Experimental status of $|V_{ub}/V_{cb}|$ and $\gamma(\phi_3)$

Abi Soffer

Tel Aviv University On behalf of the Belle II Collaboration

Outline

- Importance of $|V_{ub}/V_{cb}|$ and γ – Why they are related
- Introduction to the experiments
 BABAR, Belle, CLEO-c, LHCb, Belle II
- Measurements of $|V_{ub}/V_{cb}|$
 - Different methods
- Measurements of γ
 - Different methods

I will give only a selection of results and averages from PDG based mostly on HFLAV and <u>CKMFitter</u>

Importance of $|V_{ub}/V_{cb}|$ and γ

- The Cabibbo-Kobayashi-Maskawa (CKM) matrix contains 4 fundamental parameters of the SM.
- 2 of the 4 parameters can be parameterized as $|V_{ub}/V_{cb}|$ and γ
- They originate from some high-scale new physics
- Their precision measurement is critical to the definition of the SM
- It also provides a stress-test of the SM and probe of NP

CKM unitarity triangle

 $V_{ud}V_{ub}^* + V_{cd} V_{cb}^* + V_{td}V_{tb}^* = 0$

Testing the consistency of this SM picture probes NP

Probing new physics (NP)

 $V_{ud}V_{ub}^* + V_{cd} V_{cb}^* + V_{td}V_{tb}^* = 0$

Testing the consistency of this SM picture probes NP

Unitarity triangle constraints

 $V_{ud}V_{ub}^* + V_{cd} V_{cb}^* + V_{td}V_{tb}^* = 0$

Testing the consistency of this SM picture probes NP

The experiments

- $\sim 470 \text{M} e^+e^- \rightarrow B\overline{B}$ **BABAR**: 1999-2008, •
 - $\sim 770 \text{M} e^+e^- \rightarrow B\overline{B}$ Belle 1999-2010, •
 - $pp \rightarrow b\overline{b}X$ LHCb 2010-
 - CLEO-c
 - Belle II •

•

2003-2006?, $\sim 3M \ e^+e^- \rightarrow D\overline{D}$ 2019-2026?, ~50,000M $e^+e^- \rightarrow B\overline{B}$

- Silicon tracker ۲
- Gas-based tracker ۲
- Cherenkov hadron-ID ۲
- EM calorimeter •
- Muon system ۲

 V_{uh}/V_{ch}

- Measured via $b \to u\ell \bar{\nu}$ and $b \to c\ell \bar{\nu}$ (where $\ell = e, \mu$)
 - Measurements with τ also possible in principle, but...
 - they are experimentally less precise
 - not yet clear what the ~ 4σ SM discrepancy in $\overline{B} \rightarrow D^{(*)}\tau\overline{\nu}$ is telling us
- Measured via both exclusive and inclusive final states.

$$\begin{array}{cccc}
\bar{B} \to \pi \ell \bar{\nu} & & & & & \\
\bar{B} \to D^{(*)} \ell \bar{\nu} & & & & & & \\
\end{array} \xrightarrow{B} \to X_c \ell \bar{\nu}
\end{array}$$

- Significant model dependence \rightarrow different values of $|V_{ub}| \& |V_{ub}|$
- Close interaction between theoretical and experimental inputs

Other-*B* tagging at a e^+e^- B factory

- Hadronic
 - Fully reconstruct in >1000 hadronic decay chains
 - Reduces combinatorial background
 - \vec{p}_{ν} well determined
 - Efficiency ~0.5%
- Semileptonic
 - Reconstruct as $B \to \overline{D}^{(*)}\ell^+\nu$
 - Reduces combinatorial background
 - Efficiency ~0.5%
- Inclusive
 - Use all tracks and clusters to try and reconstruct neutrino 4-momentum
 - Efficiency ~10s%
 - Higher background
 - \vec{p}_{ν} not well determined: finite B momentum, missing/fake particles

A comparison of other-B tagging methods

"Beam-constrained mass"
$$M_{bc} \equiv \sqrt{E_{beam}^2 - p_B^2}$$

V_{cb} from exclusive $\overline{B} \to D^* \ell \overline{\nu}$

• Experiments measure differential decay rate, given by:

$$\frac{d\Gamma}{dw}(\bar{B} \to D^* \ell \bar{\nu}_{\ell}) = \frac{G_F^2 m_B^5}{48\pi^3} |V_{cb}|^2 (w^2 - 1)^{1/2} P(w) (\eta_{ew} \mathcal{F}(w))^2$$

$$w \equiv v_B \cdot v_{D^*} \qquad \text{Phase-space} \qquad Form \text{ factor (lattice or lightcone sum rules)}}$$

- Measurements performed by Belle, BABAR, CLEO, LEP.
- Most use a form-factor polynomial expansion (CLN) around w = 1, considered by PDG to be too constraining given current high precision
- PDG prefers the more flexible BGL form-factor parameterization (Boyd, Grinstein, Lebed, PRL 74, 4603)
- $\sim 10\%$ differences seen b/w CLN and BGL parameterizations
- Only one analysis (Belle, arXiv:1702.01521) uses BGL...

Recent Belle had-tag $\overline{B} \rightarrow D^* \ell \overline{\nu}$ analysis arXiv:1702.01521

$$p_{\rm miss} = p_{\nu} = p_{e^+e^-} - p_{\rm tag} - p_{D^*} - p_{\ell}$$

From these inputs, PDG quotes $|V_{cb}| = (41.9 + 2.0) \times 10^{-3}$

$$V_{cb}$$
 from inclusive $\overline{B} \to X_c \ell \overline{\nu}$

• Differential decay rate is given as a heavy-quark expansion (HQE) in terms of lepton-energy moments,

$$\langle E_e^n \rangle_{E_e > E_{\text{cut}}} = \int_{E_{\text{cut}}}^{E_{\text{max}}} \frac{d\Gamma}{dE_e} E_e^n dE_e \left/ \int_{E_{\text{cut}}}^{E_{\text{max}}} \frac{d\Gamma}{dE_e} dE_e \right|$$

for different value of the minimal lepton energy E_{cut} , and similarly for the hadronic invariant mass and hadronic energy.

- E.g., Lepton-energy moments from BABAR arXiv:0908.0415: —>
- Global Fits to these moments are used to obtain V_{cb} in various *b*-mass schemes

• PDG choose the kinetic scheme result $|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$

V_{ub} from inclusive $\overline{B} \to X_u \ell \overline{\nu}$

- The total $B \to X_u \ell v$ decay rate is calculated based on the operator product expansion (OPE) in α_s and Λ_{QCD}/m_b , with a ~5% uncertainty
 - But the total rate is hard to measure, due to large $B \rightarrow X_c \ell \nu$ background
 - V_{ub} measurement requires model for distributions of $B \to X_u \ell \nu$ and $B \to X_c \ell \nu$

Some inclusive V_{ub} results (10⁻⁵), RPP 2016/7

- Note that results with different cuts are correlated
- PDG averages over methods with additional error:

$$|V_{ub}| = (4.49 \pm 0.15_{\text{exp}} + 0.16_{-0.17 \text{ theo}} \pm 0.17_{\Delta BF}) \times 10^{-3}$$

- A. Bornheim *et al.* (CLEO Collab.), Phys. Rev. Lett. 88, 231803 (2002).
- A. Limosani *et al.* (Belle Collab.), Phys. Lett. B621, 28 (2005).
- B. Aubert *et al.* (BABAR Collab.), Phys. Rev. D73, 012006 (2006).
- B. Aubert *et al.* (BABAR Collab.), Phys. Rev. Lett. **95**, 111801 (2005), Erratum: Phys. Rev. Lett. **97**, 019903 (2006).
- R. Kowalewski and S. Menke, Phys. Lett. B541, 29 (2002).
- 113. J.P. Lees et al. (BABAR Collab.), arXiv:1112.0702.
- I. Bizjak *et al.* (Belle Collab.), Phys. Rev. Lett. **95**, 241801 (2005).
- P. Urquijo *et al.* (Belle Collab.), Phys. Rev. Lett. **104**, 021801 (2010).
- 121. J. P. Lees *et al.* (BABAR Collab.) Phys. Rev. **D95**, 072001 (2017)^{1.7}

V_{ub} from exclusive $\overline{B} \to \pi \ell \overline{\nu}$ (PDG17)

• As with exclusive V_{cb} , relate partial Br to V_{ub} using lattice or sum rules

	$\mathcal{B} imes 10^4$	$\mathcal{B}(q^2 > 16) \times 10^4 \mathrm{GeV^2}$
CLEO π^+, π^0 [129]	$1.38 \pm 0.15 \pm 0.11$	$0.41 \pm 0.08 \pm 0.04$
BABAR π^+, π^0 [130]	$1.41 \pm 0.05 \pm 0.08$	$0.32 \pm 0.02 \pm 0.03$
BABAR π^+ [131]	$1.44 \pm 0.04 \pm 0.06$	$0.37 \pm 0.02 \pm 0.02$
Belle π^+, π^0 [143]	$1.48 \pm 0.04 \pm 0.07$	$0.40 \pm 0.02 \pm 0.02$
Belle SL π^+ [144]	$1.41 \pm 0.19 \pm 0.15$	$0.37 \pm 0.10 \pm 0.04$
Belle SL π^0 [144]	$1.41 \pm 0.26 \pm 0.15$	$0.37 \pm 0.15 \pm 0.04$
Belle Had π^+ [124]	$1.49 \pm 0.09 \pm 0.07$	$0.45 \pm 0.05 \pm 0.02$
Belle Had π^0 [124]	$1.48 \pm 0.15 \pm 0.08$	$0.36 \pm 0.07 \pm 0.02$
BABAR SL π^+ [145]	$1.38 \pm 0.21 \pm 0.08$	$0.46 \pm 0.13 \pm 0.03$
BABAR SL π^0 [145]	$1.78 \pm 0.28 \pm 0.15$	$0.44 \pm 0.17 \pm 0.06$
BABAR Had π^+ [146]	$1.07 \pm 0.27 \pm 0.19$	$0.65 \pm 0.20 \pm 0.13$
BABAR Had π^0 [146]	$1.52 \pm 0.41 \pm 0.30$	$0.48 \pm 0.22 \pm 0.12$
Average [147]	$1.45 \pm 0.02 \pm 0.04$	$0.38 \pm 0.01 \pm 0.01$

 $|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$

$|V_{ub}/V_{cb}|$ with Λ_b decays at LHCb

arXiv:1504.01568

Similar topology for $\Lambda_b \to \Lambda_c^+ \mu \bar{\nu}$ with $\Lambda_c^+ \to p K^- \pi^+$

Measure $\hat{p}_{\Lambda_{b}}$ and $q^{2} = (p_{\mu} + p_{\nu})^{2}$ from vertex position with 1 (4) GeV² resolution for right (wrong) solution. Measure:

$$\frac{\mathcal{B}(\Lambda_b^0 \to p\mu\bar{\nu})_{q^2 > 15 \text{GeV}^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu\bar{\nu})_{q^2 > 7 \text{GeV}^2}} = (0.95 \pm 0.04 \pm 0.07) \times 10^{-2}$$
¹⁷

$|V_{ub}/V_{cb}|$ summary (PDG 2017)

$$|V_{ub}|/|V_{cb}| = 0.107 \pm 0.007$$
 (inclusive)
 $|V_{ub}|/|V_{cb}| = 0.088 \pm 0.006$ (exclusive)

 2σ difference (mostly due to 2.6 σ difference in V_{ub} results)

$$|V_{ub}|/|V_{cb}| = 0.080 \pm 0.004 \pm 0.004$$
 (LHCb)

LHCb result is based on 1 precise lattice calculation. Errors on B-factory results include differences b/w theory inputs, more crosschecks

• To leading order in $\lambda = \sin \theta_C \approx 0.22$, can take

$$\gamma = \arg(-V_{ub}^*)$$

- γ is a CP-odd complex phase
- Its measurement requires
 - 1. Interference between two amplitudes, one with V_{ub}
 - 2. Comparison of between CP-conjugate processes

Gronau-London-Wyler (PLB 253, 483; PLB 265, 172)

• Consider the processes $B^- \to D^0 K^-$ and $B^- \to \overline{D}{}^0 K^-$

Gronau-London-Wyler (PLB 253, 483; PLB 265, 172)

- Consider the processes $B^- \to D^0 K^-$ and $B^- \to \overline{D}{}^0 K^-$
- Their amplitudes are measured via Cabibbo-allowed charm decays

Gronau-London-Wyler (PLB 253, 483; PLB 265, 172)

- Consider the processes $B^- \to D^0 K^-$ and $B^- \to \overline{D}{}^0 K^-$
- Their amplitudes are measured via Cabibbo-allowed charm decays

• Interference when both D^0 and \overline{D}^0 decay to a common CP eigenstate

• Write the CP eigenstates as

$$D_{\pm}^{0} = \frac{1}{\sqrt{2}} (D^{0} \pm \overline{D}^{0})$$

• Then the decay amplitudes satisfy

$$\begin{split} A\left(B^{-} \rightarrow D^{0}_{\pm}K^{-}\right) &= \frac{1}{\sqrt{2}} \left(A\left(B^{-} \rightarrow D^{0}K^{-}\right) \pm A\left(B^{-} \rightarrow \overline{D}^{0}K^{-}\right) \right) \\ &= \frac{1}{\sqrt{2}} |A| \left(1 \pm r_{B} e^{i(-\gamma + \delta_{B})} \right) \end{split}$$

• With $-\gamma$ becoming $+\gamma$ for the B^+ decay

• This gives two triangles from which γ is extracted, with r_B and δ_B :

The ADS method

Atwood, Dunietz, Soni, PRL 78, 3257

- Ratio between interfering *B* decays is only $r_B \sim 0.1$: small interference
- Exploit doubly Cabbibo-suppressed decay $\overline{D}^0 \to K^- (n\pi)^+$:

The GGSZ method

Giri, Grossman, Soffer, Zupan, PRD 68, 054018

- Exploit multibody D^0 decays
- Help resolve trig ambiguities in γ
- CP content depends on phase-space point
- Complex *D*⁰ decay amplitude can be modeled (isobar+K-matrix, etc.) with a flavor-tagged *D*⁰ sample:

 $D^{*+} \rightarrow D^0 \pi^+$

26

Or:

Complex D^0 decay amplitude can be obtained model-independently with a CP-tagged D sample:

CLEO-c (0903.1681)

- Belle (1509.01098) & LHCb (1408.2748) measured γ in this model-independent method
- Stat error > model-dependent case, but no assumptions re: strong phases

LHCb γ combination

LHCb-CONF-2017-004.pdf

B decay	D decay	Method	
$B^+ \to DK^+$	$D \to h^+ h^-$	GLW	
$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	
$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	Underlined: modifications of above methods
$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	GLW/ADS	
$B^+ \to DK^+$	$D \to K^0_{\rm S} h^+ h^-$	GGSZ	
$B^+ \to DK^+$	$D \to K^0_{\rm s} K^+ \pi^-$	GLS	
$B^+ \to D^* K^+$	$D \rightarrow h^+ h^-$	GLW	
$B^+ \to DK^{*+}$	$D \to h^+ h^-$	GLW/ADS	
$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	
$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	GLW-Dalitz	
$B^0 \to DK^{*0}$	$D\to K^0_{\rm s}\pi^+\pi^-$	GGSZ	
$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	28

LHCb γ combination

$$\gamma = (76.8^{+5.1}_{-5.7})^{\circ}$$
 (Up to a 180° ambiguity) 29

BABAR+Belle+LHCb combination

(Somewhat older LHCb results)

Summary & comments

- $|V_{ub}/V_{cb}|$ and $\gamma(\phi_3)$ are important SM parameters
- Crucial inputs to NP probing via unitarity triangle
- No significant inconsistency with the SM so far
- LHCb now competitive with BABAR+Belle in |V_{ub}/V_{cb}|
 But relies on only one lattice calculation
- LHCb dominates measurement of γ
- Belle II will have ~35 times more data than BABAR+Belle
- See M. Lubej's talk for expected Belle II impact on $|V_{ub}/V_{cb}|$
 - Theory calculations will need to improve as well
- Belle II + LHCb should reach $\sigma_{\gamma} \sim 1^{\circ}$ through combination of different methods

Backup slides

• CLN expansion of form factor:

$$F(w) = F(1) - \rho^2(w - 1) + c(w - 1)^2 + \cdots$$

• BGN expansion:

$$F(z) = \frac{1}{P_F(z)\phi_F(z)} \sum_{n=0}^{\infty} a_n z^n$$
(94.6)

where the sum $\sum |a_n|^2$ is bounded. Furthermore, the function P(z) takes into account the resonances in the $(\bar{c}b)$ system below the $\bar{D}B$ threshold, and the weighting functions $\phi_F(z)$ are derived from the unitarity constraint on the corresponding form factor. The values of z relevant to the decay are $0 \le z \le 0.06$, hence the series in z converges rapidly and only very few terms are needed. Eq. (94.6) will be referred to as the "BGL" expansion.

V_{ub} and V_{cb} summary (PDG 2017)

$$|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$$
 (inclusive)
 $|V_{cb}| = (41.9 \pm 2.0) \times 10^{-3}$ (exclusive)

Comparable experiment & theory uncertainties1% common systematic uncertainty.Good agreement between the two results

$$|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$$
 (average)

$$|V_{ub}| = (4.49 \pm 0.15 + 0.16 \pm 0.17) \times 10^{-3} \quad \text{(inclusive)}$$
$$|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3} \quad \text{(exclusive)}$$

Experiment Theory

Extrapolation of model to full kinematic range