control, main efforts go to simulation accuracy

General Relativity

Evolution and GW production well under control, main efforts go to simulation accuracy

NS Equation of State

Range of simulations going from ideal gas to nuclear theory-based tables.

Lack of well-motivated EoS for compact NSs!

General Relativity

Evolution and GW production well under control, main efforts go to simulation accuracy

NS Equation of State

Range of simulations going from ideal gas to nuclear theory-based tables.

Lack of well-motivated EoS for compact NSs!

Neutrinos

Approximate transport algorithm currently create significant uncertainties in outflow modeling

Monte-Carlo transport may be possible within a few years

General Relativity

Evolution and GW production well under control, main efforts go to simulation accuracy

Neutrinos

Approximate transport algorithm currently create significant uncertainties in outflow modeling

Monte-Carlo transport may be possible within a few years

NS Equation of State

Range of simulations going from ideal gas to nuclear theory-based tables.

Lack of well-motivated EoS for compact NSs!

Magnetic Fields

Resolving growth of B-field remains beyond our computational capabilities.

Sims rely on sub-grid models, or artificially imposed large-scale field structure

Waveform modeling

- Objective: unbiased estimates of tidal parameters in GW observations, possibly with ~10% accuracy in aLIGO
- Multiple groups nominally capable of sufficient (?) waveform accuracy [ТНС, SACRA, SpEC, BAM]

Image: Hinderer et al. 2016

- ToDo list for NR and analytical modelers (in progress):
 - Parameter space coverage, EoS model dependency
 - Code comparisons
 - GW model testing using latest NR results, impact of hybridization

NSNS -> NS

NSNS -> BH

BHNS

Image: Kasen et al 2017

<u>Objectives:</u> Go from kilonova -> outflow properties -> binary properties! Understand r-process nucleosynthesis

Foucart et al., in prep : Impact of inaccurate MI closure

 $\cos(\Theta)$

Foucart et al., in prep : Impact of inaccurate MI closure

 $\cos(\Theta)$

Foucart et al. 2017: Inaccurate neutrino **energy** estimates -> Errors in composition

Foucart et al., in prep : Impact of inaccurate MI closure

<u>Foucart et al. 2017:</u> Inaccurate neutrino **energy** estimates -> Errors in composition

<u>Kiuchi, Lehner, Fujibayashi:</u> **Mass** of outflows depends on magnetic fields!

Foucart et al., in prep : Impact of inaccurate MI closure

 $\cos(\Theta)$

Foucart et al. 2017: Inaccurate neutrino **energy** estimates -> Errors in composition

<u>Kiuchi, Lehner, Fujibayashi:</u> **Mass** of outflows depends on magnetic fields! <u>Fernandez, Just, Siegel:</u> Do not forget disk outflows!! 20%-40% of remnant disk will be unbound

Conclusions

- Rapid progress in physical realism of simulations
 - Current limits: small scale instabilities, neutrino transport, long evolutions
- Waveform modeling is staying ahead of aLIGO accuracy
- Outflow/nucleosynthesis predictions remain qualitative
- Important questions not discussed here:
 - How to power short gamma-ray bursts?
 - Do jet/wind interactions impact kilonovae?