Short-distance hadronic contributions to *D*-meson mixing from Lattice QCD

Chia Cheng Chang

Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN

Lawrence Berkeley National Laboratory

on behalf of the Fermilab/MILC collaborations

CIPANP 18, Palm Springs, CA

Probing new physics with mixing

Neutral meson mixing is tree-level suppressed in the Standard Model Sensitive to Beyond Standard Model heavy degrees of freedom

Mixing through up-type quarks

Kaon mixing successfully predicted charm-quark mass *B*-meson mixing inferred top-quark mass

and through down-type quarks

D-meson mixing as window to new physics?

D-meson mixing constraints on NP

Standard Model D-meson mixing is predominantly long-ranged

 K^+ D^0 $\pi^ D^0$ D^0

Unfortunately a large number of multi-particle intermediate states makes long-distance hard.

Fortunately New Physics is only short-distance.

Lorentz invariant 4-quark operators

Same operators as *K* and *B*-meson mixing, and $\pi^+ \rightarrow \pi^-$ transition that enters short-range 0vbb [1805.02634].

$$\mathcal{O}_{1} = (\bar{c}\gamma_{\mu}Lu)[\bar{c}\gamma_{\mu}Lu]$$
$$\mathcal{O}_{2} = (\bar{c}Lu)[\bar{c}Lu]$$
$$\mathcal{O}_{3} = (\bar{c}Lu)[\bar{c}Lu)$$
$$\mathcal{O}_{4} = (\bar{c}Lu)[\bar{c}Ru]$$
$$\mathcal{O}_{5} = (\bar{c}Lu)[\bar{c}Ru]$$

New Physics bound

+

The intersection of theory and experiment provides bound of New Physics

experiment perturb. NP LQCD

Introduction to Lattice QCD

Lattice QCD is QCD with non-perturbative (lattice) regularization Allows for first-principles approach to calculating hadronic observables

Evaluate Feynman path integral on the lattice Wick rotate so domain of integration is finite

$$\begin{aligned} \langle \mathcal{A} \rangle = &\frac{1}{\mathcal{Z}} \int [d\psi] [d\bar{\psi}] [dU] \mathcal{A} e^{-S[\bar{\psi},\psi,U]} \\ = &\frac{1}{\mathcal{Z}} \int [dU] \det \left(\not\!\!D + m \right) e^{-S[U]} \mathcal{A} \end{aligned}$$

Importance sample gauge field ~ $e^{-S[U] - \ln \det D}$

Observables from simple average

Major lattice uncertainties and related issues

- continuum limit
- infinite volume
- light pion mass

 $t_{\rm comp.} \propto 1/a^6$

 $t_{\rm comp.} \propto V^{5/4}$

exponentially bad

- condition number
- signal-to-noise

Hadron spectroscopy on the Lattice

updated of plot in [hep-lat/1203.1204]

Precision structure calculations

1.15

1.10

0.00

0.05

0.10

 $g_A(\epsilon_{\pi}, a \simeq 0.15 \text{ fm})$

 $g_A(\epsilon_{\pi}, a \simeq 0.12 \text{ fm})$

 $g_A(\epsilon_{\pi}, a \simeq 0.09 \text{ fm})$

0.15

 $\epsilon_{\pi} = m_{\pi}/(4\pi F_{\pi})$

0.20

 $a \simeq 0.15$ fm

 $a \simeq 0.12 \, \mathrm{fm}$

 $a\simeq 0.09~{
m fm}$

0.30

0.25

Example here is the weak axial coupling of the nucleon determined to 1% precision.

Tentative publication date May 30 2018 6pm London time

CKM triangle parameterization

Precise B-meson mixing bag parameters

SU(3) breaking ratio at ~1.5% precision updating bound of CKM unitarity.

The FNAL/MILC result for *B*-meson mixing is the companion project to *D*-mixing of this talk.

Outline

Lattice corrlation functions Renormalization and matching The physical point extrapolation Uncertainty budget

Implications of New Physics

Fermilab

Calculating observables on the lattice

Lattice correlation functions

Extracting the D-meson spectrum

$$C(t-t_0) = \sum_{\mathbf{x}} \langle D(\mathbf{x}, t) D^{\dagger}(\mathbf{0}, t_0) \rangle$$

and the matrix elements

$$C_{O_i}(t_x, t_y) = \sum_{\mathbf{x}, \mathbf{y}} \langle D^{\dagger}(\mathbf{y}, t_0 + t_y) O(\mathbf{0}, t_0) D^{\dagger}(\mathbf{x}, t_0 + t_x) \rangle$$

Spectral decomposition

to extract the *D*-meson spectrum

$$C(t) \sim \sum_{n} |Z_n|^2 e^{-E_n t}$$

and the matrix elements

$$C_{O_i}(t_x, t_y) \sim \sum_{m,n} Z_n \mathcal{Z}_{nm}^{O_i} Z_m^{\dagger} e^{-E_n |t_x|} e^{-E_m t_y}$$

- Set $t_0 = 0$ without loss of generality
- The equations are (approximately) correct up to various lattice artifacts

Bayesian inference

Bayes Theorem

 $P(A|\text{data}) \propto P(\text{data}|A)P(A)$

Likelihood and prior are Gaussian as a result of the *central limit theorem* path integral average

$$P(A|\text{data}) \propto e^{-\chi^2_{\text{data}}} e^{-\chi^2_{\text{prior}}}$$

where

$$\chi^{2} = \left(\frac{C^{\text{fit}} - C^{\text{data}}}{\sigma_{\text{data}}}\right)^{2} + \left(\frac{A_{i} - \bar{A}_{i}}{\sigma_{A_{i}}}\right)^{2}$$

Examples

- Constrained curve fitting
- Simultaneously fit to 2 and 3pt correlator
- Loss function includes correlations

Gaussian distribution allows shortcuts

Perform maximum likelihood regression. Bootstrap to obtain posterior distribution. Circumvents MC'ing Bayes Theorem.

Fit over **black** data pts.

Ground state prior width in blue.

Ground state posterior in dark blue.

Ground state priors are unconstraining.

Sensitivity analysis

t_{min} and t_{max} stability plots

Imaginary time correlators decay exponentially.

$$C(t) \sim \sum_{n} |Z_n|^2 e^{-E_n t}$$

Excited-state contamination is exp. worse at short time. Varying t_{min} studies excited-state systematic effects.

Large degrees-of-freedom with finite statistics lends to numerical instability.

Varying t_{max} studies statistical effects.

Bootstrap is Gaussian distributed.

matrix element study
1 state fit
2 state fit
3 state fit
final fit t_{min}=8 t_{max}=30
lines and right axis shows
(almost) the *p*-value

Bootstrap distribution

Renormalization and heavy-quark mass correction

Renormalization

 $Z_{ij} = Z_{V_{cc}^4} Z_{V_{ii}^4} \rho_{ij}$

Discretizing QCD on the lattice non-perturbatively regulates the theory.

Renormalization sets different lattice spacings to the same scale.

Perform mostly non-perturbative renormalization (vertex renormalization is still perturbative).

Renormalization coefficients with ρ to one-loop.

 $\rho_{ij} = \delta_{ij} + \sum_{l=1} \alpha_s^l \rho_{ij}^{[l]}(a\mu)$ Determined for both BBGLN and BMU evanescent operators.

Heavy-quark mass correction

The input quark mass is a free parameter of QCD.

Slight mis-tunings are corrected by varying the input quark mass, and then extrapolating to the physical D_s mass.

Physical charm quark mass Input charm quark mass Extra charm quark mass for extrapolation Linear extrapolation to physical mass

Asqtad gauge configurations and partial quenching

Lattice action details

Light quark action Asqtad staggered action Error starting at $O(\alpha_s a^2, a^4)$ Error starting at $O(\alpha_s^2 a^2, a^4)$

Gluon action Lüscher-Weisz action Heavy-quark action Fermilab clover action Error starting at $O(\alpha_s a, a^2)$

Multiple lattice spacing controls continuum extrapolation. Large number of pion masses control pion mass extrapolation. Physical values indicated by cyan star.

unofficial MILC cow MILC = MIMD Lattice Computation (the acronym has an acronym in the acronym)

Extrapolation to the physical point

Example chiral-continuum extrapolation for the Standard Model V-A operator

Cyan band is continuum QCD

Physical point given by black asterisk.

Extrapolation performed simultaneously for the five 4-quark operators (four not shown). $\chi^2/d.o.f. = 122.5 / 510$

SU(3) partially-quenched heavy meson rooted staggered chiral perturbation theory

$$F_i = F_i^{\text{logs.}} + F_i^{\text{analytic}} + F_i^{\text{HQdisc.}} + F_i^{\kappa} + F_i^{\text{renorm}}$$

Includes:

- Staggered chiral logs + pion and lattice spacing polynomial expansion.
- Beyond tree-level heavy-quark discretization estimates.
- Correction to heavy-quark mass tuning.
- Beyond one-loop renormalization estimates.

Sensitivity analysis

Final result is insensitive to sensible changes made to the extrapolation.

Result and uncertainty analysis

Error budget

	stat.	inputs	κ tuning	matching	chiral	LQ disc	HQ disc	r_1/a	fit total
$\langle {\cal O}_1 angle$	3.5	0.6	1.5	3.8	1.3	0.6	3.1	0.4	6.4
$\langle \mathcal{O}_2 angle$	1.8	0.5	0.4	2.2	0.8	0.4	2.4	0.5	4.0
$\langle {\cal O}_3 angle$	3.1	0.3	0.6	3.8	1.3	0.5	3.6	0.4	6.3
$\langle \mathcal{O}_4 angle$	2.2	0.6	0.5	2.0	0.9	0.3	2.6	0.5	4.2
$\langle {\cal O}_5 angle$	3.0	0.7	0.5	4.1	1.5	0.5	3.5	0.3	6.5

Total error budget

	Fit total	r_1	\mathbf{FV}	$\mathbf{E}\mathbf{M}$	Total	Charm sea
$\langle \mathcal{O}_1 angle$	6.4	2.1	0.1	0.2	6.8	2.0
$\langle {\cal O}_2 angle$	4.0	2.1	0.3	0.2	4.5	2.0
$\langle {\cal O}_3 angle$	6.3	2.1	0.3	0.2	6.6	2.0
$\langle \mathcal{O}_4 angle$	4.2	2.1	0.2	0.2	4.7	2.0
$\langle \mathcal{O}_5 angle$	6.5	2.1	0.2	0.2	6.8	2.0

FV is uncertainty to IV extrapolation (estimated from NLO FV vs no FV fit) EM from one-loop EM α_{QED}/π Isospin comes in as $(m_d - m_u)^2$. χ PT is symmetric under $m_d \leftrightarrow m_u$ Quenching charm sea quark comes in at $\alpha_s (\Lambda_{QCD}/2m_c)^2 \sim 2\%$

Result

	$\langle \mathcal{O}_1 angle$	$\langle \mathcal{O}_2 angle$	$\langle \mathcal{O}_3 angle$	$\langle \mathcal{O}_4 \rangle$	$\langle \mathcal{O}_5 angle$
BBGLN	0.0805(55)(16)	-0.1561(70)(31)	0.0464(31)(9)	0.2747(129)(55)	0.1035(71)(21)
BMU	0.0806(54)(16)	-0.1442(66)(29)	0.0452(30)(9)	0.2745(129)(55)	0.1035(71)(21)

ETMC has 2 and 2+1+1 flavor results. [Nf = 2: Phys. Rev. D 90, 014502, Nf = 2+1+1: Phys. Rev. D 92, 034516]

Implications for New Physics

Simple example where NP goes through O₅

$$x_{12}^{\rm NP} = \frac{1}{M_D \Gamma_D} \sum_i C_i^{\rm NP}(\mu) \langle \mathcal{O}_i \rangle(\mu)$$

Assume sizable CP-violation

$$C_i^{\rm NP}(\Lambda_{\rm NP}) = \frac{{\rm Im}F_iL_i}{\Lambda_{i,\rm NP}^2}$$
 s.t. $F_i = L_i = 1$

CP-conserving process pushes prediction along the x-axis

Flavor-violating Higgs model

Exclusion bands on the magnitude of Yukawa couplings

$$\mathcal{H}_{\Delta C=2}^{\mathrm{NP}} = C_2^{uc}(m_h)\mathcal{O}_2 + \tilde{C}_2^{uc}(m_h)\tilde{O}_2 + C_4^{uc}(m_h)\mathcal{O}_4$$

The Wilson coefficients are

$$C_{2}^{uc}(m_{h}) = -\frac{Y_{uc}^{*2}}{2m_{h}^{2}}$$
$$\tilde{C}_{2}^{uc}(m_{h}) = -\frac{Y_{cu}^{2}}{2m_{h}^{2}}$$
$$C_{4}^{uc}(m_{h}) = -\frac{Y_{cu}Y_{uc}^{*}}{m_{h}^{2}}$$

where $Y_{uc} = |Y_{uc}|e^{i\phi_{uc}}$

marginalize over the phase to obtain exclusion contours in the Y_{cu} - Y_{uc} plane

Summary and outlook

We calculate short-distance matrix elements for D-meson mixing.

They offer useful constrains on BSM models, especially ones with sizable CP violation.

SM long-distance is still a very important piece that is missing, but very hard to calculate.

There is a lot of progress being made on multi-hadron systems for both theory and applications.

Collaborators

Alexei Bazavov Michigan State University **Claude Bernard** Washington University in St. Louis **Chris Bouchard** University of Glasgow **Chia Cheng Chang** University of Illinois at Urbana-Champaign Fermi National Accelerator Laboratory **Carleton DeTar** University of Utah **Daping Du** Syracuse University Aida El-Khadra University of Illinois at Urbana-Champaign **Elizabeth Freeland** School of the Art Institute of Chicago **Elvira Gamiz** Universidad de Granada **Steven Gottlieb** Indiana University **Urs Heller** American Physics Society

Andreas Kronfeld Fermi National Accelerator Laboratory **Technical University of Munich Jack Laiho** Syracuse University **Paul Mackenzie** Fermi National Accelerator Laboratory **Ethan Neil** University of Colorado Boulder **RIKEN-Brookhaven National** Laboratory **James Simone** Fermi National Accelerator Laboratory **Rober Sugar** University of California, Santa Barbara **Doug Toussaint** University of Arizona **Ruth Van de Water** Fermi National Accelerator Laboratory **Ran Zhou** Fermi National Accelerator Laboratory

