#### Precise measurement of $m_{D^{*+}} - m_{D^{+}}$ (and $m_{D^{+}} - m_{D^{0}}$ )

PRL 119 (2017) 202003

#### Abi Soffer

#### Tel Aviv University On behalf of the BABAR Collaboration

CIPANP 2018

## Motivation

- Chiral perturbation theory and lattice QCD calculations of heavy-light mesons start in the  $m_b = m_c = \infty$  limit and SU(3) flavor symmetry and consider symmetry breaking due to (i) finite  $m_b, m_c$ , (ii)  $m_u \neq m_d \neq m_s$ , (iii) EW interactions.
- These SBs can be related to mass differences [Goity & Jayalath, PLB 650, 22]:

Table 2

Mass contributions by strong hyperfine, light quark masses and electromagnetism in units of MeV. The errors include the uncertainties in the quark mass ratios. The fit has  $\chi^2 \sim 1$ 

| $\Delta M$      | Strong HF        | Light quark masses | Electromagnetic  | Total             | PDG [2]           |
|-----------------|------------------|--------------------|------------------|-------------------|-------------------|
| $D^{+} - D^{0}$ | 0                | $2.71 \pm 0.20$    | $2.07\pm0.32$    | $4.78\pm0.25$     | $4.78\pm0.10$     |
| $D_s - D^+$     | 0                | $98.85 \pm 0.21$   | 0                | $98.85 \pm 0.20$  | $98.85 \pm 0.30$  |
| $D^{*0} - D^0$  | $140.98\pm0.1$   | $0.09 \pm 0.01$    | $1.04 \pm 0.05$  | $142.12 \pm 0.06$ | $142.12 \pm 0.07$ |
| $D^{*+} - D^+$  | $140.98 \pm 0.1$ | $0.18 \pm 0.02$    | $-0.52 \pm 0.03$ | $140.64 \pm 0.13$ | $140.64 \pm 0.10$ |
| $D_s^* - D_s$   | $140.98\pm0.1$   | $3.30 \pm 0.28$    | $-0.52 \pm 0.03$ | $143.77 \pm 0.15$ | $143.8\pm0.4$     |
| $B^{0} - B^{-}$ | 0                | $2.42 \pm 0.18$    | $-2.09 \pm 0.18$ | $0.33 \pm 0.04$   | $0.33\pm0.28$     |
| $B^* - B$       | $45.70\pm0.02$   | $0.04 \pm 0.01$    | $-0.05 \pm 0.01$ | $45.69 \pm 0.02$  | $45.78\pm0.35$    |
| $B_s - B$       | 0                | $89.34 \pm 0.16$   | $-1.04 \pm 0.10$ | $88.3 \pm 0.15$   | $88.3 \pm 1.8$    |
| $B_s^* - B_s$   | $45.70\pm0.02$   | $0.94 \pm 0.11$    | $0.09\pm0.01$    | $46.73\pm0.06$    | $45.3\pm1.5$      |

• Improving mass difference measurements allows more precise understanding of the SB effects, and should lead to more precise predictions of other quantities.

#### Current charm mass differences

- ⇒  $m_{D^{*+}} m_{D^+} = 140660 \pm 80 \text{ keV}$ 
  - CLEO, PRL 69 (1992) 2046
  - Similar technique to one presented here:  $D^{*+} \rightarrow D^+ \pi^0$
- $m_{D^+} m_{D^0} = 4760 \pm 12 \pm 70 \text{ keV}$ 
  - LHCb, JHEP 1306 (2013) 065
  - $m_{D^{*+}} m_{D^0} = 145475.7 \pm 1.7 \text{ keV}$ 
    - PDG, dominated by BABAR, PRL 111 (2013) 111801,  $D^{*+} \rightarrow D^0 \pi^+$

### The BABAR detector & dataset

- BABAR ran from 1999 to 2008 at and around the  $\Upsilon(4S)$  region.
- The analysis uses  $468 \text{ fb}^{-1}$  collected on the  $\Upsilon(4S)$



SLAC yesterday

## Reconstruction

- Reconstruct  $D^{*+} \rightarrow D^{+}\pi^{0}$  $\pi^{0} \rightarrow \gamma \gamma$  $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$
- $p_{D^{*+}} > 3 \text{ GeV}, E_{\gamma} > 60 \text{ MeV}, E_{\pi^0} > 200 \text{ MeV}$
- Kinematic fit constraints:
  - $-\pi^0$  mass
  - $D^{*+}$  decay at the primary vertex
  - $D^+$  momentum points back to the primary vertex
- Typical  $\pi^0$  has
  - Momentum  $\sim 300 \text{ MeV}$
  - Energy resolution ~7%
  - After the kinematic fit, momentum resolution  $\sim 3\%$







# How well does $\pi^0$ MC match the data?

- The  $\pi^0$  momentum measurement dominates the final uncertainty.
- Use  $\pi^0$  mass distribution to understand MC-data differences
- $\pi^0$  mass peak position is correct in data
- But 0.5 MeV too low in the MC, partly due to different calibration method.
- We emulate the data calibration by correcting the MC depending on
  - Photon energy
  - Photon opening angle
  - Data-taking period
- Agreement much better, but peak shape is not identical. Taken into account in fit procedure.



# Fit procedure 1

• To obtain  $m_{D^{*+}} - m_{D^+}$ , we fit the distribution of the difference  $\Delta m \equiv m(K^-\pi^+\pi^+\pi^0) - m(K^-\pi^+\pi^+)$ between the reconstructed masses of the  $D^{*+}$  and  $D^+$  condidates

between the reconstructed masses of the  $D^{*+}$  and  $D^+$  candidates

• Fit truth-matched signal-MC candidates (~7 times data size) with the function  $a_1G_1(\Delta m; m_{D^{*+}} - m_{D^+} + \delta, \sigma_1)$   $+a_2CB(\Delta m; m_{D^{*+}} - m_{D^+} + \delta, \sigma_2, \alpha, n)$   $+a_3G_2(\Delta m; m_{D^{*+}} - m_{D^+} + \delta, \sigma_3^L, \sigma_3^R)$   $\downarrow$ Fixed to the generated value  $\delta = \text{floating correction}$ 

(How well the PDF give the peak)

 $G_1$  =Gaussian CB =Crystal Ball (Gaussian + RHS exponential tail)  $G_2$  =Gaussian with different RHS and LHS widths  $a_1 = f_1, a_2 = (1 - f_1)f_2, a_3 = (1 - f_1)(1 - f_2)$ 



# Fit procedure 2

• Fit the data, fixing some shape parameters to MC , floating the widths:

 $\begin{array}{l} a_1 G_1(\Delta m; \ m_{D^{*+}} - m_{D^+} + \delta, \sigma_1) \\ + a_2 CB(\Delta m; \ m_{D^{*+}} - m_{D^+} + \delta, \sigma_2, \alpha, n) \\ + a_3 G_2(\Delta m; \ m_{D^{*+}} - m_{D^+} + \delta, \sigma_3^L, \sigma_3^R) \end{array}$ 

- Plus a background threshold function  $\Delta m \sqrt{(\Delta m/m_{\pi^0})^2 - 1} e^{k(\Delta m/m_{\pi^0})}$
- Parameterized MC experiments show a fit bias of 3.4 keV.
- With this correction, we obtain  $m_{D^{*+}} - m_{D^{+}} =$ 140,601.0 ± 6.8 (stat) keV



## Systematic uncertainties

- Study dependence of  $m_{D^{*+}} m_{D^+}$  on several kinematic quantities to identify sources of detector mis-simulation.
- If  $\chi^2/n_{dof} > 1$  for the no-dependence hypothesis given the statistical uncertainty  $\sigma_{stat}$ , apply a systematic  $\sigma_{syst} = \sigma_{stat} \sqrt{\chi^2/n_{dof} 1}$

#### $D^{*+}$ momentum

 $D^{*+}$  polar angle

BABAR







Large dependence on  $\gamma\gamma$  opening angle mostly accounted for by the calibration emulation



## Systematic uncertainties

|                                 | Source                             | $\Delta m_+$ systematic [keV] |
|---------------------------------|------------------------------------|-------------------------------|
| Half the bias $\longrightarrow$ | Fit bias                           | 1.7                           |
|                                 | $D^{*+} p_{\text{lab}}$ dependence | 5.0                           |
|                                 | $D^{*+}\cos\theta$ dependence      | 6.9                           |
| - 1 0.0                         | $D^{*+} \phi$ dependence           | 0.0                           |
| Evaluate $\delta$ for           | $m(D_{\rm reco}^+)$ dependence     | 0.0                           |
| different periods.              | Diphoton opening angle dependence  | 6.1                           |
| No dependence $\rightarrow$     | Run period dependence              | 0.0                           |
|                                 | Signal model parametrization       | 2.1                           |
| •                               | EMC calibration                    | 7.0                           |
| Vary fixed fit                  | MC $\pi^0$ momentum rescaling      | 0.5                           |
| parameters,                     | Total                              | 12.9                          |
| accounting for                  |                                    |                               |
| 0                               |                                    |                               |

correlations with toy MC

Rescaling of  $\gamma$  energies by 0.3%, from data-MC  $m_{\pi^0}$  peak-position difference MC statistics in MC-to-data  $p_{\pi^0}$ -scaling parameters

Additional cross checks: vary fit ranges and cuts

## Summary

• We measure

 $m_{D^{*+}} - m_{D^+} = 140601.0 \pm 6.8 \pm 12.9 \text{ keV}$ 

- 5.5 times better than previous result (CLEO)
- Combine with previous BABAR result

 $m_{D^{*+}} - m_{D^0} = 145425.1 \pm 0.5 \pm 1.8 \text{ keV}$ ,

gives

$$m_{D^+} - m_{D^0} = 4824.9 \pm 14.6 \text{ keV},$$

also 5.5 times better than previous result (LHCb)

• To be compared with

 $m_{\pi^+} - m_{\pi^0} = 4539.6 \pm 0.5$  $m_{K^+} - m_{K^0} = -3934 \pm 20$ 

– Note: uncertainty for *D* smaller than for *K*!