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Conjectured QCD phase diagram
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Hot QCD matter (quark gluon plasma) in heavy ion collisions
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Fig originally from Steffen A. Bass

pre-equilibrium QGP expansion hadronic cascade

Given the EoS, we can predict the final state particle distribution.

However, the final distribution is also affected by many other 
parameters and uncertainties in the initial state,  the evolution 
and the particlization.
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How to get EoS given the final state particles?
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Deep neural network can make captions for images
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Google, DeepMind

Brain/DCNN

Dog

Cat



LongGang Pang               Deep learning the E-B-E relativistic hydrodynamics

Classifying two phase transition regions
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with the numbers of neurons as hyper-parameters. The connections between two layers form

a trainable weight matrix W . Each layer (except the input layer) learns representations of its

previous layer through firstly a linear operation z = xW +b and then use it as the argument

of an activation function �(z). The linear operation can perform various operations, such

as scaling, rotating, boosting, increasing or decreasing dimensions, on the vector x, with

the bias b a trainable parameter. �(z) activates the neurons of the present layer with their

values and computes the correlations between the neurons of the previous layer. By stacking

with multiple hidden layers, the deep neural network may learn high-level representations

that can be classified or interpreted easily. The activation functions used in our study are

shown in Fig. 4.
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FIG. 4. (a) Sigmoid, the logistic function which has an ‘S’ shaped curve (b) ReLU, rectified linear

unit that activates the neuron when z > 0 and (c) PReLU parametric rectified linear unit that

additionally activates leaky neurons at z < 0 with learnable parameter a.

Loss function l(✓) is the di↵erence between the true value y (from the input of supervised

learning) and the predicted value ŷ = f(x, ✓) by the neural network in a forward pass. l(✓) is

minimized during the training by adjusting network parameter ✓. The simplest loss function

is the mean square error l(✓) =
P

i(ŷi � yi)2. In this paper we use the cross entropy loss

function from information theory,

l(✓) = � 1

N

NX

i=1

[yi log ŷi + (1 � yi) log(1 � ŷi)] (2)

With L1 or L2 regularizations, the loss function receives another term used to constrain the

“hello world” example of deep neural network
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zj =
NX

i=1

xiwij + bj

scaling, rotating, boosting, 
changing dimensions 

Fig from CS231N, Stanford
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bj

ŷ

Forward pass

Linear operation Non-linear activation function hj = �(zj)

f(x, ✓)
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Back propagation and gradient decent
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Input: x
f(x, ✓)

✓ = ✓ � ✏
@L
@✓

gradient decent

back propagation

ŷ network prediction
true answery

L =
X

i

(ŷi � yi)
2

loss function (error)

Human intelligence/artificial neural network can reduce fitting 
error by updating model parameters through back 

propagation and gradient decent.

network
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Overfitting problem in fully connected network
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Num of parameters or training time

Training error

Validation error

Fixed data size

Early stopping

• Training error: prediction error rates on training data 

• Validation error: prediction error rates on new data
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Ways to reduce overfitting
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1. Early stopping
2. Increase training dataset by 

a. preparing big amount of data. 
b. data augmentation (crop, scale, rotate, flip …).

3. Reduce number of parameters 
a. Dropout: randomly discard neurons. 
b. Drop connection: randomly discard connections. 
c. CNN: locally connected to a small chunk of 

neurons in the previous layer.
d. Go deep. S.Liang & R.Srikant, arXiv:1610.04161, 

4. Regularization, weight decay …
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LongGang Pang                 Identifying QCD transition using deep learning 
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“Deep Learning” BookDCNN = Deep Convolution Neural Network

Convolution neural network — 1D
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LongGang Pang                 Identifying QCD transition using deep learning 
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“Deep Learning” BookDCNN = Deep Convolution Neural Network

From “Deep Learning” Book.
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CNN architecture for EoS-meter
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in the input and output layers respectively. In-between there can be multiple hidden layers

with the numbers of neurons as hyper-parameters. The connections between two layers form

a trainable weight matrix W . Each layer (except the input layer) learns representations of its

previous layer through firstly a linear operation z = xW +b and then use it as the argument

of an activation function �(z). The linear operation can perform various operations, such as

scaling, rotating, boosting, increasing or decreasing dimensions, on the vector x, with the

bias b a trainable parameter. �(z) activates the neurons of the present layer with their values

and computes the correlations between the neurons of the previous layer. For classification

network, softmax activation function �(z)j = exp(zj)/
PK

k=1 exp(zk) is usually used in the

final layer to compute the probability of each category. By stacking with multiple hidden

layers, the deep neural network may learn high-level representations that can be classified

or interpreted easily. The activation functions used in our study are shown in Fig. 5.

(a) Sigmoid (b) ReLU (c) PReLU

�(z) =
1

1 + exp(�z)
�(z) =

�
z, z > 0
az, z � 0

�(z) =

�
z, z > 0
0, z � 0

FIG. 5. (a) Sigmoid, the logistic function which has an ‘S’ shaped curve (b) ReLU, rectified linear

unit that activates the neuron when z > 0 and (c) PReLU parametric rectified linear unit that

additionally activates leaky neurons at z < 0 with learnable parameter a.

Loss function l(✓) is the di↵erence between the true value y (from the input of supervised

learning) and the predicted value ŷ = f(x, ✓) by the neural network in a forward pass. The

simplest loss function is the mean square error l(✓) =
P

i(ŷi � yi)2. In this paper we use the

cross entropy loss function from information theory,

l(✓) = � 1

N

NX

i=1

[yi log ŷi + (1 � yi) log(1 � ŷi)] (2)
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With L1 or L2 regularizations, the loss function receives another term used to constrain the

values of ✓ from going wildly,

L1 : l(✓) = l(✓) + �||✓||1 (3)

L2 : l(✓) = l(✓) + �||✓||22 (4)

where � is the regularization strength, ||✓||p ⌘
⇣Pn

j |✓j|p
⌘1/p

is the p-norm of the parameters

✓ = (✓1, ✓2, ..., ✓n). Larger � leads to smaller ✓, especially for high orders in the target

function, which increases the generalizability of the neural network.

Back propagation indicates the gradients of the loss function in parameter space propagate

in the backward direction of a neural network in order to update ✓. For example, in the

stochastic gradient decent (SGD) method, ✓ is updated with fixed learning rate ✏

✓
0
= ✓ � ✏

@l(✓)

@✓
(5)

In practice we train the network in batches, where ✓ is updated once for all the samples in

one batch,

✓
0
= ✓ � ✏

m

mX

i=1

@li(✓)

@✓
(6)

where m is the batchsize, li is the loss given by the ith training sample in a batch. In our

study, we use the AdaMax method [44], which computes adaptive learning rates for di↵erent

parameters based on estimating the first and second moments of the gradients. We initially

set the learning rate as ↵ = 10�4 and keep the other parameters the same as in [44].

Batch normalization solves the internal covariate shift problem, which is a common issue

in DL that hinders the learning e�ciency [39]. Using the batch mean µB = 1
m

Pm
i=1 xi and

batch variance �2
B = 1

m

Pm
i=1(xi �µB)2, the input vector x is normalized as x̂i =

xi�µBp
�2
B+✏

that

has mean 0 and variance 1, with ✏ a small number preventing divergence. The x̂ is further

scaled and shifted by �x̂ + � before going to the next layer, where � and � are trainable

parameters. Note that during the testing, population mean and variance of the training

dataset are used.

Dropout is a regularization technique that reduces overfitting by randomly discarding a

fraction of neurons (features) and all their associated connections to prevent co-adaption [47]

of neurons for each training sample .

Prediction Di↵erence Analysis is a method to visualize the di↵erence between the log-

odds of the prediction probability p(y|⇢) and p(y|⇢\i), where y is the class value, ⇢ is the real

loss function
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Key idea for this proof-of-principle study
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Supervised learning using deep convolution 
neural network with big amount of labeled 

training data (spectra, EoS type) from event-by-
event relativistic hydrodynamics.
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Big data from the relativistic hydrodynamics on GPU
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• CLVisc 

• A (3+1)D viscous hydrodynamic program to simulate 
high energy heavy ion collisions. 

• Parallelized on GPU using OpenCL ~ 60 times speed up.  

• git clone https://gitlab.com/snowhitiger/PyVisc.git 

• LG.Pang, H.Petersen, XN.Wang arXiv:1802.04449

rµT
µ⌫ = 0

<latexit sha1_base64="iefYunVLamsfy91srzxlbnROnP8=">AAACA3icdZDNSgMxFIUz/tb6V3XZTbAIrkpSxLYLoejGZYXWFjrjkEnTNjSTGZKMUIYu3PgqblyouPUl3Pk2ZtoKKnoh5OOce0nuCWLBtUHow1laXlldW89t5De3tnd2C3v71zpKFGVtGolIdQOimeCStQ03gnVjxUgYCNYJxheZ37llSvNItswkZl5IhpIPOCXGSn6h6EoSCOKnbphMYesmu11p8Qwiv1BCZYQQxhhmgKunyEK9XqvgGsSZZasEFtX0C+9uP6JJyKShgmjdwyg2XkqU4VSwad5NNIsJHZMh61mUJGTaS2dLTOGRVfpwECl7pIEz9ftESkKtJ2FgO0NiRvq3l4l/eb3EDGpeymWcGCbp/KFBIqCJYJYI7HPFqBETC4Qqbv8K6YgoQo3NLW9D+NoU/g/tSrlexlcnpcb5Io0cKIJDcAwwqIIGuARN0AYU3IEH8ASenXvn0XlxXuetS85i5gD8KOftE6MWl6Y=</latexit><latexit sha1_base64="iefYunVLamsfy91srzxlbnROnP8=">AAACA3icdZDNSgMxFIUz/tb6V3XZTbAIrkpSxLYLoejGZYXWFjrjkEnTNjSTGZKMUIYu3PgqblyouPUl3Pk2ZtoKKnoh5OOce0nuCWLBtUHow1laXlldW89t5De3tnd2C3v71zpKFGVtGolIdQOimeCStQ03gnVjxUgYCNYJxheZ37llSvNItswkZl5IhpIPOCXGSn6h6EoSCOKnbphMYesmu11p8Qwiv1BCZYQQxhhmgKunyEK9XqvgGsSZZasEFtX0C+9uP6JJyKShgmjdwyg2XkqU4VSwad5NNIsJHZMh61mUJGTaS2dLTOGRVfpwECl7pIEz9ftESkKtJ2FgO0NiRvq3l4l/eb3EDGpeymWcGCbp/KFBIqCJYJYI7HPFqBETC4Qqbv8K6YgoQo3NLW9D+NoU/g/tSrlexlcnpcb5Io0cKIJDcAwwqIIGuARN0AYU3IEH8ASenXvn0XlxXuetS85i5gD8KOftE6MWl6Y=</latexit><latexit sha1_base64="iefYunVLamsfy91srzxlbnROnP8=">AAACA3icdZDNSgMxFIUz/tb6V3XZTbAIrkpSxLYLoejGZYXWFjrjkEnTNjSTGZKMUIYu3PgqblyouPUl3Pk2ZtoKKnoh5OOce0nuCWLBtUHow1laXlldW89t5De3tnd2C3v71zpKFGVtGolIdQOimeCStQ03gnVjxUgYCNYJxheZ37llSvNItswkZl5IhpIPOCXGSn6h6EoSCOKnbphMYesmu11p8Qwiv1BCZYQQxhhmgKunyEK9XqvgGsSZZasEFtX0C+9uP6JJyKShgmjdwyg2XkqU4VSwad5NNIsJHZMh61mUJGTaS2dLTOGRVfpwECl7pIEz9ftESkKtJ2FgO0NiRvq3l4l/eb3EDGpeymWcGCbp/KFBIqCJYJYI7HPFqBETC4Qqbv8K6YgoQo3NLW9D+NoU/g/tSrlexlcnpcb5Io0cKIJDcAwwqIIGuARN0AYU3IEH8ASenXvn0XlxXuetS85i5gD8KOftE6MWl6Y=</latexit><latexit sha1_base64="iefYunVLamsfy91srzxlbnROnP8=">AAACA3icdZDNSgMxFIUz/tb6V3XZTbAIrkpSxLYLoejGZYXWFjrjkEnTNjSTGZKMUIYu3PgqblyouPUl3Pk2ZtoKKnoh5OOce0nuCWLBtUHow1laXlldW89t5De3tnd2C3v71zpKFGVtGolIdQOimeCStQ03gnVjxUgYCNYJxheZ37llSvNItswkZl5IhpIPOCXGSn6h6EoSCOKnbphMYesmu11p8Qwiv1BCZYQQxhhmgKunyEK9XqvgGsSZZasEFtX0C+9uP6JJyKShgmjdwyg2XkqU4VSwad5NNIsJHZMh61mUJGTaS2dLTOGRVfpwECl7pIEz9ftESkKtJ2FgO0NiRvq3l4l/eb3EDGpeymWcGCbp/KFBIqCJYJYI7HPFqBETC4Qqbv8K6YgoQo3NLW9D+NoU/g/tSrlexlcnpcb5Io0cKIJDcAwwqIIGuARN0AYU3IEH8ASenXvn0XlxXuetS85i5gD8KOftE6MWl6Y=</latexit>

where Tµ⌫ = (✏+ P )uµu⌫ � Pgµ⌫ + ⇡µ⌫
<latexit sha1_base64="fTKcFsPXjvTpro2eSEWXZnONr0Q="></latexit><latexit sha1_base64="fTKcFsPXjvTpro2eSEWXZnONr0Q="></latexit><latexit sha1_base64="fTKcFsPXjvTpro2eSEWXZnONr0Q="></latexit><latexit sha1_base64="fTKcFsPXjvTpro2eSEWXZnONr0Q="></latexit>

https://gitlab.com/snowhitiger/PyVisc.git
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The phase structure is encoded in the evolution history
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⌧ = 0.4 fm ⌧ = 1.9 fm ⌧ = 3.7 fm ⌧ = 6.7 fm

x x x x

y

ycrossover

first order
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EBE distribution of pre-defined observables (black-EOSL, red-EOSQ)
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<pt>
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Correlations between several observables (black-EOSL, red-EOSQ)
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• The event-by-event 
distributions of the traditional 
observables fail to distinguish 
two different EoS. 

• The correlation between (v2, 
v3), (v2, v4), (v2, v5) and 
(<pt>, v5) fail to distinguish 
two different EoS.
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The correlation matrix from the simulated data
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• Confirms various correlations, e.g. (v2, v4), (v2, v5), (v3, v5), (<pt>, dN/dY)… 

• Reveals strong correlation between <pt> and v5! (never been found before). 

• But those traditional observables and correlations can not classify the 2 different EoS.
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FIG. 4. The mean and standard deviation of prediction accuracy in 10-fold cross validation tests

when di↵erent fractions of the training data is used to train the network.

accuracy increases as one increases the size of the training dataset, which is in line with the

practical expectation that more training data could boost the network’s performance. With

the full training data, we get on average a larger than 95% prediction accuracy, which is a

very positive manifestation of the generalization capability of our deep CNN.

For the network settings, most of the parameters are introduced in the fully connected

layers. In an alternative model, we add 2 more convolutional layers with filter size (3, 3) and

subsequent average pooling layers to reduce the number of neurons in the flatten layer and

also in the first fully connected layer, which helps to reduce the total number of parameters

by a factor of 10. This deeper neural network produces similar prediction accuracy and

model uncertainty in a 10-fold cross validation tests.

IV. SUPPLEMENTARY MATERIAL

Feedforward neural network learns one target function x : f(x, ✓) ! y that maps the

input vector x to output vector y with parameter ✓. Elements of x and y form the neurons

Results: classification accuracies
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• 40000 events from 
CLVisc+AMPT model 
have been used for 
training 

• Another 4000 events 
from CLVisc+AMPT 
have been used for testing  

• 18000 events from 
another hydrodynamic 
model IEBE-VISHNU 
and CLVisc+IPGlasma 
model have been used for 
further testing
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Prediction Difference Analysis
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Published as a conference paper at ICLR 2017

VISUALIZING DEEP NEURAL NETWORK DECISIONS:
PREDICTION DIFFERENCE ANALYSIS

Luisa M Zintgraf1,3, Taco S Cohen1, Tameem Adel1, Max Welling1,2
1University of Amsterdam, 2Canadian Institute of Advanced Research, 3Vrije Universiteit Brussel
{lmzintgraf,tameem.hesham}@gmail.com, {t.s.cohen, m.welling}@uva.nl

ABSTRACT

This article presents the prediction difference analysis method for visualizing the
response of a deep neural network to a specific input. When classifying images,
the method highlights areas in a given input image that provide evidence for or
against a certain class. It overcomes several shortcoming of previous methods and
provides great additional insight into the decision making process of classifiers.
Making neural network decisions interpretable through visualization is important
both to improve models and to accelerate the adoption of black-box classifiers in
application areas such as medicine. We illustrate the method in experiments on
natural images (ImageNet data), as well as medical images (MRI brain scans).

1 INTRODUCTION

Over the last few years, deep neural networks (DNNs) have emerged as the method of choice for
perceptual tasks such as speech recognition and image classification. In essence, a DNN is a highly
complex non-linear function, which makes it hard to understand how a particular classification comes
about. This lack of transparency is a significant impediment to the adoption of deep learning in areas
of industry, government and healthcare where the cost of errors is high.

In order to realize the societal promise of deep learning - e.g., through self-driving cars or personalized
medicine - it is imperative that classifiers learn to explain their decisions, whether it is in the lab, the
clinic, or the courtroom. In scientific applications, a better understanding of the complex dependencies
learned by deep networks could lead to new insights and theories in poorly understood domains.

In this paper, we present a new, probabilistically sound methodology for explaining classification
decisions made by deep neural networks. The method can be used to produce a saliency map for each
(instance, node) pair that highlights the parts (features) of the input that constitute most evidence for
or against the activation of the given (internal or output) node. See figure 1 for an example.

In the following two sections, we review related work and then present our approach. In section 4 we
provide several demonstrations of our technique for deep convolutional neural networks (DCNNs)
trained on ImageNet data, and further how the method can be applied when classifying MRI brain
scans of HIV patients with neurodegenerative disease.

Figure 1: Example of our visualization method: explains why the DCNN (GoogLeNet) predicts "cockatoo".
Shown is the evidence for (red) and against (blue) the prediction. We see that the facial features of the cockatoo
are most supportive for the decision, and parts of the body seem to constitute evidence against it. In fact, the
classifier most likely considers them evidence for the second-highest scoring class, white wolf.
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Figure 3: Visualization of the effects of marginal versus conditional sampling using the GoogLeNet
classifier. The classifier makes correct predictions (ostrich and saxophone), and we show the evidence for (red)
and against (blue) this decision at the output layer. We can see that conditional sampling gives more targeted
explanations compared to marginal sampling. Also, marginal sampling assigns too much importance on pixels
that are easily predictable conditioned on their neighboring pixels.

Figure 4: Visualization of how different window sizes influence the visualization result. We used the
conditional sampling method and the AlexNet classifier with l = k + 4 and varying k. We can see that even
when removing single pixels (k = 1), this has a noticeable effect on the classifier and more important pixels get
a higher score. By increasing the window size we can get a more easily interpretable, smooth result until the
image gets blurry for very large window sizes.

We start this section by demonstrating our proposed improvements (sections 3.1 - 3.3).

Marginal vs Conditional Sampling

Figure 3 shows visualizations of the spatial support for the highest scoring class, using marginal
and conditional sampling (with k = 10 and l = 14). We can see that conditional sampling leads
to results that are more refined in the sense that they concentrate more around the object. We can
also see that marginal sampling leads to pixels being declared as important that are very easily
predictable conditioned on their neighboring pixels (like in the saxophone example). Throughout our
experiments, we have found that conditional sampling tends to give more specific and fine-grained
results than marginal sampling. For the rest of our experiments, we therefore show results using
conditional sampling only.

Multivariate Analysis

For ImageNet data, we have observed that setting k = 10 gives a good trade-off between sharp results
and a smooth appearance. Figure 4 shows how different window sizes influence the resolution of the
visualization. Surprisingly, removing only one pixel does have a measurable effect on the prediction,
and the largest effect comes from sensitive pixels. We expected that removing only one pixel does
not have any effect on the classification outcome, but apparently the classifier is sensitive even to
these small changes. However when using such a small window size, it is difficult to make sense of
the sign information in the visualization. If we want to get a good impression of which parts in the
image are evidence for/against a class, it is therefore better to use larger windows. If k is chosen too
large however, the results tend to get blurry. Note that these results are not just simple averages of
one another, but a multivariate approach is indeed necessary to observe the presented results.

Deep Visualization of Hidden Network Layers

Our third main contribution is the extension of the method to neural networks; to understand the role
of hidden layers in a DNN. Figure 5 shows how different feature maps in three different layers of the
GoogLeNet react to the input of a tabby cat (see figure 6, middle image). For each feature map in a
convolutional layer, we first compute the relevance of the input image for each hidden unit in that
map. To estimate what the feature map as a whole is doing, we show the average of the relevance
vectors over all units in that feature map. The first convolutional layer works with different types of
simple image filters (e.g., edge detectors), and what we see is which parts of the input image respond

5
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Figure 2: Simple illustration of the sampling procedure in algorithm 1. Given the input image x, we select
every possible patch xw (in a sliding window fashion) of size k ⇥ k and place a larger patch x̂w of size l ⇥ l
around it. We can then conditionally sample xw by conditioning on the surrounding patch x̂w.

Algorithm 1 Evaluating the prediction difference using conditional and multivariate sampling
Input: classifier with outputs p(c|x), input image x of size n⇥ n, inner patch size k, outer patch
size l > k, class of interest c, probabilistic model over patches of size l ⇥ l, number of samples S
Initialization: WE = zeros(n*n), counts = zeros(n*n)
for every patch xw of size k ⇥ k in x do

x0 = copy(x)
sumw = 0
define patch x̂w of size l ⇥ l that contains xw

for s = 1 to S do
x0
w  xw sampled from p(xw|x̂w\xw)

sumw += p(c|x0) . evaluate classifier
end for
p(c|x\xw) := sumw/S

WE[coordinates of xw] += log2(odds(c|x))� log2(odds(c|x\xw))
counts[coordinates of xw] += 1

end for
Output: WE / counts . point-wise division

where odds(c|x) = p(c|x)/(1 � p(c|x)). To avoid problems with zero probabilities, Laplace
correction p (pN + 1)/(N +K) is used, where N is the number of training instances and K the
number of classes.

The method produces a relevance vector (WEi)i=1...m (m being the number of features) of the same
size as the input, which reflects the relative importance of all features. A large prediction difference
means that the feature contributed substantially to the classification, whereas a small difference
indicates that the feature was not important for the decision. A positive value WEi means that the
feature has contributed evidence for the class of interest: removing it would decrease the confidence
of the classifier in the given class. A negative value on the other hand indicates that the feature
displays evidence against the class: removing it also removes potentially conflicting or irritating
information and the classifier becomes more certain in the investigated class.

3.1 CONDITIONAL SAMPLING

In equation (3), the conditional probability p(xi|x\i) of a feature xi is approximated using the
marginal distribution p(xi). This is a very crude approximation. In images for example, a pixel’s
value is highly dependent on other pixels. We propose a much more accurate approximation, based
on the following two observations: a pixel depends most strongly on a small neighborhood around it,
and the conditional of a pixel given its neighborhood does not depend on the position of the pixel in
the image. For a pixel xi, we can therefore find a patch x̂i of size l⇥ l that contains xi, and condition
on the remaining pixels in that patch:

p(xi|x\i) ⇡ p(xi|x̂\i) . (4)

This greatly improves the approximation while remaining completely tractable.

For a feature to become relevant when using conditional sampling, it now has to satisfy two conditions:
being relevant to predict the class of interest, and be hard to predict from the neighboring pixels.
Relative to the marginal method, we therefore downweight the pixels that can easily be predicted and
are thus redundant in this sense.

3

• Which region in the image is most relevant for classification
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Importance map for testing dataset
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LongGang Pang                 Identifying QCD transition using deep learning 
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• Importance regions are different for different testing datasets 

• eta/s introduces a small difference

GROUP 1 GROUP 2
• Experimentalists may look for new 

observables/correlation functions that are 
sensitive to EoS, inspired by the importance 
map given by machine learning. E.g.

C12 =< NANB > � < NA >< NB >

NA = N(pT = 0.3,� = ±⇡/2)

NB = N(pT = 0.8,� = ⇡)
<latexit sha1_base64="R3NNGILvBUb6EAAL1prJxKk0XWo=">AAACTHicdVFNSwMxFMzW7/pV9eglWBQFrUkVbcGK1ounomBV6JYlm6Y2mN0NSVYoS/+gF8Gb/8KLBxXBbK2iog8SJjPzeMnEl4Jrg9CDkxkaHhkdG5/ITk5Nz8zm5ubPdRQryuo0EpG69IlmgoesbrgR7FIqRgJfsAv/+ijVL26Y0jwKz0xXsmZArkLe5pQYS3m51pGX4GIPrlTgXs07hDWvug83+ng/3e3JdbOpYh21VemdVVBhax26ssMrrgws4JvFtb6n+t1T+vLwNS+XRwWEEMYYpgDv7iALyuVSEZcgTiVbeTCoEy9377YiGgcsNFQQrRsYSdNMiDKcCtbLurFmktBrcsUaFoYkYLqZ9NPowWXLtGA7UnaFBvbZ7x0JCbTuBr51BsR09G8tJf/SGrFpl5oJD2VsWEg/BrVjAU0E02hhiytGjehaQKji9q6Qdogi1NgPyNoQPl8K/wf1YqFcwKfb+YPqII1xsAiWwCrAYBccgGNwAuqAglvwCJ7Bi3PnPDmvztuHNeMMehbAj8qMvgNvcqpv</latexit><latexit sha1_base64="R3NNGILvBUb6EAAL1prJxKk0XWo=">AAACTHicdVFNSwMxFMzW7/pV9eglWBQFrUkVbcGK1ounomBV6JYlm6Y2mN0NSVYoS/+gF8Gb/8KLBxXBbK2iog8SJjPzeMnEl4Jrg9CDkxkaHhkdG5/ITk5Nz8zm5ubPdRQryuo0EpG69IlmgoesbrgR7FIqRgJfsAv/+ijVL26Y0jwKz0xXsmZArkLe5pQYS3m51pGX4GIPrlTgXs07hDWvug83+ng/3e3JdbOpYh21VemdVVBhax26ssMrrgws4JvFtb6n+t1T+vLwNS+XRwWEEMYYpgDv7iALyuVSEZcgTiVbeTCoEy9377YiGgcsNFQQrRsYSdNMiDKcCtbLurFmktBrcsUaFoYkYLqZ9NPowWXLtGA7UnaFBvbZ7x0JCbTuBr51BsR09G8tJf/SGrFpl5oJD2VsWEg/BrVjAU0E02hhiytGjehaQKji9q6Qdogi1NgPyNoQPl8K/wf1YqFcwKfb+YPqII1xsAiWwCrAYBccgGNwAuqAglvwCJ7Bi3PnPDmvztuHNeMMehbAj8qMvgNvcqpv</latexit><latexit sha1_base64="R3NNGILvBUb6EAAL1prJxKk0XWo=">AAACTHicdVFNSwMxFMzW7/pV9eglWBQFrUkVbcGK1ounomBV6JYlm6Y2mN0NSVYoS/+gF8Gb/8KLBxXBbK2iog8SJjPzeMnEl4Jrg9CDkxkaHhkdG5/ITk5Nz8zm5ubPdRQryuo0EpG69IlmgoesbrgR7FIqRgJfsAv/+ijVL26Y0jwKz0xXsmZArkLe5pQYS3m51pGX4GIPrlTgXs07hDWvug83+ng/3e3JdbOpYh21VemdVVBhax26ssMrrgws4JvFtb6n+t1T+vLwNS+XRwWEEMYYpgDv7iALyuVSEZcgTiVbeTCoEy9377YiGgcsNFQQrRsYSdNMiDKcCtbLurFmktBrcsUaFoYkYLqZ9NPowWXLtGA7UnaFBvbZ7x0JCbTuBr51BsR09G8tJf/SGrFpl5oJD2VsWEg/BrVjAU0E02hhiytGjehaQKji9q6Qdogi1NgPyNoQPl8K/wf1YqFcwKfb+YPqII1xsAiWwCrAYBccgGNwAuqAglvwCJ7Bi3PnPDmvztuHNeMMehbAj8qMvgNvcqpv</latexit><latexit sha1_base64="R3NNGILvBUb6EAAL1prJxKk0XWo=">AAACTHicdVFNSwMxFMzW7/pV9eglWBQFrUkVbcGK1ounomBV6JYlm6Y2mN0NSVYoS/+gF8Gb/8KLBxXBbK2iog8SJjPzeMnEl4Jrg9CDkxkaHhkdG5/ITk5Nz8zm5ubPdRQryuo0EpG69IlmgoesbrgR7FIqRgJfsAv/+ijVL26Y0jwKz0xXsmZArkLe5pQYS3m51pGX4GIPrlTgXs07hDWvug83+ng/3e3JdbOpYh21VemdVVBhax26ssMrrgws4JvFtb6n+t1T+vLwNS+XRwWEEMYYpgDv7iALyuVSEZcgTiVbeTCoEy9377YiGgcsNFQQrRsYSdNMiDKcCtbLurFmktBrcsUaFoYkYLqZ9NPowWXLtGA7UnaFBvbZ7x0JCbTuBr51BsR09G8tJf/SGrFpl5oJD2VsWEg/BrVjAU0E02hhiytGjehaQKji9q6Qdogi1NgPyNoQPl8K/wf1YqFcwKfb+YPqII1xsAiWwCrAYBccgGNwAuqAglvwCJ7Bi3PnPDmvztuHNeMMehbAj8qMvgNvcqpv</latexit>



LongGang Pang               Deep learning the E-B-E relativistic hydrodynamics

Traditional Machine Learning vs. deep neural network

 22

Prediction Accuracy GROUP1 GROUP2

obs + Gaussian 
Naive Bayes

46.2% 47.6%

obs + Decision Tree 57.5% 64.9%

obs + Random 
Forest

62.5% 69.8%

obs + Gradient 
Boosting Trees

66.9% 81.9%

obs + linear SVC 75.8% 84.6%

obs + SVC rbf kernel 60.9% 56.7%

raw + linear SVC 65.2% 84.3%

pca + linear SVC 46.4% 47.7%

our approach (DCNN) ~95%
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• EoS and phase transition are very important in 
astrophysics and heavy ion collisions 

• Deep convolution neural network is the state-of-the-art 
pattern recognition method in machine learning. 

• CLVisc is efficient to provide big amount of training data. 

• We demonstrated that a traceable encoder of the QCD 
phase structure survives the dynamical evolution and 
exists in the final snapshot of heavy ion collisions, one 
can efficiently and exclusively decode these information 
from the highly complex output using machine learning.
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Particle production and equilibrium properties within a new hadron transport
approach for heavy-ion collisions

J. Weil1, V. Steinberg1, J. Staudenmaier1,3, L.G. Pang1, D. Oliinychenko1,2, J. Mohs1,3, M. Kretz1,4,
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The microscopic description of heavy-ion reactions at low beam energies is achieved within
hadronic transport approaches. In this article a new approach SMASH (Simulating Many Acceler-
ated Strongly-interacting Hadrons) is introduced and applied to study the production of non-strange
particles in heavy-ion reactions at Ekin = 0.4 � 2A GeV. First, the model is described including
details about the collision criterion, the initial conditions and the resonance formation and decays.
To validate the approach, the results are compared to experimental data for elementary cross sec-
tions and equilibrium properties such as detailed balance are presented. Finally results for pion
and proton production in C+C and Au+Au collisions is confronted with HADES and FOPI data.
Predictions for particle production in ⇡ +A collisions are made.

PACS numbers: 25.75.-q,24.10.Lx
Keywords: Relativistic heavy-ion collisions, Monte Carlo simulations

I. INTRODUCTION

Heavy-ion collisions o↵er the opportunity to study hot
and dense strongly interacting matter under extreme con-
ditions. High energy programs at the Large Hadron
Collider (LHC) and the Relativistic Heavy Ion Collider
(RHIC) are delivering a lot of detailed experimental data
[1–3] relevant for the high temperature and low net baryo-
chemical potential part of the phase diagram which corre-
sponds to the situation shortly after the Big Bang. Scan-
ning the beam energies to lower values as currently done
at the CERN-Super Proton Synchrotron (SPS) [4] and
the RHIC beam energy scan [5–7] program or in the fu-
ture at FAIR and NICA provides access to regions in the
phase diagram where a first order transition to the quark
gluon plasma is expected to take place. One of the goals
of these programs is to search for a critical endpoint in
the QCD phase diagram [8].

Since there is no first principle solution of the many-
body problem in quantum chromodynamics including a
non-equilibrium evolution through a phase transition up
to date, e↵ective theoretical approaches are necessary to
describe the full dynamical evolution of heavy-ion reac-
tions from the early to the late stages. By comparison of
the output of these calculations with experimental data
on particle distributions and their correlations in the fi-
nal state, it is possible to draw conclusions about the
properties of the hot and dense strongly interacting mat-
ter that was created for a very short time and in a very
small volume.

Following the realization that the quark gluon plasma
behaves like an almost perfect fluid in contrast to the
ideal gas expectation, within recent years the community
has converged towards a standard model for the descrip-
tion of the evolution of heavy-ion reactions at high beam
energies. The early stage of the collision is described
by a non-equilibrium evolution likely based on fluctu-
ating color fields/strings until approximate local equi-
librium is reached [9, 10]. The hot and dense stage of
the evolution is governed by relativistic dissipative hy-
drodynamics [11–14] incorporating the QCD equation of
state provided by lattice calculations [15–18]. The later
dilute stages are described by a hadron transport ap-
proach [19]. Even though most of the dynamical features
are captured within the hydrodynamic calculation, the
hadronic rescattering stage becomes necessary as soon as
one wants to address identified particle spectra or cor-
relation and fluctuation observables that are a↵ected by
resonance decays and baryon annihilation [20, 21].
The other limit where the description of the dynamical

evolution of heavy-ion reactions is to some degree under
control, is at very low beam energies, that are dominated
by hadronic reactions and not yet a↵ected by quark gluon
plasma formation. The region of intermediate beam ener-
gies, that is of great interest with respect to the discovery
of features in the QCD phase diagram, poses a challenge
to the current dynamical approaches. There are attempts
to adapt the above described hybrid approaches and ex-
tend them to finite baryo-chemical potential [22]. The
other option is to start from a vacuum hadronic transport
approach that is extensible by including e↵ects of the hot
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and dense medium such as many-body interactions. This
second approach is the motivation for the development
of a new hadronic transport approach, SMASH.

Hadronic transport approaches have been developed
for 20-30 years and some models are still under active
development [23–26]. The new experimental data that
is available to constrain the resonance properties at low
beam energies [27] and profiting from the experience of
the existing transport approaches is the reason for de-
veloping a modern flexible open source code that can be
adapted as a standard reference for a purely hadronic
system with vacuum properties. To summarize, we have
gained a lot of new experimental and theoretical insights
over the past two decades that make the development of
a new transport approach a timely endeavor. This new
transport approach will also be highly relevant to pro-
vide a better understanding of the late stage evolution of
hadronic rescattering at RHIC and LHC energies.

In this paper the newly developed approach is de-
scribed in detail. In Section II the ingredients of the
approach are explained including the general setup, the
collision criterion, the initial conditions and treatment of
potentials, Pauli blocking and resonance formation and
decay. In Section III basic checks of detailed balance and
comparisons with elementary cross sections are shown.
In Section IV we present calculations of observables in
comparison with experimental data from HADES and
FOPI at Ekin = 0.8� 2AGeV and predictions for ⇡ �A

collisions.

II. MODEL DESCRIPTION

A. General Setup

The main advantage of a microscopic transport ap-
proach is that the full phase-space information of all
particles is available at all times. SMASH constitutes
a solution of the non-equilibrium dynamics of hadrons
in the regime where the inelastic interactions are treated
by resonance excitations and decays with vacuum prop-
erties. The underlying equation is the relativistic Boltz-
mann equation

p
µ
@µfi(x, p) + F

↵
@
p

↵
fi(x, p) = C

i

coll (1)
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i

coll is the collision term and F
↵ is the force ex-

perienced by individual particles. For high beam energy
collisions, F↵ = 0, while for low beam energy collisions,
F

↵ = �@
↵
U(x) where U(x) is the mean-field poten-

tial. The relativistic Boltzmann equation is an integro-
di↵erential equation in 6+1 dimensions. fi(x, p) is the
single particle distribution for each species i that is rep-
resented by test particles. Along the lines of quantum
molecular dynamics each particle is in principle repre-
sented by a Gaussian wave packet. In practice, all par-
ticles are treated as point particles and the finite spatial
extent is only invoked to calculate thermodynamic prop-
erties like the particle density. In our case, per default

each real particle is represented by one test particle, but
more test particles can be created if necessary.

1. Collision Criterion

One of the major challenges for solving the Boltzmann
equation in a relativistic situation is to define an appro-
priate collision criterion. The Kodama criterion [28] is
a fully covariant collision criterion, but since it involves
boosts of several four vectors it is rather ine�cient. In
the current approach we have chosen to use the geometri-
cal criterion employed in the UrQMD (Ultra-relativistic
Quantum Molecular Dynamics) approach [23], that is de-
fined as follows:

dtrans < dint =

r
�tot

⇡
(2)

with

d
2
trans = (~ra � ~rb)

2 � ((~ra � ~rb) · ( ~pa � ~pb))2

( ~pa � ~pb)2
(3)

where ~r and ~p are the coordinates and momenta of the
two particles a and b in the center of mass frame of the
binary collision. The time of the collision is determined
as the time of the closest approach in the computational
frame:

tcoll = � (~ra � ~rb) · ( ~pa/Ea � ~pb/Eb)

( ~pa/Ea � ~pb/Eb)2
(4)

where now all coordinate and momentum vectors have to
be taken in the computational frame. The computational
frame is usually chosen to be the equal velocity frame of
the two nuclei which is the same as the center of mass
frame in case of symmetric systems. The computational
system is the one that carries the clock that is relevant
for ordering of the collisions, therefore it is crucial to
transform the collision times to the same frame to decide
which collision happens first.
This geometrical criterion e↵ectively encodes an in-

stantaneous interaction over a finite distance and gives
rise to causality violations [29]. We have compared the
UrQMD criterion to the covariant Kodama criterion and
found no significant di↵erences. Since the above ex-
plained criterion is numerically more e�cient, we stick
to this definition in the following.
A di↵erent option to include all relevant scatterings at

high density is to implement the solution of the Boltz-
mann equation by stochastic rates [30–32]. This ap-
proach has the advantage that multi-particle scatterings
can be taken into account in a straightforward way. On
the hadronic level there are of course a lot of di↵erent
possibilities that one would need to take into account in
such an approach, therefore this is left for future work.
Also, the stochastic rates approach is relying on having
a large number of test particles in each cell, therefore
it is not clear how to model event-by-event fluctuations
properly.

where            is the collision term and                                   is the force 
experienced by a individual particle and U(x) is the mean field 
potential.  

Ci
coll F↵ = �@↵U(x)

• Hadronic cascade might be needed before comparing to exp. data 

• SMASH: solves relativistic Boltzmann equations for hadron species i:

Future Challenge 1: hadronic afterburner
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• The detectors can only capture ~80% of the final state 
hadrons 

• Experimental data are corrected with a efficiency factor 

• Effect on the classification accuracy  

• Might be not important as animal brains are robust to 
the resolution and small missing patches of images 

• Using detector simulations and apply the same 
efficiency correction to the training data

Future Challenge 2: detector efficiency
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• Lattice QCD fails to provide EoS at finite net baryon 
chemical potential because of the fermion sign problem 

• How to get first order phase transition EoS for the finite 
baryon chemical potential region? 

• It might be possible to prepare millions of different 
EoS to get particle spectra, which can be used to train 
a deep neural network to fix the EoS parameters at 
first order phase transition region using regression.

Future Challenge 3: more realistic EoS
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Backups

Thanks for your attention!
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Beam Energy Scan project to locate the critical end point
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From BEST collaboration
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Graphics Processing Unit (GPU) parallelization
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Global Memory

Shared  
Memory

       Private memory: fast 
      Shared memory: slower  
      Global memory: 100 times 
slower than shared memory 

Memory access latency

CU0

CU1

CU3

CU4

CU5

CU6

CU2

: processing element

GPU Architecture

CU  :  computing unit

HIGH PERFORMANCE COMPUTING USING GPUSGPU parallelization

LG.Pang, H.Petersen, XN.Wang arXiv:1802.04449

http://arxiv.org/abs/arXiv:1802.04449
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• Gubser solution for 2nd order viscous hydrodynamics, LG.Pang, 
Y.Hatta, XN.Wang & BW.Xiao Phys.Rev. D91 (2015) no.7, 074027 

• Tested with Riemann solution, Bjorken solution and Gubser solution.

Gubser Solution for 2nd order viscous hydrodynamics
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Figure 14. (color online) Pseudo-rapidity distribution for
charged hadrons in Au+Au collisions at

p
sNN = 200 GeV

with centrality range 0�6%, 6�15%, 15�25% and 25�35%,
from CLVisc with freeze-out temperature 100 MeV (solid-
lines) and 137 MeV (dashed lines) as compared with RHIC
experimental data by PHOBOS collaboration [100].

Figure 15. (color online) Invariant yield of ⇡+ in Au+Au
collisions at

p
sNN = 200 GeV with centrality range 0 � 5%,

10� 15%, 20� 30% and 30� 40%, from CLVisc with freeze-
out temperature 100 MeV (solid-lines) and 137 MeV (dashed
lines) as compared with RHIC experimental data by PHENIX
collaboration.

the pseudo-rapidity distribution of charged particles is
found over a wide range of centralities.

Shown in Fig. 17, is the transverse momentum spectra
for charged pions, in 6 different centralities of collisions,
which agree with experimental data well. The hydrody-
namic simulations always underestimate low pT pions as
compared to the experimental data at LHC. This prob-
lem is not solved up to date, but may be partially ex-
plained by the missing finite widths of resonances [102]

Figure 16. (color online) Pseudo-rapidity distribution for
charged hadrons in Pb+Pb collisions at

p
sNN = 2.76 TeV

with centrality range 0�5%, 5�10%, 10�20% and 20�30%,
from CLVisc (solid-lines) and LHC experimental data by AL-
ICE collaboration [100].

Figure 17. (color online) pT spectra of charged pions for
Pb+Pb

p
sNN = 2.76 TeV collisions at centrality range

0 � 5%, 5 � 10%, 10 � 20%, 20 � 40%, 40 � 60%, 60 � 80%,
from CLVisc (solid-lines) and LHC experimental data by AL-
ICE collaboration [101].

in the current hadronization modules.

C. Higher order harmonic flow in Pb+Pb at p
sNN

= 2760 GeV collisions

CLVisc with Trento initial conditions and Tf = 137
MeV can reproduce experimental data on v2, v3, v4
and v5 for charged pions for all available centralities as
shown in Fig. 18. For pure relativistic hydrodynamic

⇢(⌘, pT ,�) ! ⇢̃(⌘)
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• Fitting with most central collisions, works for all the other centralities.  

• Dimension reduction  

• Where the pseudo-rapidity  

Compare with experiment: charged multiplicity 
LG.Pang, H.Petersen, XN.Wang arXiv:1802.04449

⌘ =
1

2
ln

|p|+ pz
|p|� pz
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0-5% 20-30%

http://arxiv.org/abs/arXiv:1802.04449
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• Dimension reduction 
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13

Figure 14. (color online) Pseudo-rapidity distribution for
charged hadrons in Au+Au collisions at

p
sNN = 200 GeV

with centrality range 0�6%, 6�15%, 15�25% and 25�35%,
from CLVisc with freeze-out temperature 100 MeV (solid-
lines) and 137 MeV (dashed lines) as compared with RHIC
experimental data by PHOBOS collaboration [100].

Figure 15. (color online) Invariant yield of ⇡+ in Au+Au
collisions at

p
sNN = 200 GeV with centrality range 0 � 5%,

10� 15%, 20� 30% and 30� 40%, from CLVisc with freeze-
out temperature 100 MeV (solid-lines) and 137 MeV (dashed
lines) as compared with RHIC experimental data by PHENIX
collaboration.

the pseudo-rapidity distribution of charged particles is
found over a wide range of centralities.

Shown in Fig. 17, is the transverse momentum spectra
for charged pions, in 6 different centralities of collisions,
which agree with experimental data well. The hydrody-
namic simulations always underestimate low pT pions as
compared to the experimental data at LHC. This prob-
lem is not solved up to date, but may be partially ex-
plained by the missing finite widths of resonances [102]

Figure 16. (color online) Pseudo-rapidity distribution for
charged hadrons in Pb+Pb collisions at

p
sNN = 2.76 TeV

with centrality range 0�5%, 5�10%, 10�20% and 20�30%,
from CLVisc (solid-lines) and LHC experimental data by AL-
ICE collaboration [100].

Figure 17. (color online) pT spectra of charged pions for
Pb+Pb

p
sNN = 2.76 TeV collisions at centrality range

0 � 5%, 5 � 10%, 10 � 20%, 20 � 40%, 40 � 60%, 60 � 80%,
from CLVisc (solid-lines) and LHC experimental data by AL-
ICE collaboration [101].

in the current hadronization modules.

C. Higher order harmonic flow in Pb+Pb at p
sNN

= 2760 GeV collisions

CLVisc with Trento initial conditions and Tf = 137
MeV can reproduce experimental data on v2, v3, v4
and v5 for charged pions for all available centralities as
shown in Fig. 18. For pure relativistic hydrodynamic

LG.Pang, H.Petersen, XN.Wang arXiv:1802.04449

⇢(⌘, pT ,�) ! ⇢̃(pT )

Compare with experiment: transverse momentum spectra 

http://arxiv.org/abs/arXiv:1802.04449
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LG.Pang, H.Petersen, XN.Wang arXiv:1802.04449

Compare with experiment: Fourier decomposition of azimuthal angle distributions

http://arxiv.org/abs/arXiv:1802.04449
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Open Source Libraries

 34

Keras + TensorFlow in the 
present study

# Build one fully connected neural network (784->10->10 neurons) in Keras, for MNIST 

from keras.models import Sequential 
from keras.layers import Dense, Activation 

model = Sequential() 
model.add(Dense(output_dim=10, input_dim=784)) 
model.add(Activation("relu")) 
model.add(Dense(output_dim=10)) 
model.add(Activation(“softmax")) 
model.compile(loss='categorical_crossentropy', optimizer='sgd', 
metrics=['accuracy'])

Keras is a high level neural network library, written in Python and capable 
of running on top of either TensorFlow or Theano.

2017/01/15: Keras becomes a part of Tensorflow.
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Some randomly selected particle spectra
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Traditional Machine Learning vs. deep neural network

 36

• Training and testing data: 15x48 components raw 
spectra or 85 pre-defined observables or principle 
components in raw spectra from PCA method 

• Machine learning Tools:  

• Gaussian Naive Bayes Classifier 

• Support Vector Machine Classifier 

• Decision Tree Classifier 

• Random Forest and Gradient Boosting Trees



LongGang Pang               Deep learning the E-B-E relativistic hydrodynamics 

Gaussian Naive Bayes Classifier

 37

Bayes Classifier: P (c|x) = P (c)P (x|c)
P (x)

Naive Bayes Classifier: P (c|x) = P (c)

P (x)

dX

i=1

P (xi|c)

Gaussian Naive Bayes Classifier:

p(xi|c) =
1p

2⇡�c,i

exp

"
� (xi � µc,i)2

2�2
c,i

#

• NB: Assume each feature affect classification independently 

• GNB: For continuous features, using probability density dist.
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Linear Support Vector Machine Classifier

 38

• SVM: Looking for the 
widest street that can 
separate 2 classes. 

• Each data point is a n-
dimensional vector 

• The decision boundary is 
one n-1 dimensional hyper 
surface.

and are support vectors for classification.
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Support Vector Machine with non-linear kernels

 39

• Left: dataset with one feature x1, not linearly separable 

• Right: define x2 = x1 * x1, now linearly separable 

• kernels are easier ways to introduce this non-linearity
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Ensemble Methods (1) Bagging and Stacking

 40

• Random Forest: each decision tree is a weak classifier, many diverse decision trees + 
majority voting = strong classifier whose accuracy is higher than the best classifier in the 
ensemble. 

• Bagging: many different classifiers + majority voting (少数服从多数) 

• Stacking: many different classifiers + learning to vote (真理理可能掌握在少数⼈人⼿手中）

三个臭臭⽪皮匠，抵过诸葛亮

Naive Bayes SVM Neural Nets Random Forest

…

Training Data
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Ensemble Methods (2) Boosting

 41

• Boosting: sequentially improve the classifier by paying 
more attention to misclassified samples 

• Example: AdaBoost, XGBoost (many winners of Kaggle 
data science competing)

知错能改，善莫⼤大焉
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Important features from linearSVC

 42

• linearSVC has the best generalization capability for this specific problem. 

• If linearSVC trained with pre-defined observables, the most important features in 
descending order are: 'ptspec-bin4', '    ptspec-bin5', 'ptspec-bin8', 'ptspec-
bin7','ptspec-bin6', 'ptspec-bin1', 'dndy', 'ptspec-bin2','ptspec-bin3', 'ptspec-
bin11', 'v2-ptbin5', 'v2-ptbin6','v2-ptbin4', 'ptspec-bin9', 'v5-ptbin12', ‘ptspec-bin10', 
'v5-ptbin11', 'ptspec-bin12', 'ptspec-bin0', 'v2-ptbin7'. 

• If linearSVC trained with raw spectra, the important features are the following,

Hypothesis: The shape of the soft-particle 
pt spectra along the out-of-plane direction 

might be very important for EoS 
classification. 

Reason: The expansion along out of plane 
is weaker and the effect of first order 
phase transition might be stronger.


