New Results on Three-Nucleon Short-Range Correlations

Misak Sargsian Florida International University, Miami

Intersection of Particle and Nuclear Physics May 29 – June 3, 2018, Indian Wells, CA

- Calculation of High-Energy Nuclear Processes.

- Applying to Two-Nucleon SRC Studies

- Probing Three-Nucleon SRCs: new results

I. Calculation of High Energy Nuclear Processes

Emergence of High Energy Dynamics

- Short Range Nucleon Correlations(SRCs) are important feature of Nuclear Dynamics
- Transition from hadronic to quark-gluon degrees of freedom in cold-nuclei "should happen" through SRCs
- 3N SRCs are essential for high density cold dense nuclear matter relevant to Neutron Star dynamics in the core
- Internal momenta relevant to SRCs $p \sim M_N$ Relativistic
- Such states are probed in high energy processes: high energy approximations can be applied in description of SRC dynamics

High Energy Approximations:

- High Energy: $\left| \vec{q} \right| = q_3 \gg p \sim M_N \;\; {\sf QE/DIS} \;\;\; Q^2 \geq few \;\; {
m GeV^2}$

- Emergence of the small parameter

- non relativistic case: due to Galilean relativity
 observer X can probe all n-nucleons at the same time
- $\Psi(z_1, z_2, z_3, \cdots, z_n, t)$

 $\Psi(z_1, t_1; z_2, t_2; z_3, t_3, \cdots; z_n, t_n)$

- relativistic case: observer X probes all n-nucleons at different n times
 - observer riding the light-front X probes all n-nucleons $\Psi_{LF}(\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{Z}_3, \cdots, \mathcal{Z}_n, \tau)$ at same light-cone time: $\mathcal{Z}_i = t_i + z_i$

 $\tau = t_1 - z_1 = t_2 - z_2 = \dots = t_n - z_n$

Light-Front wave function of the Nucleus

 $\Psi_{LF}(\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{Z}_3, \cdots, \mathcal{Z}_n, \tau)$

- in the momentum space

$\Psi_{LF}(\alpha_1, p_{1\perp}; \alpha_2, p_{2\perp}; \alpha_3, p_{3\perp}; \cdots, \alpha_n, p_{n\perp})$ $\alpha_i = \frac{p_{i-1}}{p_{A-1}/A}$

- How the LF wave function appears in the scattering process

Frank Vera, M.S. ArXiV 2018

From Schroedinger Equation -> Feynman Diagrams-> Light-Front Wave Function

 \rightarrow

 \rightarrow

Schroedinger eq.
$$\rightarrow$$

$$-\sum_{i} \frac{\nabla_{i}^{2}}{2m} + \frac{1}{2} \sum_{i,j} V(x_{i} - x_{j}) \bigg] \psi(x_{1}, \cdots, x_{A}) = E\psi(x_{1}, \cdots, x_{A})$$

Lipmann-Schwinger Eq

Lipmann-Schwinger Eq.

$$\left(\sum_{i}\frac{k_i^2}{2m}-E_b\right)\Phi(k_1,\cdots,k_A)=-\frac{1}{2}\sum_{i,j}\int U(q)\,\Phi(k_1,\cdots,k_i-q,\cdots,k_j+q,\cdots,k_A)d^3q$$

t- ordered diagrammatic method

Weinberg Eq

$$\left(\sum \frac{k_{i\perp}^2 + m^2}{\alpha_i} - M_A^2\right) \Phi_{LF}(k_1, \dots, k_A) = \frac{1}{2} \sum_{i,j} \int U_{LF}(q) \Phi_{LF}(k_1, \dots, k_A) \prod \frac{d\alpha_i}{\alpha_i} d^2 k_{i\perp}$$
$$\Phi_{LF}(k_1, \dots, k_A) = \frac{1}{k_{\perp}^2 + m^2} \Gamma_{A \to N, A-1}$$

 $\sum \frac{i \perp i}{\alpha_i} - M_A^2$

Spectral Function Calculations

$$S_A^{MF} = -Im \int \chi_A^{\dagger} \Gamma_{A,N,A-1}^{\dagger} \frac{\not{p}_1 + m}{p_1^2 - m^2 + i\varepsilon} \hat{V}^{MF} \frac{\not{p}_1 + m}{p_1^2 - m^2 + i \times \varepsilon} \left[\frac{G_{A-1}(p_{A-1})}{p_{A-1}^2 - M_{A-1}^2 + i\varepsilon} \right]^{on} \Gamma_{A,N,A-1} \chi_A \frac{d^4 p_{A-1}}{i(2\pi)^4} \frac{d$$

$$\hat{V}^{MF} = ia^{\dagger}(p_1, s_1)\delta^3(p_1 + p_{A-1})\delta(E_m - E_{\alpha})a(p_1, s_1)$$

$$\psi_{N/A}(p_1, s_1, s_A, E_\alpha) = \frac{\bar{u}(p_1, s_1)\Psi_{A-1}^{\dagger}(p_{A-1}, s_{A-1}, E_\alpha)\Gamma_{A,N,A-1}\chi_A}{(M_{A-1}^2 - p_{A-1}^2)\sqrt{(2\pi)^3 2E_{A-1}}}$$

$$S_A^{MF}(p_1, E_m) = \sum_{\alpha} \sum_{s_1, s_{A-1}} |\psi_{N/A}(p_1, s_1, s_A, E_\alpha)|^2 \,\delta(E_m - E_\alpha)$$

Emergence of Short-Range Correlations

- Back to Lipmann-Schwinger Equation

$$\left(\sum_{i}\frac{k_i^2}{2m}-E_b\right)\Phi(k_1,\cdots,k_A)=-\frac{1}{2}\sum_{i,j}\int U(q)\,\Phi(k_1,\cdots,k_i-q,\cdots,k_j+q,\cdots,k_A)d^3q$$

- Assume: system is dilute
- Assume: $U_{NN}(q) \sim \frac{1}{q^n}$ with n > 1
- then the k dependence of the wave function for $k^2/2m_N \gg |E_B|$

$$\Phi^{(1)}(k_1,\cdots,k_c,\cdots,-k_c,\cdots,k_A) \approx \frac{U_{NN}(k_c)}{k_c^2} F_A(k_1,\cdots,k_A)$$

$$\Phi^{(2)}(\cdots,k_c,\cdots) \sim \frac{1}{k_c^{2+n}} \int \frac{1}{q^n} dq$$

Amado, 1976

– For large $k_c \,\, \Phi^{(2)}(k_c) \ll \Phi^{(1)}(k_c)$

Frankfurt, Strikman 1981

- The same is true for relativistic equations as: Bethe-Salpetter or Weinberg Light Cone Equations

- From
$$\Phi^{(1)}(k_1, \dots, k_c, \dots, -k_c, \dots, k_A) \approx \frac{U_{NN}(k_c)}{k_c^2} F_A(k_1, \dots' \dots', \dots, k_A)$$
 follows for large $k > k_{Fermi}$

$$n_A(k) \approx a_{NN}(A)n_{NN}(k)$$

Frankfurt, Strikman Phys. Rep, 1988 Day,Frankfurt, Strikman, MS, Phys. Rev. C 1993

- Experimental observations

Egiyan et al, 2002,2006 Fomin et al, 2011 A(e,e')

A(e,e')

Egiyan, et al PRC 2004

Fomin et al PRL 2011

A(e,e')

Meaning of the scaling values

Day, Frankfurt, MS, Strikman, PRC 1993

Frankfurt, MS, Strikman, **IJMP A 2008**

Fomin et al PRL 2011

$$R = \frac{A_2 \sigma[A_1(e,e')X]}{A_1 \sigma[A_2(e,e')X]}$$

For 1 < x < 2 $R \approx \frac{a_2(A_1)}{a_2(A_2)}$ A(e,e') $\frac{3}{6}\sigma_{C12}^{\prime}/12\sigma_{He3}^{\prime}$ $0^2 = 2.5$ 1 a) 0.5 0 L 0.8 $X_{b} = Q^{2}/2m_{p}v$ 1.6 1.2 1.4 1 $\frac{3\sigma_{Fe56}/56\sigma_{e}^{He3}}{\frac{1}{6}}$ $Q^2 = 2.5$ 1 b) 0.5 0 L 0.8 $X_{b} = Q^{2}/2m_{p}v$ 1.2 1.6 1 1.4

Egiyan, et al PRL 2006, PRC 2004

meaning of x value

a2's as relative probability of 2N SRCs

Table 1: The results for $a_2(A, y)$									
А	У	This Work	Frankfurt et al	Egiyan et al	Famin et al				
³ He	0.33	$2.07 {\pm} 0.08$	1.7 ± 0.3		2.13 ± 0.04				
$^{4}\mathrm{He}$	0	$3.51{\pm}0.03$	$3.3 {\pm} 0.5$	$3.38{\pm}0.2$	$3.60 {\pm} 0.10$				
⁹ Be	0.11	$3.92{\pm}0.03$			$3.91 {\pm} 0.12$				
$^{12}\mathrm{C}$	0	$4.19 {\pm} 0.02$	$5.0 {\pm} 0.5$	$4.32 {\pm} 0.4$	$4.75 {\pm} 0.16$				
^{27}Al	0.037	$4.50 {\pm} 0.12$	$5.3 {\pm} 0.6$						
$^{56}\mathrm{Fe}$	0.071	$4.95{\pm}0.07$	$5.6 {\pm} 0.9$	$4.99{\pm}0.5$					
$^{64}\mathrm{Cu}$	0.094	$5.02 {\pm} 0.04$			$5.21 {\pm} 0.20$				
$^{197}\mathrm{Au}$	0.198	$4.56 {\pm} 0.03$	$4.8 {\pm} 0.7$		$5.16 {\pm} 0.22$				

2. Dominance of the (pn) component of SRC

Direct Measurement at JLab R.Subdei, et al Science, 2008

Factor of 20

Expected 4 (Wigner counting)

Theoretical Interpretation

$$\phi_A^{(1)}(k_1,\cdots,k_i=p,\cdots,k_j\approx -p,\cdots,k_A)\sim \frac{V_{NN}(p)}{p^2}f(k_1,\cdots,\cdots,\cdots)$$

 $n_A(k) \approx a_{NN}(A) n_{NN}(k)$

Explanation lies in the dominance of the <u>tensor</u> part in the NN interaction

Explanation lies in the dominance of the <u>tensor</u> part in the NN interaction

 $S_{12}|pp\rangle = 0$ $S_{12}|nn\rangle = 0$ $S_{12}|nn\rangle = 0$ $S_{12}|pn\rangle = 0$ $S_{12}|pn\rangle \neq 0$ Isospin 0 states

$$\begin{aligned} & \sum_{\substack{n_{N,N} \\ n_{N,N} \\ n_{N,N,N} \\ n_{N,N} \\ n$$

2N SRC model Non Relativistic Approximation

2N SRCs:

- Proper Variables of 2N SRC are the Light Front Momentum Fraction: $\alpha = \frac{p_N^+}{p_{NN}^+}$
- transverse momentum: p_{\perp}

Back to inclusive A(e,e')X scattering $\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha) \text{ where } \rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$ $1.3 \le \alpha_{2N} \le 1.5$ $\alpha_{2N} = 2 - \frac{q_- + 2m_N}{2m_N} \left(1 + \frac{\sqrt{W_{2N}^2 - 4m_N^2}}{W_{2N}} \right)$

Towards Three Nucleon Short Range Correlations

Looking for the Plateau in Inclusive Cross Section Ratios x>2

Three Nucleon Short Range Correlations

Z. Ye, at al, 2017

Looking for the Plateau in Inclusive Cross Section Ratios x>2

3N SRCs:

Proper Variables of 2N SRC are

- the Light Front Momentum Fraction: $\alpha = \frac{p_N^+}{p_{2N}^+}$
- transverse momentum: p_{\perp}

3N SRCs in Inclusive A(e,e')X Reactions Day, Frankfurt, M.S. Strikman ,ArXiv 2018 $\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha)$ where $\rho_A(\alpha) = \int \rho_A(\alpha, p_{\perp}) d^2 p_{\perp}$

3N SRC model $\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha)$ where $\rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$ $1.6 \le \alpha_{3N} < 3$

Donal Day, 2018

3N SRCs $\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha)$ where $\rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$ $1.6 \le \alpha_{3N} < 3$

Ratios of all nuclei to 3He at 18°

JLab - E02019 - Data

3N SRC model $\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha)$ where $\rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$ $1.6 \le \alpha_{3N} < 3$

Ratios of all nuclei to 3He at 18°

JLab - E02019 - Data

3N SRC: Light-Cone Momentum Fraction Distribution

A.Freese, M.S., M.Strikman, Eur. Phys. J 2015
O. Artiles M.S. Phys. Rev. C 2016

$$k_{1} \atop k_{2} \atop p_{3} \atop p_{2} \atop p_{2} \atop p_{2} \atop p_{2} \atop p_{2} \atop p_{3} \atop p_$$

3N SRC: Light-Cone Momentum Fraction Distribution

$$\rho_{3N}(\alpha_{1}) = \int \frac{1}{4} \left[\frac{3 - \alpha_{3}}{(2 - \alpha_{3})^{3}} \rho_{pn}(\alpha_{3}, p_{3\perp}) \rho_{pn} \left(\frac{2\alpha_{2}}{3 - \alpha_{3}}, p_{2\perp} + \frac{\alpha_{1}}{3 - \alpha_{3}} p_{3\perp} \right) + \frac{3 - \alpha_{2}}{(2 - \alpha_{2})^{3}} \rho_{pn}(\alpha_{2}, p_{2\perp}) \rho_{pn} \left(\frac{2\alpha_{3}}{3 - \alpha_{2}}, p_{3\perp} + \frac{\alpha_{1}}{3 - \alpha_{2}} p_{2\perp} \right) \right] \delta(\sum_{i=1}^{3} \alpha_{i} - 3) \\ d\alpha_{2}d^{2}p_{2\perp}d\alpha_{3}d^{2}p_{3\perp}, \qquad (1)$$

$$\rho_{pn}(\alpha, p_{\perp}) \approx a_2(A)\rho_d(\alpha, p_{\perp})$$

3N SRC: Light-Cone Momentum Fraction Distribution

O. Artiles M.S. Phys. Rev. C 2016

3N SRC: Light-Cone Momentum Fraction Distribution

- ppp and nnn strongly suppressed compared with ppn or pnn- pp/nn recoil state is suppressed compared with pn

$$R_{3}(A,Z) = \frac{9}{8} \frac{(\sigma_{ep} + \sigma_{en})/2}{(2\sigma_{ep} + \sigma_{en})/3} \left(\frac{a_{2}(A,Z)}{a_{2}(^{3}He)}\right)^{2} = \frac{9}{8} \frac{(\sigma_{ep} + \sigma_{en})/2}{(2\sigma_{ep} + \sigma_{en})/3} R_{2}^{2}(A,Z),$$

3N SRC: Light-Cone Momentum Fraction Distribution

- For A(e,e') X reactions: $\sigma_{eA} = \sum_N \sigma_{eN}
 ho_{3N}(lpha_{3N})$
- Defining: $R_3(A, Z) = \frac{3\sigma_{eA}}{A\sigma_{e^3He}} \mid_{\alpha_{3N} \ge \alpha_{3N}^0}$

- We predict:
$$R_3(A, Z) = \frac{9}{8} \frac{(\sigma_{ep} + \sigma_{en})/2}{(2\sigma_{ep} + \sigma_{en})/3} \left(\frac{a_2(A, Z)}{a_2(^3He)}\right)^2 = \frac{9}{8} \frac{(\sigma_{ep} + \sigma_{en})/2}{(2\sigma_{ep} + \sigma_{en})/3} R_2^2(A, Z),$$

- Where: $R_2(A, Z) = \frac{3\sigma_{eA}}{A\sigma_{e^3He}} \mid_{1.3 \le \alpha_{3N} \le 1.5}$ where: $\alpha_{3N} \approx \alpha_{2N}$

3N SRC model

 $R_2 = \frac{3\sigma_{eA}(\alpha_{3N})}{A\sigma_{3A}(\alpha_{3N})} \quad 1.3 \le \alpha_{3N} \le 1.5$

$$R_3 = rac{3\sigma_{eA}(lpha_{3N})}{A\sigma_{3A}(lpha_{3N})} \ 1.6 \le lpha_{3N} \le 1.8$$

$R_3(A,Z) \approx R_2(A,Z)^2$

Ratios of all nuclei to 3He at 18°

 $1.6 \le \alpha_{3N} < 3$

3N SRC model

$$R_3 = rac{3\sigma_{eA}(lpha_{3N})}{A\sigma_{3A}(lpha_{3N})} \ 1.6 \le lpha_{3N} \le 1.8$$

$$1.6 \le \alpha_{3N} < 3$$

 $R_3(A) = R_2(A)^2$

D.Day, L.Frankfurt, M.S, M.Strikman ArXiv 2018

3N SRC model

Defining:
$$a_3(A, Z) = \frac{3}{A} \frac{\sigma_{eA}}{(\sigma_{e^3He} + \sigma_{e^3H})/2}$$

One relates: $a_3(A, Z) = \frac{(2\sigma_{ep} + \sigma_{en})/3}{(\sigma_{ep} + \sigma_{en})/2} R_3(A, Z)$

A	a_2	R ₂	R_2^{\exp}	R_{2}^{2}	$R_3^{ m exp}$	a_3
3	2.14 ± 0.04	NA	NA	NA	NA	1
4	3.66 ± 0.07	1.71 ± 0.026	1.722 ± 0.013	2.924 ± 0.29	3.034 ± 0.23	4.55 ± 0.35
9	4.00 ± 0.08	1.84 ± 0.027	1.878 ± 0.018	3.38 ± 0.38	4.01 ± 0.52	6.0 ± 0.78
12	4.88 ± 0.10	2.28 ± 0.027	2.301 ± 0.021	5.2 ± 0.5	5.78 ± 0.71	8.7 ± 1.1
27	5.30 ± 0.60	NA	NA	NA	NA	NA
56	4.75 ± 0.29	NA	NA	NA	NA	NA
64	5.37 ± 0.11	2.51 ± 0.027	2.502 ± 0.024	6.3 ± 0.63	6.780 ± 0.875	10.2 ± 1.3
197	5.34 ± 0.11	2.46 ± 0.028	2.532 ± 0.026	6.05 ± 0.6	7.059 ± 0.970	10.6 ± 1.5

D.Day, L.Frankfurt, M.S, M.Strikman ArXiv 2018 3N SRC Summary & Outlook

- Proper variable for studies of 2N and 3N SRS are Light-Cone momentum fractions: α_{2N}, α_{3N}
- In 2N SRC region: $\alpha_{2N} \approx \alpha_{3N}$, so α_{3N} is good for all region
- It seems we observed first signatures of 3N SRCs in the form of the "scaling"

- Existing data in agreement with the prediction of: $R_3(A,Z)pprox R_2(A,Z)^2$
- Unambiguous verification will require larger Q2 data to cover larger α_{3N} region
 - Reaching Q2 > 5 GeV2 will allow to reach: $lpha_{3N}>2$

3N SRC Outlook

For finite Q2 - 2N SRCs

