
HOBET: The SM as an 
Effective Theory and its 
Direct Matching to LQCD

Kenneth S. McElvain

Quark Fields
on nodes

Gluon Fields
on Links

x

y

t

Euclidian
time

Plaquettes

1

3/2 ℏω

5/2 ℏω

7/2 ℏω

9/2 ℏω

Protons Neutrons

Jun 1, 2018  CIPANP



Nuclear Structure Calculations
❖ Configuration interaction calculations use an explicitly anti-

symmetric basis of Slater determinants over a single particle 
basis.

❖ While the basis size grows very fast with the size of the single 
particle basis and A, the number of particles, fantastically 
efficient matrix techniques can be used to find the low lying 
spectrum.

❖ The required calculation cutoff on the basis ignores scattering 
through excluded states.   This requires an effective interaction 
constructed in the HO basis that takes such scattering into 
account. 2



ET and The Harmonic Oscillator Basis
❖ We define a projection operator P for the states we will use in 

calculations and it’s complement Q=1-P for the rest.

❖ An effective theory relies on a separation of scales or a weak 
coupling between P and Q.

❖ In a typical EFT using a momentum basis the kinetic energy T is 
diagonal and does not couple P & Q. 

❖ In contrast, in the HO basis T is a hopping operator, strongly 
connecting the highest state in P to the lowest Q state.

❖ Bad news for an ET expansion.   

❖ Maybe Heff can be reorganized, isolating T …
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The Bloch-Horowitz Equation

❖ Eigenstates of Heff(E) are projections with the same eigenvalues.
❖ All eigenstates that overlap P are included!

❖ It is continuous in energy, including across E=0.   An effective theory based on 
the BH equation can be fit in the continuum and used to find bound states.

❖ Eigenstates are not orthogonal.

❖ Explicitly energy dependent: Must solve self consistently.  

❖ Operators are formally renormalized as:

P is projection operator to subspace to work in, Q = 1− P

Heff Ei( )ψ i = P H + H 1
Ei −QH

QH
⎛
⎝⎜

⎞
⎠⎟
P ψ i = EiP ψ i
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The Effective Theory Expansion
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E/(E-QT) Transform of Edge States
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❖ Acting on edge state with  
     E/ℏ𝜔 = 1/2.   
Recovers scattering wave 
function with phase shift.

❖ Acting on edge state with  
   E/ℏ𝜔=-1/2.    

Recovers bound state exponential 
decay from gaussian falloff of HO 
state.
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❖ E/(E-QT) with boundary condition recovers IR behavior. 6



Sum T to All Orders
❖ T contributions can be summed to all orders.

❖ A surprisingly simple result.

❖ A non-perturbative sum of kinetic energy scattering is 
key to a convergent ET expansion of the remaining parts.    

j E
E −TQ

T +T Q
E
T

⎡

⎣
⎢

⎤

⎦
⎥

E
E −QT

i = E δ ji −bji( )
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bij = P E
E −T

P
⎧
⎨
⎩

⎫
⎬
⎭ij

−1



The V𝛿 Expansion
❖ V𝛿 is described in terms of HO lowering operators. 

❖ This is slightly simplified by absorbing a constant related 
to coupling spins to angular momentum into the LECs.

Vδ
S = aLO

S δ r( )+aNLOS â†δ r( )+δ r( )â( )+…
Vδ
SD = aNLO

SD ĉ†2δ r( )+δ r( )ĉ2( )+aNNLO22,SD ĉ†2δ r( )a+ â†δ r( )ĉ2( )
+aNNLO

40,SD ĉ†2â†δ r( )+δ r( )âĉ2( )+…
!

ĉ lowers L , â lowers nodal n, ĉ ,â⎡⎣ ⎤⎦ =0
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Matrix Structure:  1S0, 𝛬=8

❖ Edge state matrix elements in red vary with E due to 
Green’s function action on edge states.

❖ Each such matrix corresponds to a pair (Ei, Bdyi).

!j Vδ ,aLO
!i

S

= aLO
S π −3/2

1 3/2 15/8 35/16 0.947
3/2 3/2 45/16 105/64 1.160
15/8 45/16 15/8 105/128 1.297
35/16 105/64 105/128 35/16 1.401
0.947 1.160 1.297 1.401 0.898

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Fitting LECs

❖ The mismatch must be due to LEC values.  

❖ Repair by minimizing

❖ The variance can be replaced by a full covariance 
matrix.  

W i( ) ε i − Ei( )
i∈samples
∑ 2

/σ i
2

❖ Principle: The BH equation is energy self consistent  
Heff

full P ψ i = EiP ψ i

❖ At fixed order we have a nearby eigenstate.
Heff LECs( ) P ′ψ i = ε iP ′ψ i
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S-Channel Eigenvalue Convergence
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P Channel Wave Function
Projection E=5MeV
ET E=5MeV
Projection E=10MeV
ET E=10MeV
Projection E=30MeV
ET E=30MeV
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❖ ET Wave 
functions should 
match projections 
of numerical 
solutions.
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❖ Colored lines are the projections of numerical 
solutions.    Black dashed lines are the effective 
theory solutions at the same energies.



Operator Renormalization
❖ Operators can also be matched to an expansion.
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Ôji
eff = P

E j

E j −HQ
Ô

Ei
Ei −QH

P

= P
E j

E j −TQ
Ô+VQ

E j

E j −HQ
Ô+ Ô

Ei
Ei −QH

QV +VQ
E j

E j −HQ
Ô

Ei
Ei −QH

QV
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ei
Ei −QT

P

→ P
E j

E j −TQ
Ô+ Ôδ
⎡⎣ ⎤⎦

Ei
Ei −QT

P

❖ O𝛿 will have an expansion much like V𝛿 with an expansion in harmonic oscillator quanta.

❖ Renormalizing the operator     enables recovery of the projected state normalization!

❖ An effective Hamiltonian in a P space may reproduce the spectrum, but if you don’t 
know how much of the wave function is represented in P, operator evaluation is 
suspect.

1̂



A-Body ET Calculations

❖ Expanding and organizing yields
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H eff = P H E
E −QH

⎡
⎣⎢

⎤
⎦⎥
P = P Ha

a∈pairs
∑

⎛

⎝⎜
⎞

⎠⎟
E

E −QH
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
P

H eff = P Ha
eff +

a
∑ 1

E
Ha

effQHb
eff

a≠b
∑ + 1

E2 Ha
effQHb

effQHc
eff

a≠b,b≠c
∑ +!

⎡

⎣
⎢

⎤

⎦
⎥P

❖       is a spectator quanta dependent form of the effective 
interaction constructed previously.

❖ This expansion generalizes the effective interaction into 
an A-body effective Hamiltonian.

Ha
eff



Interactions from LQCD
❖ Lüscher’s method can be used to map the spectrum of two nucleons to phase shifts. 

❖ Use traditional path:   collect enough phase shift data in multiple channels and use 
to fit an effective theory or a model like a realistic potential.

❖ HAL QCD potential method,

❖ Construct Nambu-Bethe-Salpeter wave  
function and infer non-local potential.

❖ Sources of error

❖ Both:  Tail of interaction exceeding L/2.

❖ Lüscher’s method:  Divergences of zeta  
function in higher order terms.

❖ HAL QCD potential:  non-elastic excited  
state contamination.

15
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Change: Boundary Conditions

❖ Phase shifts as boundary conditions are replaced by 
periodic boundary conditions.

❖ Small volumes limit the number of states in energy 
range of interest.

❖ ET construction should support

❖ Multiple volumes to access more states.

❖ Boosting

16



Periodic Momentum Basis
❖ Even and odd basis 

functions

❖ m ranges from -N/2 to  
N/2 with m<0 indicating 
sin basis functions

17

φi,s,m x( ) = 2 / Li sin α i,mx( ), m = 1,…,N / 2

φi,c,0 x( ) = 2 / Li (1 / 2 ), m = 0

φi,c,m x( ) = 2 / Li cos α i,mx( ), m = 1,…,N / 2

with α i,mi
= 2π mi / Li

φ !m x, y, z( ) = φmx
x( )φmy

y( )φmz
z( )

❖ The kinetic energy operator 
is a bit complicated by the 
varying side lengths:

T̂φ !m x, y, z( ) = 2π 2  mi
2

Li
2

i
∑⎛

⎝⎜
⎞
⎠⎟
φ !m

= λ !mφ !m x, y, z( )



Green’s Function for E/(E-QT)
❖ As before: 

❖ E/(E-T) is expressed as a bilinear eigenfunction expansion 
over the periodic basis functions.

!i = E
E −QT

i = bij
E

E −T
j , bij = P E

E −T
P

⎧
⎨
⎩

⎫
⎬
⎭ij

−1

, i , j∈P
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GT E; r, ′r( ) = E
E − λ !m + iε!m

∑ φ !m r( )φ !m ′r( )

b!′n !n =
!′n GT

!n = E
E − λ !m!m

∑ !′n φ !m
!′r( )φ !m

!r( ) !n = E
E − λ !m!m

∑ χ !′n !mχ !n !m

where χ !n , !m = χnx ,mx
χny ,my

χnz ,mz
, χn,m = dx Hn x( )φm x( )

−∞

∞

∫
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3D basis overlap  
Calculated on the fly

1D basis overlap  
Stored



Evaluate by Inserting Periodic Basis

❖ VIR matrix elements are the most expensive part of Heff
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!′n E
E −TQ

T +T Q
E
T⎡

⎣⎢
⎤
⎦⎥

E
E −QT

P !n = E δ !′n !n − b!′n !n( )Sum T to all orders:

!′n GTQVIRGQT
!n = b!′n ,!s

! ′m , !m,!s ,
!
t

∑ E
E − λ ! ′m

!s ! ′m ! ′m VIR
!m !m

!
t E
E − λ !m

b!t ,!n

❖ All pieces are precomputed, but sum is still very large.

❖ For                 GQT=1, which can be used to check results.!′n , !n ∈P−



Magic with V𝛿
❖ As long as V𝛿 on P- doesn’t interact with the boundary it is 

the same object in both finite and infinite volume contexts.

❖ Spherical and Cartesian HO bases are simply 
representations related by brackets.

❖ Cartesian ET  
expansion  
respecting parity  
invariance.

20
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Testing Plan
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Solve 
HΨ=EΨ
In Box

Filter to 
A1 

spectrum

Fit LECs to 
reproduce 
spectrum

Insert LECs in 
infinite volume 

Heff

Self consistency 
determines  
phase  shifts

Choose  
V

=?

Traditional 
generation of 
phase shifts



Test Setup:  Range(V)>L/2

❖ Periodic images of the 
potential make a contribution.

❖ Infinite volume bound state at  
-4.05 MeV.

❖ LECs are fit using states with 
L=0 overlap.
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Phase Shift Comparison Setup
❖ Reference phase shifts for L=0 and L=4 are directly calculated 

from V.

❖ HOBET S-channel phase shifts are computed from the N3LO 
LECs that reproduce the spectrum.  The phase shift is found by 
dialing the phase shift to produce energy self consistency.

❖ Lüscher’s method phase shifts come from the formula

❖ An effective range expansion up to  k6 is used to interpolate.

❖ For simplicity the second term is evaluated using the L=4 phase 
shift directly determined from V. 23

k cotδ 0 =
2
π L
Z0,0 1; !k

2( )+ 12288π
7

7L10
Z4,0 1; !k

2( )2
k9 cotδ 4

+O tan2δ 4( ) Luu, Savage,  
arXiv:1101.3347



Phase Shift Results

The V column 
should be 
considered the 
reference.
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❖ A potential source of error for both HOBET and Lüscher ’s 
method is the accuracy of the finite volume spectrum.

❖ Solved three times with N=350,400,450 and made a 
continuum extrapolation.  The 3 results showed a consistent 
and small evolution of the eigenvalues.

L = 14.3 fm
mπL = 10



Summary
❖ The HOBET interaction can be directly constructed from observables such 

as phase shifts in the continuum.

❖ Energy dependence is a virtue, enabling a complete sum of kinetic energy 
scattering, isolating short range physics for the ET expansion.

❖ The interaction can be used in an A-body context with the excitation of 
spectators determining 𝛬 for the interaction.

❖ Operator renormalization is natural, including correct normalization of 
states - one simply renormalizes the “1” operator.

❖ The same ET expansion is valid in a periodic volume, enabling matching to 
the LQCD spectrum with the same LEC values as in the infinite volume 
case!

25Thanks to my collaborator on this project -  Wick Haxton



End
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