The nucleon axial coupling from Quantum Chromodynamics

Chia Cheng Chang

Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN

Lawrence Berkeley National Lab

Conference on the Intersections of Particle and Nuclear Physics Palm Springs, CA

Some outstanding questions

The origin of matter

Mechanism of asymmetric matter vs. antimatter production Recent status: Tokai 2 Kamioka (T2K) Current effort: T2HK with Hyper-Kamiokade DUNE @ Fermilab to Sanford

Searches for dark matter Only 5% is regular matter Many ongoing efforts Recent result Xenon1T

@ Grand Sasso Stronger bound on WIMP dark matter

Properties of the neutrino

What is the mass of the neutrino? What is the origin of the neutrino mass? Searches for neutrino-less double beta decay e.g. CANDLES @ Kamioka with Ca-48

Additionally, there are specific "puzzles"

The neutron lifetime puzzle

Experimental measurements

Bottle-type experiment

Traps neutrons in bottle and measures how many are left.

Beam-type experiment

Count protons emerging from a beam of neutrons.

If neutrons decay to dark matter, bottle lifetime will be **shorter** than beam lifetime!

Precision LQCD can be use to discriminate between beam and bottle measurements.

Big Bang Nucleosynthesis

Prediction of the Helium-4 mass fraction is sensitive to the neutron lifetime.

Current observed values of Y_p have >1% uncertainty, but improvement in both quantities may shed light on BSM physics.

Nucleon axial form factor

What is it?

Axial coupling as function of momentum transfer Fourier Transform of axial-charge density Dictates quasi-elastic scattering of T2HK, DUNE

T2K: CP conservation excluded at 90% CI

Hint of mechanism for leptogenesis? Need more precise determination at T2HK, DUNE

Precision axial form factor from LQCD

Proton charge radius puzzle

In 2010 the size of the proton was measured in muonic Hydrogen Radius shrank by 4% with 5 σ tension with atomic Hydrogen Result published in Nature 466, 213-216 (08 July 2010) New York Times ran an article four days later gaining popularity

New York Times Jul 12, 2010

 $2S_{1/2} - 2P_{1/2}$ $2S_{1/2} - 2P_{3/2}$ Lepton universality is also challenged in $2S_{1/2} - 2P_{1/2}$ recent *B*-meson semileptonic decays $1S-2S + 2S-4S_{1/2}$ $1S-2S + 2S-4D_{5/2}$ experimental data @ ~4o $1S-2S + 2S-4P_{1/2}$ $1S-2S + 2S-4P_{3/2}$ $1S-2S + 2S-6S_{1/2}$ $1S-2S + 2S-6D_{5/2}$ $1S-2S + 2S-8S_{1/2}$ ep : 0.8758 (77) fm $1S-2S + 2S-8D_{3/2}$ — Belle (HT) BABAR (HT) (spectroscopic data only) $1S-2S + 2S-8D_{5/2}$ 0.45 - LHCb Belle (ST) μp: 0.84087 (39) fm $1S-2S + 2S-12D_{3/2}$ - HFAG average - SM expectation $1S-2S + 2S-12D_{5/2}$ 0.4 $1S-2S + 1S-3S_{1/2}$ $R(D^*)$ 0.90 0.95 0.80 0.85 1.00 0.35 PPNP 82, 2015, pp. 59-77 proton charge radius (fm) Proton radius and multiple independent B 0.3 decay discrepancy -> new physics? 0.25 Lattice QCD can directly calculate the radius. 0.35 0.5 0.55 0.3 0.25 0.40.45R(D)Nature 546, 227-233 (2017)

Result challenges *lepton universality*

Connecting QCD to nuclear physics

Experiments require fundamental understanding of nuclear physics

DUNE uses Argon target Dark matter detectors use Xenon 0vbb use nuclear spectroscopy

Goal: Understand how nuclei interact from first principle theory

Quantum chromodynamics (QCD)

Modern fundamental description of the strong interaction Much of nuclear physics is in principle described by approximately 1 parameter

Problem: elegant theory but hard to evaluate Nuclear physics emerges from **nonperturbative** dynamics of QCD Solution:

Discretize theory: Lattice QCD nonperturbatively regulates the theory Discretization allows for numerical evaluation

LQCD can determine nuclear properties difficult or impossible to measure from experiment

Lattice QCD with many-body effective field theory is the only way to understand nuclear physics from first-principles

The nucleon axial coupling

Fundamental parameter to much of nuclear physics Benchmark calculation for Lattice QCD

Today I will present the first percent-level determination of g_A from QCD

 $g_A^{\text{QCD}} = 1.2711(126)$ $g_A^{\text{UNCA}} = 1.2772(020)$

Phys. Rev. C 97, 035505

(experiment is still 6 times more precise, but we are catching up!)

chiral, continuum, and infinite volume

 g_A from LQCD in chronological order

Introduction to Lattice QCD

Lattice QCD is QCD with non-perturbative (lattice) regularization Allows for first-principles approach to calculating hadronic observables

Evaluate Feynman path integral on the lattice Wick rotate so domain of integration is finite

$$\begin{aligned} \mathcal{A} \rangle = &\frac{1}{\mathcal{Z}} \int [d\psi] [d\bar{\psi}] [dU] \mathcal{A} e^{-S[\bar{\psi},\psi,U]} \\ = &\frac{1}{\mathcal{Z}} \int [dU] \det \left(\not\!\!D + m \right) e^{-S[U]} \mathcal{A} \end{aligned}$$

Importance sample gauge field ~ $e^{-S[U] - \ln \det D}$ Observables from simple average $\langle A \rangle \approx \frac{1}{N} \sum_{i=1}^{N} A[U_i]$

Major lattice uncertainties and related issues

• continuum limit

(IR regulator)

$$t_{\rm comp.} \propto 1/a^6$$

- infinite volume
- light pion mass
- $t_{\rm comp.} \propto V^{5/4}$
- exponentially bad
- condition number
- signal-to-noise

Hadron spectroscopy on the lattice

Very successful history in hadron spectroscopy

Flavor physics from Lattice QCD

Over-constrain CKM unitarity with great success

and many other examples in meson physics...

Why is g_A different?

- Large statistical uncertainty
- Large systematic uncertainty
- g_A vs. pion mass show no clear trend

Nucleon signal-to-noise problem

Exponentially larger signal-to-noise compared to mesonic systems

For an nucleon annihilation operator N, the time evolution of correlator (signal) is

$$\langle N\bar{N}\rangle = \sum_{i} \langle N|i\rangle \langle i|\bar{N}\rangle e^{-E_{i}t} \propto e^{-M_{N}t}$$

(Euclidean spacetime, long time limit)

The variance of the correlator (noise) is

$$\operatorname{Var}\langle N\bar{N}\rangle = \langle |N\bar{N}|^2 \rangle - |\langle N\bar{N}\rangle|^2$$
$$= \langle |\pi\pi|^3 \rangle - |\langle N\bar{N}\rangle|^2 \propto e^{-3M_{\pi}t}$$

(long time limit only the lightest mode survives)

Signal-to-noise between mesonic and baryonic systems

light (pion/kaon) $s/n \propto e^{-[MeV]t}/e^{-[MeV]t}$ heavy-light (B/D) $s/n \propto e^{-[GeV]t}/e^{-[GeV]t}$ nucleon $s/n \propto e^{-[GeV]t}/e^{-[MeV]t}$

Signal-to-noise in data

Pion

Relative uncertainty constant with time.

B-meson

Rel. uncertainty grows but controlled.

Nucleon

Rel. uncertainty *may* have correlated fluctuations before overwhelmed by noise.

(Light) baryons are most susceptible to systematic errors

Overcoming noise

Get more statistics

Precision determination of g_A is believed to be an exascale problem. 2016 DOE OSTI Nuclear Physics Exascale Requirements Review, Fig. 3-40

Use a different computational strategy

Signal-to-noise is exponentially better at small time separations. However, signal is polluted with systematics that needs to be fully controlled.

Feynman-Hellmann on the lattice

The Feynman-Hellmann theorem

$$\frac{\partial E_{\lambda}}{\partial \lambda} = \left\langle \psi_{\lambda} \left| \frac{\partial \hat{H}_{\lambda}}{\partial \lambda} \right| \psi_{\lambda} \right\rangle$$

can be evaluated on the lattice

$$\frac{\partial m_{\rm eff}}{\partial \lambda} = \langle n | \mathcal{J} | n \rangle$$

from the definition of $m_{\rm eff}$

$$\frac{\partial m_{\text{eff}}}{\partial \lambda}\Big|_{\lambda=0} = \left[\frac{\partial_{\lambda} C(t)}{C(t)} - \frac{\partial_{\lambda} C(t+1)}{C(t+1)}\right]\Big|_{\lambda=0}$$

Putting everything together

Good: Access small *t* where s/n is exp. improved. Challenge: Control very large systematic effects.

Sensitivity analysis

Excited-states present at small *t* Correlated fluctuations at larger *t*

- *p*-value > 0.05
- Gaussian bootstrap dist.
- e.s. subtract data is const. inside fit region

Renormalization

 $Z_A / Z_V = 1$ @ one part in 10,000

Conclusion the ratio g_A/g_V is continuum-like

Purpose

- the axial and vector currents have discretization errors
- correct for differences by matching lattice to continuum vertex functions

Details

- non-perturbative Rome-Southampton renormalization procedure
- non-exceptional kinematics (RI-SMOM)

HISQ gauge configurations and mixed action

HISQ action

Errors starting at $O(\alpha_s a^2, a^4)$ Lüscher-Weisz action

Errors starting at $O(\alpha_s^2 a^2, a^4)$

Möbius domain-wall

tune $m_{\rm res} < 0.1 m_l$ Errors effectively start at $O(a^2, \alpha_s a^2)$

unofficial MILC cow MILC = MIMD Lattice Computation (the acronym has an acronym in the acronym)

Extrapolation to the physical point

Strategy

- $\cdot\,$ the final result is insensitive to a wide array of variations
- stability of the result is enhanced though a weighted average of different models

The final result for the nucleon axial coupling is $g_A = 1.271(13)$

Bayesian model averaging

Model averaging accounts for uncertainty from different physical-point extrapolations

- in general provides better out-of-sample forecast
- naturally expressed under the Bayesian framework

Marginalize over set of models

$$P(g_A|D) = \sum_k P(g_A|M_k, D)P(M_k|D)$$

Bayes' Theorem gives

 $P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_l P(D|M_l)P(M_l)}$

where $P(D|M_k)$ is marginalized over params

$$P(D|M_k) = \int P(D|\theta_k, M_k) P(\theta_k|M_k) d\theta_k$$

Model averaged posterior distribution is

$$\mathbf{E}[g_A] = \sum_k \mathbf{E}[g_A | M_k] P(M_k | D)$$

$$\operatorname{Var}[g_A] = \sum_k \operatorname{Var}[g_A | M_k] P(M_k | D) + \left\{ \sum_k \operatorname{E}^2[g_A | M_k] P(M_k | D) \right\} - \operatorname{E}^2[g_A | D]$$

Kass and Raftery Bayes Factors (1995)

Model set

Taylor expansions around $m_{\pi} = 0$

NLO Taylor ϵ_{π} : $c_0 + c_1 \epsilon_{\pi} + \delta_a + \delta_L$ NNLO Taylor ϵ_{π} : $c_0 + c_1 \epsilon_{\pi} + c_2 \epsilon_{\pi}^2 + \delta_a + \delta_L$

NLO Taylor
$$\epsilon_{\pi}^2$$
: $c_0 + c_2 \epsilon_{\pi}^2 + \delta_a + \delta_L$
NNLO Taylor ϵ_{π}^2 : $c_0 + c_2 \epsilon_{\pi}^2 + c_4 \epsilon_{\pi}^4 + \delta_a + \delta_L$

Infinite volume extrapolation

leading order

$$\delta_L = 8/3 \left(\epsilon_{\pi}^2 \left[g_0^3 F_1(m_{\pi}L) + g_0 F_3(m_{\pi}L) \right] \right)$$

approximate NLO

 $\delta_{L_2} \equiv f_3 \epsilon_\pi^3 F_1(m_\pi L)$

Baryon chiral perturbation theory

NNLO $\chi PT: g_{\Delta}^{\chi PT} + \delta_a + \delta_L$ NNLO+ct χ PT: $g_A^{\chi}PT} + c_4 \epsilon_{\pi}^4 + \delta_a + \delta_L$ $g_{A}^{\chi \text{PT}} = g_0 + c_2 \epsilon_{\pi}^2 - \epsilon_{\pi}^2 (g_0 + 2g_0^3) \ln(\epsilon_{\pi}^2)$ $+ q_0 c_3 \epsilon_{\pi}^3$

Continuum extrapolation

 $\delta_a = a_2 \epsilon_a^2 + b_4 \epsilon_a^2 \epsilon_\pi^2 + a_4 \epsilon_a^4$

Dimensionless parameters

 $\epsilon_{\pi} = m_{\pi}/4\pi F_{\pi} \qquad \epsilon_a = a/\sqrt{4\pi w_0^2}$

$P(g_A|\overline{M_k})$ Fit χ^2/dof $P(M_k|D)$ $\mathcal{L}(D|M_k)$ NNLO χPT 0.727 0.033 1.273(19)22.734 NNLO+ct χPT 1.273(19)0.726 22.729 0.033 NLO Taylor ϵ_{π}^2 1.266(09)0.792 24.887 0.287NNLO Taylor ϵ_{π}^2 1.267(10)0.787 24.897 0.284 NLO Taylor ϵ_{π} 0.700 24.855 0.191 1.276(10)NNLO Taylor ϵ_{π} 1.280(14)0.674 24.848 0.1721.271(11)(06)average

Summary of results

Chiral extrapolation models

Convergence of chiral expansion

Double log : Phys. Lett. B639, 278 (2006)

 $+\left(\frac{2}{3}g_0 + \frac{37}{12}g_0^3 + 4g_0^5\right)\ln^2(\epsilon_\pi^2)$

$$=g_{0} + \epsilon_{\pi}^{2} \left[(g_{0} + 2g_{0}^{3}) \ln(\epsilon_{\pi}^{2}) + c_{2} \right] + c_{4}\epsilon_{\pi}^{4} + g_{0}c_{3}\epsilon_{\pi}^{3}$$

Continuum and infinite volume extrapolation

Chiral-continuum sensitivity analysis

Systematic error budget

Sources of uncertainty

statistical *g*_A, *g*_V, *m*_π, PDG *m*_π & F_π

chiral extrapolation weighted ϵ_{π} coefficient uncertainties

continuum extrapolation weighted ε_a coefficient uncertainties

finite volume

weighted f_3 coefficient uncertainties

isospin breaking

Largest uncertainty comes from

$$\left|\frac{g_A(\epsilon_{\pi^0}) - g_A(\epsilon_{\pi^\pm})}{2}\right|$$

Summary of uncertainties

statistical	0.81%
chiral extrapolation	0.15%
continuum extrapolation	0.12%
infinite volume extrap.	0.15%
isospin breaking	0.03%
model selection	0.43%
total (in quadrature)	0.99%

Final result

 $g_A = 1.271(13)$

The lifetime of a free neutron from LQCD

$$\tau_n = \frac{4908.7(1.9)\text{sec}}{|V_{ud}|^2(1+3g_A^2)}$$

Neutron lifetime : Phys. Rev. Lett 96 032002 (2006) FNAL/MILC V_{ud} : Phys. Rev. D90 074509 (2014)

Outlook

This work First 1% determination of g_A from Lattice QCD.

https://www.nature.com/articles/s41586-018-0161-8 www.github.com/callat-qcd/project_gA

Neutron lifetime puzzle

The current determination of the axial coupling is statistics limited. Neutron lifetime differ by 1% between beam vs. bottle. A 0.3% determination of g_A can discriminate two results at 1 σ ($\tau \sim 0.5\%$). New 100+ PFLOP supercomputers will help achieve this goal.

Applications to other single nucleon observables (in no particular order)

Proton radius puzzle Atomic and muonic Hydrogen radii differ by 4%. Goal to directly determine the radius at 1%. Development of new methods may let us achieve this goal.

Nucleon axial form factor

Long baseline neutrino experiments may uncover large sources of leptonic CP-violation. Precise experiments with precise prediction of the entire axial form factor is needed. The Feynman-Hellmann method may be applied to non-zero momentum (and other ideas).

Charm content of the nucleon WIMP-N cross section is particularly sensitive to the charm content. Need ~10% precision to motivate detector size. [PRL 112, 211602]

Collaborators

Chia Cheng Chang Amy Nicholson Enrico Rinaldi Evan Berkowitz Nicolas Garron

OAK RIDGE

National Laboratory FACILITY

David Brantley Henry Monge-Camacho Chris Monahan Chris Bouchard Kate Clark Balint Joó Thorsten Kurth Kostas Orginos Pavlos Vranas André Walker-Loud

<image>

Art by Bart-W. van Lith

COMPUTING

These calculations are made possible by

]]]

