

CIPANP 2018 May 30, 2018

on behalf of the CMS collaboration

Summary in advance

- - pp collision energies.
- Analysis effort continues to increase on less general, targeted searches for both:
 - alternate SUSY models
 - challenging corners of natural SUSY parameter space
- Aim of this talk
 - **NOT** to indicate the vast breadth of our search program
 - explain status and give a few examples of expanding focus on specific/ targeted searches

• LHC provides incredible sensitivity to bulk of natural SUSY parameter space: • Initial searches are relatively general to rapidly take advantage of increasing

Supersymmetry (SUSY)

Spacetime symmetry that turns bosonic states into fermionic states and vice versa:

 $Q|\text{Boson}\rangle = |\text{Fermion}\rangle,$ $Q|\text{Fermion}\rangle = |\text{Boson}\rangle$

ě	ν̈́e
ŭ	ν̃μ
ř	\widetilde{v}_{τ}
; 0 3	$\widetilde{\chi}^0_4$
	ĝ

Why SUSY? **Explains dark matter Explains** hierarchy problem **Unifies** forces

Special particles

- gluino ($\widetilde{\mathbf{g}}$)
- top squark or stop (\tilde{t})
- neutralino or LSP ($\widetilde{\chi}_1^0$)
- higgsinos ($\widetilde{\mathbf{h}}$; $\widetilde{\chi}_{2}^{0}$, $\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{0}$)

h

 $m_H^2 = (m_H^2)_0 + \delta m_H^2$

- We measure $|m_{\rm H^2}| \sim |100 \, {\rm GeV}|^2$.
- In standard model (SM), $\delta m_{\rm H^2} \sim 10^{30} \, {\rm GeV}.$
- In SUSY, δm_{H^2} can be small, but depends on sparticle masses.
- Define "natural" spectrum as giving $\delta m_{\rm H^2}$ not $\gg m_{\rm H^2}$.
- Traditional metric: $\Delta \equiv \frac{2|\delta m_H^2|}{m_h^2}$

Papucci, Ruderman, Weiler, arXiv:1110.6926 Barbieri, Giudice (1988) Martin arXiv:hep-ph/9709356

SUSY production cross sections

Halkiadakis, Redlinger, Shih (2014)

Gluino exclusions

- Attack high cross section gluino with general, inclusive search for events with
 - large missing transverse energy (MET)
 - large total event energy (H_T)
 - many jets
 - many b-tagged jets

State of natural SUSY

- Allowed phase space for 10% fine tuning with low $\Lambda = 20$ TeV.
- Λ =GUT scale implies 0.5% fine tuning.

Options:

- **Denial:** new naturalness metric? H.Baer et al. arXiv:1611.08511
- Guilt/anger: Are missing we are looking in the right places?
- **Depression:** Naturalness mechanism without accessible particles? Twin Higgs?
- Acceptance: 0.1% tuning better than 10⁻³⁰
- Hope: a few more places to look ...

Recent search highlights

Give up solving hierarchy problem?

Look for long-lived gluino in "split" SUSY model.

Give up dark matter candidate? Look for MET-less gluino resonances in R-parity violating SUSY.

Explains dark matter **X** Explains hierarchy problem Unifies forces

X Explains dark matter **Explains** hierarchy problem Unifies forces

• low p_T decay products for top squark mass degenerate with neutralino LSP. • low cross sections and low p_T decay products for mass degenerate higgsinos.

Alternate models

- R-parity violation

long-lived particles in split SUSY

Long-lived gluino in split SUSY

Split SUSY [1,2]:

- bosonic sparticles have very high mass
- gluino is long-lived from suppressed decay through highly off-shell squark
- Inclusive search
 - uses only standard prompt jets and missing energy
 - makes no assumption about interaction of gluino with detector – only decay products.

[1] Arkani–Hamed, Dimopolous; arXiv:hep–th/0405159 [2] Giudice, Romanino; arXiv:hep-ph/0406088

- Probes $10^{-15}s < \tau < metastable$
- Complementary to long-lived gluino searches for out-of-time energy deposition in range $10^{-7} < \tau < 10^{6}$ s.

- R-parity is even for SM particles and odd for SUSY particles $R_P = (-1)^{3(B-L)+2S}$
- R_P conservation \rightarrow SUSY does result in rapid proton decay or other unobserved processes. • However, allowing single R_P violating coupling (λ , λ' , λ'') in the super potential would not
- cause problems for theory:

$$W_{\rm RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$
$$(\Delta L, \Delta B) = (1, 0) \qquad (\Delta L, \Delta B) = (1, 0) \qquad (\Delta L, \Delta B) = (1, 0)$$

L = left-handed lepton doublet
Q = left-handed quark doublet
E = right-handed lepton singlet
U,D = right-handed quark singlet
i, j, k = generation indices
$$\lambda, \lambda', \lambda'' = RPV$$
 couplings

R–parity

R-parity

- When $\lambda''_{323} > 0$, gl fit 1.5
- Main sensitivity f \geq 4 b-tagged jets
- Exclude m<1.6 TeV without use of MET!
- Final states w/out top and bottom quarks are more challenging.

Challenging corners of natural SUSY parameter space

• mass degenerate top squark and neutralino • mass degenerate higgsinos

Top squark in "compressed spectrum"

- One $\tilde{\mathbf{t}}_1$ should be light since mass splitting ∝ Yukawa coupling
- CMB measurements consistent with $\tilde{\chi}_1^0$ dark matter mass degenerate with co-annihilating $\tilde{\mathbf{t}}$ [1].
- Challenge: When $\Delta m(\tilde{t}, \tilde{\chi}_1^0) < m_{W,} \tilde{t}$ undergoes 4-body decay into low p_T final state particles.

How to identify this challenging signature? • Trigger on jet from gluon initial state radiation (ISR).

• **Require** ℓ with $p_T > 3.5-5$ GeV, MET > 200 GeV, Njets = 1 or 2.

[1] Balazs, Carena, Wagner; arXiv:hep-ph/0403224

Higgsino search

Two challenges:

- Mass splitting between **h** states expected to be <10 GeV, so decay products have low pT.
- Higgsino cross section is smallest of all SUSY particles.
- As for top squark search, trigger on ISR jet.
- Search for ISR jet + missing energy and $\ell\ell$ with ℓ p_T of 3.5 – 30 GeV.
- **Reduce background**: tight requirements on *l* impact parameter, small $M_T(\ell, MET)$, small $M_{\ell\ell}$, no b-tagged jets

Two h search interpretations

1. **pMSSM** : vary M_1 (bino) and μ (higgsino), M_2 (wino) = $2M_1$, other mass scales set high

[GeV]

CMS 50r

[1] Fuks et al; arXiv:1710.09941 $m_{\widetilde{\chi}_{o}^{0}}$ 21

Summary and outlook

• As bulk of natural SUSY space is ruled out, focus on targeted searches increases. **Prospect for long term discovery at HL-LHC** depends on particle:

- 5σ reach for gluinos is ~2.3 TeV at HL-LHC; current reach is 1.9 TeV.
- 2σ reach for higgsinos is 300 GeV at HL–LHC; current reach is 170 GeV.

Additional Material

Solenoid 3.8T field, 6m internal diameter

All silicon tracker 66M pixels 10M microstrips

Electromagnetic calorimeter (ECAL) 76k PbWO₄ crystals

Hadron calorimeter (HCAL) brass-scintillator sampling 7k channels

Muon system: resistive plate chambers, cathode strip chambers, drift tubes

CMS Detector

EWKino branching fractions in pMSSM

- M₁ (bino) = 50 GeV
- M₂ (wino), μ (higgsino) running
- all others decoupled

SUS-16-048

- M_1 , μ running
- $M_2 = 2M_1$
- $\tan \beta = 10$

gaugino-higgsino simplified model

[1] Fuks et al; arXiv:1710.09941

To calculate the cross sections in this model, a scan in |µ|, M1, M2 and tan β is carried out. All parameters are required to be real, M2 to be positive and tan $\beta \in [1, 100]$. The remaining SUSY particle masses are decoupled, and all trilinear couplings are discarded. The parameter space is then scanned to achieve the maximum higgsino content for χ_2^0 , χ_1^{\pm} , and χ_1^0 .