

Position Reconstruction Using Photon Timing for the DEAP-3600 Liquid Argon Dark Matter Experiment

Yu Chen University of Alberta

CIPANP 2018, Palm Springs, CA

INSTITUTO DE FISICA Universidad Nacional Autónoma de Mándoo

DEAP Collaboration: 75 researchers in Canada, UK, Germany, Mexic (+ future collaborators from Italy, USA)

Canadian Nuclear Laboratories

Laboratoires Nucléaires Canadiens

ELEN7 300

Laurentian University Université Laurentienne

Technical University

of Munich

ROYAL HOLLOWAY UNIVERSITY OF LONDON

DEAP-3600 Detector

- DEAP = Dark Matter Experiment using Argon Pulse-shape Discrimination
- 3600 = 3600 kg of liquid argon (LAr) as designed target mass
- Search for scintillation signal due to elastic scattering of WIMP dark matter—argon nuclear recoils of ~ tens of keV.

LAr Scintillation

- Excited dimers formed after exposure to ionizing radiation, in singlet (6 ns) and triplet (~1.3 µs) states
 - Nuclear recoils (by WIMP, neutron, and α): higher ratio of singlet states—more prompt light
 - Electron recoils (β/γ): lower ratio of singlet states—less prompt light

- Emits UV light at wavelength of 128 nm. Passes through pure argon without being absorbed.
- TPB wavelength shifter converts UV light to visible light at wavelength of 420 nm. Passes through acrylic and collected by PMTs.
- UV-absorbing acrylic light guide (LG) helps minimize Cerenkov radiation.

Pulse-Shape Discrimination

arXiv:1707.08042

Located in SNOLAB underground laboratory

- 2 km underground (6 km.w.e)
- Cosmic-ray muon flux (3.77+/-0.41)x10⁻¹⁰ cm⁻²sec⁻¹ (~1/70 of Gran Sasso)

Operation

- Filled up to 3322 kg of LAr in August 2016
 - Collected 4.4 live days of data
 - Our first dark matter search result (arXiv:1707.08042)
 - Incident on August 17, 2016: leakage of 100 ppb N2 into LAr
 - Drained and re-filled to slightly lower level
- DEAP-3600 has been taking data with 3256 kg of LAr since November 1, 2016

Region of Interest (ROI)

Cuts and Acceptance

	Cut	Livetime	Acceptance %	$\#_{\text{evt.}}^{\text{ROI}}$									
run	Physics runs	$8.55~\mathrm{d}$					10	10	00	00	04	00	
	Stable cryocooler	$5.63~\mathrm{d}$				14	0	18 	20		24	26	28 0
	Stable PMT	$4.72~{ m d}$			ຼັ≝ 1.0 <mark>⊨</mark> ່							1	
	Deadtime corrected	4.44 d		119181	otar								
rel	DAQ calibration			115782	8.0 8		1						
lev	Pile-up			100700	Ă Į								
low	Event asymmetry			787									
					0.6								1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
quality	Max charge fraction		00.58 ± 0.01	654	-								
	per PMT		99.00±0.01	004						— Tri	igger		
	Event time		$99.85{\pm}0.01$	652	0.4	1				— Ev	ent qua	litv c	uts
	Neck veto		$97.49^{+0.03}_{-0.05}$	23	-		6			F	Cut		
fiducial					0.0					i pi		ute	
	Max scintillation PE		75 08+0.09	7	0.2	/					mbined	1	
	fraction per PMT		15.08-0.06	1	11	/					ombineo	1	;
	Charge fraction in		$00.02^{+0.11}$	0									
	the top 2 PMT rings		50.52 - 0.10	0	80	100	120	140	160	18	0 200	0 2	220
												-	F
	Total	4.44 d	96.94 ± 0.03 $66.91^{+0.20}_{-0.15}$	0									•

- Fiducialization:
 - Cut on max scintillation PE fraction per PMT (surface)
 - Cut on charge fraction in the top 2 rows of PMTs (z-fiducial)
 - Position reconstruction algorithms have been developed and tested, but not applied as cuts

First Dark Matter Search Results from DEAP-3600

First Dark Matter Search Results from DEAP-3600

1.2x10⁻⁴⁴ cm² for 100 GeV WIMP (90% C.L.)

Projected sensitivity for 3-year run: 10⁻⁴⁶ cm² for 100 GeV WIMP

Position Reconstruction

- Fit on photon charge distribution
 - Assuming a single source of light,
 - Light intensity (therefore charge in PMTs) ~ $1/r^2$,
 - Probability density functions (PDFs) trained with MC,
 - Pulse charge in full event window as input
- Fit on the distribution of photon arrival timing (new fitter under development)
 - Assuming a single source of light,
 - Photon arrival time = event time + time-of-flight (TOF) + time delay (dimer decay, TPB response, PMT response)
 - Feasibility: detector large enough, time resolution good enough, UV light in LAr travels slow enough!
 - Using only first 40 ns prompt light to avoid late unphysical info (afterpulsing, ...)

Fit with Photon Timing

- Fit with intensity and time of arrival for the first 40 ns of prompt light
- Group velocity of UV light = 110 mm/ns
- Group velocity of visible light = 241 mm/ns
- Construct PDFs for light emitted at vertex x₀ and event time t₀ given PMT *i* measures charge q_i.
- $L(\{t_i, q_i\}; \vec{x_0}, t_0) = \prod P_i^{q_i}(t_i; \vec{x_0}, t_0)$
- Convolve singlet decay time (7 ns), TPB response time (3 ns), and PMT/Light Guild (LG) response time (1.4 ns)

Scintillation hypothesis

Events in center area

• UV light always arrives first

Events relatively near surface

- Visible light arrives first to the PMTs at far side
- Distinct time profile at some PMTs

Consistency between Charge and Timing Fits

 Both algorithms assume a single source of light. For healthy, uniformly distributed bulk events, such as Ar39 and expected WIMP signal, the positions reconstructed by charge and by timing should agree.

- Not expect charge and timing fits to agree for
 - Events with substantial amount of afterpulsing
 - Light originating from multiple positions
 - Events in the neck

Consistency between Charge and Timing Fits

- Tested with WIMP MC events at ROI energy (80 to 240 PE)
- and Ar39 data events with higher energies to have similar amount of prompt light
- Very promising to discriminate background events from the neck, or other misreconstruction cases.

Conclusion

- DEAP-3600 has achieved stable operation at 7.36 PE/keVee light yield
- Better-than-expected Pulse-shape discrimination (PSD)
- No events observed in ROI in 4.44 live days of the first fill dataset
- Spin-independent WIMP-nucleon cross section < 1.2x10⁻⁴⁴ cm² for a 100 GeV WIMP
- Second fill dataset: ongoing since November 2016; collected more than one year of data!
- Position reconstruction:
 - Photon charge algorithm, and
 - Newly developed photon timing algorithm (benefit from low group velocity of UV light in LAr)
 - Photon timing provides extra information
 - The reconstruction consistency between charge and timing is promising to reject backgrounds.

Backups

Energy Calibration

- Ar39 and Na22 are fit separately. Agree within errors.
- Ar39 spatially uniform (similar to WIMP-induced NR)
- Na22 near AV surface (similar to surface backgrounds)
- Light yield: 7.36 +0.61 -0.52 (fit sys.) +/-0.22 (SPE sys.) PE/keVee

Backgrounds

- Alphas
 - 222 Rn, 218 Po, and 214 Po α decays
 - Tagged with well-defined high energy peaks and time delayed coincidence
- Neutrons
 - Dominant sources: (α, n) and spontaneous fission
 - Constrained with in-situ measurements of gamma-rays from U/Th decay chain
 - Tagged by searching for NR followed by a neutron capture gamma-ray