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Outline

• Beta decay in presence of RC


• Dispersive representation of the 𝛾W-box


• Physics input to the dispersion integral


• Nuclear effects


• New formulation of RC for Vud extraction


• Can nuclear effects turn the inner correction inside-out?



Neutron β-decay in presence of RC

Beyond RC that enter the Fermi constant:
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Coulomb distortion - Fermi fn.

“Outer” corrections - IR-sensitive;

depend on kinematics;

independent of hadronic structure

Exactly calculable

“Inner” correction - 

depends on hadron structure;

independent of kinematics

Sirlin ’67, Marciano & Sirlin ’86 …

Wilkinson ’82, Severijns et al. ‘17

Separation due to scale hierarchy: Q-values from <1 keV (n) to few MeV (nuclei);

Hadronic scales: at least 140 MeV - on top of α/2𝜋 ∼ 10-3 —> 10-5 effect <<



Radiative corrections - In & Out
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Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

1-loop RC (specific for a semiletonic process)

W,Z-exchange: UV-sensitive, pQCD; model-independent

When 𝛾 involved - possible sensitivity to long range physics

Model-dependent!

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM
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Outer: retain only IR divergent pieces 

Inner: everything else 



𝛾W-box
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FIG. 1: The �W -box diagram relevant for the �
� neutron decay.

III. DISPERSION REPRESENTATION OF THE ”INNER” �W -BOX CORRECTION TO gV .

The �W -box correction is shown in Fig. 1, and is defined as
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where k is the outgoing momentum of the electron. The forward generalized Compton tensor for the �� decay process
W+n ! �p (W�p ! �n for the �+ process relevant for nuclei) represented by the lower blob in Fig. 1 is given by
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Notice that the definition of Tµ⌫
�W above follows that in Ref. [6], which has a di↵erence of factor i comparing to more

common definitions in the analysis of deep-inelastic processes.
As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
correction to the tree-level W -exchange amplitude as:
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where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:
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Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)

3 . (12)
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

Hadronic tensor: two-current correlator

Consider the box at zero energy 

and zero momentum transfer
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General gauge-invariant decomposition (spin-independent)
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As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
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TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A

�W

�
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where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:
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Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
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3 . (12)

General gauge-invariant decomposition (spin-independent)

V-V correlator is cancelled exactly

By the 3-current correlator - Sirlin ’67

Reason: conserved vector-isovector current
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:
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FIG. 1: The �W -box diagram relevant for the �
� neutron decay.
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ν = (pq)/M
Define the box contribution as

Loop integral with T3
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FIG. 2: The contour in the complex ⌫ plane.

We apply Cauchy’s theorem to the definite isospin amplitudes T (I)
3 (⌫, Q2) (I = 0, 3)accounting for their singularities

in the complex ⌫ plane. These lie on the real axis: poles due to a single nucleon intermediate state in the s� and

u-channels at ⌫ = ±⌫B = ±
Q2

2M , respectively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where ⌫⇡ = (2Mm⇡ +m2
⇡ +

Q2)/(2M), m⇡ being the pion mass. The contour is constructed such as to go around all these singularities, and is
closed at infinity, see Fig. 2. The discontinuity of the forward amplitude in the physical region (i.e. ⌫ > 0) is given
by the generalization of the DIS structure functions to the �W -interference in the standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2) = 4⇡iF (I)
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and for the sake of a unified description, within F (I)
i we keep both the �-functions at the nucleon poles, and the

discontinuities along the multi-particle cuts. The full function T (I)
3 (⌫, Q2) is reconstructed from a fixed-Q2 dispersion

relation

T (I)
3 (⌫, Q2) =

1

2⇡i

Z 1

0
d⌫0


1

⌫0 � ⌫ � i✏
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⌫0 + ⌫ + i✏

�
4⇡iF (I)

3 (⌫0, Q2), (15)

modulo possible subtractions which are needed to make the dispersion integral convergent. The form of the dispersion
relation depends on the crossing behavior, the relative sign ⇠I between the contributions along the positive and
negative real ⌫ axis. It can be shown that the isoscalar amplitude is an odd function of ⌫, hence ⇠0 = �1, while the
isovector amplitude is even. Correspondingly, the isoscalar requires no subtractions, while the isovector one may have
to be subtracted one time.

Putting together Eqs. (10,15) and performing the loop integral via Wick rotation we arrive at
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⇤V A (3)
�W = 0, (16)

where we introduced the virtual photon three-momentum q =
p

⌫2 +Q2. The vanishing of the isovector contribution
is the consequence of the crossing symmetry, as has already been noticed by Sirlin [5]. Thus from now onward we

shall represent ⇤V A,(0)
�W simply by ⇤V A

�W without causing any confusion.

q =
p

⌫2 +Q2
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Input into dispersion integral
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FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS
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↵

8⇡

Z 1
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W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)
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FIG. 4:

continuum corresponding to multi-particle production that, depending on the value of Q2, can be economically
described by t-channel Regge exchanges (low Q2) or quasi-free quark knock-out in the deep-inelastic regime (high
Q2). The structure is modified for a nuclear target, although mostly in the low-energy regime: the elastic nucleon
peak is broadened due to Fermi motion, and below that elastic absorption into the ground or excited nuclear states
is seen. In this section we focus on the free nucleon case, and the nuclear photoabsorption will be addressed later on.

We let the data guide us to evaluate the integral in Eq. (16): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of Q2 from 0 to 1. The strength is distributed di↵erently among
di↵erent energy regimes depending on Q2. For low Q2 the spectrum is heavily weighted towards lower part (elastic
peak and resonances). As Q2 grows, these contributions are however suppressed by the respective form factors.
High-energy spectrum for slightly virtual and high-energy photons extends to asymptotically high energies and is
well-represented by Regge exchanges. Already at moderate Q2

⇠ 1.5�2.5 GeV2 this picture fades away and smoothly
joins onto the partonic description which dominates the DIS regime. The regions corresponding to various physics
mechanisms are displayed on a plane {W 2, Q2

} with W 2 = M2 + 2M⌫ �Q2 in Fig. 4. Breaking the full integration
region into areas with a dominant physics picture was e↵ectively used by Marciano and Sirlin who proposed to model
the function F (Q2) as follows: partonic description for Q2

� 2.25 GeV2; only elastic term for Q2 . 0.7 GeV2; a
simple interpolation form in between motivated by the Vector Dominance Model (VDM).

A. Elastic (Born) contribution

As clearly seen from Fig. 3 the elastic contribution is separated from inelastic one by a final gap. This picture
remains intact for any value of Q2, so it is natural to separate this piece out of the integral. To evaluate it, we need
electromagnetic and weak vertices. The electromagnetic vertex is given by
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A. Elastic (Born) contribution

As clearly seen from Fig. 3 the elastic contribution is separated from inelastic one by a final gap. This picture
remains intact for any value of Q2, so it is natural to separate this piece out of the integral. To evaluate it, we need
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What can be improved?

* what is the physics content of the interpolating function?

* are the M&S constraints on Fint  justified?
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with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
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1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads
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Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W
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MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
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3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),
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In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)
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New evaluation
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with most recent FF parametrization
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Magnetic FF: Ye, Arrington, Hill, Lee ‘18
Axial FF: Bhachatarya, Hill, Paz ‘11
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This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)

Split the Q2 integral: above (1.5 GeV)2 - DIS; below - hadronic stuff
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with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)

Split the Q2 integral: above (1.5 GeV)2 - DIS; below - hadronic stuff

DIS contribution

7

with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)
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with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)

Split the Q2 integral: above (1.5 GeV)2 - DIS; below - hadronic stuff

DIS contribution

7

with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)

Parton model: 

7

with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)
Z 1

0
dxdv(x) = 2

M/Q —> 0; loop function becomes

Large log:

FDIS(Q2) =
1

Q2

⇤DIS
�W =

↵

8⇡

Z 1

⇤2

dQ2M2
W

M2
W +Q2

FDIS(Q2) =
↵

4⇡
ln

MW

⇤
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with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)

Split the Q2 integral: above (1.5 GeV)2 - DIS; below - hadronic stuff

DIS contribution

7

with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)

Parton model: 

7

with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)
Z 1

0
dxdv(x) = 2

M/Q —> 0; loop function becomes

Large log:

FDIS(Q2) =
1

Q2

⇤DIS
�W =

↵

8⇡

Z 1

⇤2

dQ2M2
W

M2
W +Q2

FDIS(Q2) =
↵

4⇡
ln

MW

⇤

Uncertainty: virtually zero

pQCD corrections:

cf. GLS and Bjorken SR

FDIS =
1

Q2
! 1

Q2

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5

⇤DIS
�W =

↵

4⇡
[4.11� 0.34] =

↵

2⇡
1.84(0)

M&S ’06; Larin, Vermaseren ‘97
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Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain

⇤V,DIS
�W ⇡

3↵

2⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

eu + ed
8

(d(x)� ū(x)). (28)

Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:

⇤DIS
�W ⇡

3↵

2⇡

eu + ed
4

ln
M2

W

⇤2
=

↵

4⇡
ln

MW

⇤
, (29)

An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),

FLL(Q2) =
1

Q2
! F pQCD =

1

Q2

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5 , (30)

with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
, (31)

with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes

⇤lowQ2

�W =
↵

⇡

Z ⇤2

0
dQ2

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0)
3 . (32)

This contribution should be compared to the integral over what M&S called an interpolating contribution

⇤V A (0)
�W =

↵

8⇡

Z ⇤2

Q2
0

dQ2F INT(Q2), (33)

where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490

Q2 +m2
⇢

+
6.855

Q2 +m2
A

�
4.414

Q2 +m2
⇢0
, (34)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)
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FIG. 5: Data on GLS sum rule from CCFR, BEBC/Gargamelle and WA25 vs. pQCD NNLO result.

Constraint I is the only one out of the three to be well justified. Condition II that matches the inelastic contribution
onto the elastic one at a certain value of Q2 is not supported by our formalism. We have shown that the elastic
contribution is naturally separated from the inelastic one, and the two should be added together, not matched.
Finally, condition III requires that the following superconvergence relation holds identically,

Z 1

⌫⇡

d⌫

⌫2
F (0)
3 (⌫, Q2 = 0) =

2M

Q2

Z x⇡

0
F (0)
3 (x,Q2)

����
Q2!0

= 0, (36)

which means that the first moment of F (0)
3 evaluated over the inelastic states should vanish as Q4. To the validity

of this conjecture Ref. [2] asserts that this is required by ChPT, and a more detailed proof will be reported in
an upcoming work. Unfortunately, this proof has never been published. In Section IVC1 we perform an explicit
calculation in relativistic ChPT and demonstrate that this relation does not hold.

Before turning to an explicit model calculation we address general properties of the forward amplitude T (0)
3 . It has

been shown that for the parity-violating forward real Compton process Eq. (36) holds. Indeed, Altarelli et al. showed
that both parity-violating and parity-conserving helicity asymmetries for processes �+ e ! Z + e and �+ e ! W + ⌫
calculated at tree level in SM integrate to zero [7]

Z 1

⌫0

d⌫
��" � ��#

⌫
= 0, (37)

where ��"(��#) denotes the cross section with positive (negative) photon helicity. The above integral is related to
that in Eq. (36) by the fact that F3 ⇠ ⌫(��" � ��#) by optical theorem. So, a calculation of F3 at one-loop level

Z 1

0
dx(up

v(x) + dpv(x)) = 3�⌫p � �⌫̄p ⇠ F ⌫p
3 + F ⌫̄p

3 = up
v(x) + dpv(x)

Including pQCD corrections

Parton model

GLSSR = 3

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5

Plot vs. data derived from nu-DIS
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Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain

⇤V,DIS
�W ⇡

3↵

2⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

eu + ed
8

(d(x)� ū(x)). (28)

Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:

⇤DIS
�W ⇡

3↵

2⇡

eu + ed
4

ln
M2

W

⇤2
=

↵

4⇡
ln

MW

⇤
, (29)

An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),

FLL(Q2) =
1

Q2
! F pQCD =

1

Q2

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5 , (30)

with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
, (31)

with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes

⇤lowQ2

�W =
↵

⇡

Z ⇤2

0
dQ2

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0)
3 . (32)

This contribution should be compared to the integral over what M&S called an interpolating contribution

⇤V A (0)
�W =

↵

8⇡

Z ⇤2

Q2
0

dQ2F INT(Q2), (33)

where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490

Q2 +m2
⇢

+
6.855

Q2 +m2
A

�
4.414

Q2 +m2
⇢0
, (34)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain

⇤V,DIS
�W ⇡
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dQ2M2
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Q2(Q2 +M2
W )
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(d(x)� ū(x)). (28)

Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:

⇤DIS
�W ⇡
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ln
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↵
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⇤
, (29)

An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),

FLL(Q2) =
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with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:
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with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes
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This contribution should be compared to the integral over what M&S called an interpolating contribution
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where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,
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1.490
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+
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with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)
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FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.
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Compared to the old result by MS
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which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain
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Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:

⇤DIS
�W ⇡

3↵

2⇡

eu + ed
4

ln
M2

W

⇤2
=

↵

4⇡
ln

MW

⇤
, (29)

An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),
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with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:
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with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes
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This contribution should be compared to the integral over what M&S called an interpolating contribution
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where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
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Q2 +m2
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Q2 +m2
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with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)
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Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain
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Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:
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An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),
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with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
, (31)

with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
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This contribution should be compared to the integral over what M&S called an interpolating contribution
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where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490

Q2 +m2
⇢

+
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with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)
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Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
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An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),
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with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:
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with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes
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This contribution should be compared to the integral over what M&S called an interpolating contribution
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where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490

Q2 +m2
⇢

+
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4.414
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, (34)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy

Only constraint I is justified!

II: no reason Born is the whole story below some arbitrary Q2


III: M&S claim it is required by chiral symmetry

Check in ChPT at one-loop

9
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FIG. 5: Data on GLS sum rule from CCFR, BEBC/Gargamelle and WA25 vs. pQCD NNLO result.

Constraint I is the only one out of the three to be well justified. Condition II that matches the inelastic contribution
onto the elastic one at a certain value of Q2 is not supported by our formalism. We have shown that the elastic
contribution is naturally separated from the inelastic one, and the two should be added together, not matched.
Finally, condition III requires that the following superconvergence relation holds identically,

Z 1

⌫⇡

d⌫

⌫2
F (0)
3 (⌫, Q2 = 0) =

2M

Q2

Z x⇡

0
F (0)
3 (x,Q2)

����
Q2!0

= 0, (36)

which means that the first moment of F (0)
3 evaluated over the inelastic states should vanish as Q4. To the validity

of this conjecture Ref. [2] asserts that this is required by ChPT, and a more detailed proof will be reported in
an upcoming work. Unfortunately, this proof has never been published. In Section IVC1 we perform an explicit
calculation in relativistic ChPT and demonstrate that this relation does not hold.

Before turning to an explicit model calculation we address general properties of the forward amplitude T (0)
3 . It has

been shown that for the parity-violating forward real Compton process Eq. (36) holds. Indeed, Altarelli et al. showed
that both parity-violating and parity-conserving helicity asymmetries for processes �+ e ! Z + e and �+ e ! W + ⌫
calculated at tree level in SM integrate to zero [7]

Z 1

⌫0

d⌫
��" � ��#

⌫
= 0, (37)

where ��"(��#) denotes the cross section with positive (negative) photon helicity. The above integral is related to
that in Eq. (36) by the fact that F3 ⇠ ⌫(��" � ��#) by optical theorem. So, a calculation of F3 at one-loop level

M&S interpolating contribution
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Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain
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Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:
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An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),
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with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:
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with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes
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This contribution should be compared to the integral over what M&S called an interpolating contribution
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where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,
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, (34)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)
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Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain

⇤V,DIS
�W ⇡

3↵

2⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

eu + ed
8
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Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:
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An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),
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with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:
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with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes
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This contribution should be compared to the integral over what M&S called an interpolating contribution
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where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490
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+
6.855

Q2 +m2
A

�
4.414

Q2 +m2
⇢0
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with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)

3 Eqs. -> 3 free parameters
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entails a calculation of the cross section at tree level. Brodsky and Schmidt generalized this statement to any process
of the kind ~�a ! bc and �� ! X when calculated at tree level [[8]. Lukaszuk and Kurek extended the application
of this sum rule to PV forward Compton scattering with pion loops [9], although they failed to prove it in heavy
baryon formulation of ChPT. The proof in relativistic ChPT for vanishing of the PV asymmetry for the process
~� +N ! ⇡ +N at tree level was provided recently in Ref. [10].

1. ⇡N contribution: a check of the supersonvergence relation in field theory

FIG. 6: Representative graphs for ⇡N contribution to F
(0)
3

The representative Feynman diagrams are shown in Fig. 6. The analytic results of the calculation are reported in
Appendix B. With these results we are in the position to check the superconvergence relation of Eq. (36) claimed by
MS. To visualize it, we change variables z = ⌫⇡/⌫, so the integral becomes

Z 1

⌫⇡

d⌫⌫⇡
⌫2

F (0)
3 (⌫, Q2 = 0) =

Z 1

0
dzF (0)

3 (⌫⇡/z,Q
2 = 0). (38)

In terms of the variable z the integral is then simply given by the surface under the curve where F (0)
3 is positive,

minus that above the curve where F (0)
3 is negative. We display this plot in Fig. 7 and observe that the integral is

clearly non-zero. This proves that the assumption behind the parametrization of the interpolating function in MS is
not satisfied. This is another key of our work. In absence of the constraint III of Eq. (35) we are forced to refute the
form of the interpolating function proposed by MS and follow a di↵erent strategy. This strategy will be in saturating

the inelastic contributions to the structure function F (0)
3 by physically motivated ingredients: ⇡N continuum between

1⇡ and 2⇡-production threshold, nucleon resonances and a Regge amplitude that, in the spirit of duality, represents
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FIG. 4:

continuum corresponding to multi-particle production that, depending on the value of Q2, can be economically
described by t-channel Regge exchanges (low Q2) or quasi-free quark knock-out in the deep-inelastic regime (high
Q2). The structure is modified for a nuclear target, although mostly in the low-energy regime: the elastic nucleon
peak is broadened due to Fermi motion, and below that elastic absorption into the ground or excited nuclear states
is seen. In this section we focus on the free nucleon case, and the nuclear photoabsorption will be addressed later on.

We let the data guide us to evaluate the integral in Eq. (16): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of Q2 from 0 to 1. The strength is distributed di↵erently among
di↵erent energy regimes depending on Q2. For low Q2 the spectrum is heavily weighted towards lower part (elastic
peak and resonances). As Q2 grows, these contributions are however suppressed by the respective form factors.
High-energy spectrum for slightly virtual and high-energy photons extends to asymptotically high energies and is
well-represented by Regge exchanges. Already at moderate Q2

⇠ 1.5�2.5 GeV2 this picture fades away and smoothly
joins onto the partonic description which dominates the DIS regime. The regions corresponding to various physics
mechanisms are displayed on a plane {W 2, Q2

} with W 2 = M2 + 2M⌫ �Q2 in Fig. 4. Breaking the full integration
region into areas with a dominant physics picture was e↵ectively used by Marciano and Sirlin who proposed to model
the function F (Q2) as follows: partonic description for Q2

� 2.25 GeV2; only elastic term for Q2 . 0.7 GeV2; a
simple interpolation form in between motivated by the Vector Dominance Model (VDM).

A. Elastic (Born) contribution

As clearly seen from Fig. 3 the elastic contribution is separated from inelastic one by a final gap. This picture
remains intact for any value of Q2, so it is natural to separate this piece out of the integral. To evaluate it, we need
electromagnetic and weak vertices. The electromagnetic vertex is given by

�µ
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
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�
�µ +
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i�µ↵ q↵

2M
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Inelastic states beyond DIS

⇤⇡N
�W =

↵

2⇡
0.044(4)

⇤Res
�W  ↵

2⇡
0.01

𝜋N contribution to the box:

I=1/2 resonances: tiny contribution!



Inelastic states beyond DIS
Regge exchange F (0),Regge
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γW-box on free neutron

⇤V A
�W =

↵

2⇡
[cB + cint + cDIS ] =

↵

2⇡
[0.83(8) + 0.14(14) + 1.84(0)]

Marciano & Sirlin ‘06

New evaluation

⇤V A
�W =

↵

2⇡
[cB + cpiN + cRes + cRegge + cDIS ] =

↵

2⇡
[0.91(5) + 0.044(5) + 0.01(1) + 0.238(14) + 1.84(0)]

⇤MS
�W =

↵

2⇡
2.79(17) = 3.24(20)⇥ 10�3

⇤New
�W =

↵

2⇡
3.03(5) = 3.51(6)⇥ 10�3

Numbers are preliminary but all crucial ingredients are in place.

Central value shifted by 1 sigma; uncertainty is likely to be reduced by factor 3

Currently the uncertainty for neutron decay is dominated by the experiment

Vud from free n: about 1 sigma smaller



Nuclear β-decay
General structure of RC for nuclear decay (see John’s talk)

a reduction from our own previous result in Eq. (9), where
the integration was carried up to Q2 ! 1.

Details of the above calculations will be given in a
subsequent publication [12]. Here, we briefly discuss the
basis of our improvements along with the results of the
above analysis and its implications.

The QCD corrections to the asymptotic form of F"Q2#
have been given in Eq. (10) to O"!3

s#. The additional terms
are identical (in the chiral limit) to QCD corrections to the
Bjorken sum rule [13] for polarized electroproduction and
can be read off from well-studied calculations [14,15] for
that process. Their validity has been well tested experi-
mentally [16]. The equivalence of the QCD corrections to
all orders (in the chiral limit) can be easily understood. A
chiral transformation d! "5d followed by an isospin
rotation in the current correlator of Eq. (5) converts it
into the vector-vector correlator responsible for the
Bjorken sum rule. Since QCD respects both symmetries
in the chiral limit, the QCD corrections must be identical
for both cases.

The interpolating function in Eq. (13) is motivated by
large N QCD, which predicts it should correspond to an
infinite sum of vector and axial-vector resonances [17]. We
impose three conditions that determine the residues:
(i) The integral of Eqs. (6) and (13) should equal that of
Eqs. (6) and (10) in the asymptotic domain "1:5 GeV#2 $
Q2 $ 1, which amounts to a matching requirement be-
tween domains 1 and 2. (ii) In the large Q2 limit, the
coefficient of the 1=Q4 term in the expansion of Eq. (13)
should vanish as required by chiral symmetry [18].
(iii) The interpolator should vanish at Q2 ! 0 as required
by chiral perturbation theory. Three conditions limit us to
three resonances.

The Q2 ! "0:823 GeV#2 match between domains 2 and
3 was chosen to be the value at which Eq. (13) equals the
integrand of the long-distance contribution. Interestingly,
that matching occurs near the # mass. A novel technical
point in the formulation is that in the evaluation of the
Feynman diagrams associated with the long-distance con-
tributions the integral over the auxiliary variables is carried
out first. This leads to integrands that depend onQ2 and can
therefore be matched with Eq. (13).

Using this approach, we find that at the one-loop elec-
troweak level the last three terms in Eq. (4) are effectively
replaced by 2:82 !

$ in the case of neutron decay.
Comparison with Eqs. (4) and (9) in conjunction with
mA ! 1:2 GeV, Ag ! % 0:34 shows that in the new for-
mulation these corrections are reduced by 1:4 & 10% 4,
which increases Vud by 7 & 10% 5. The smallness of that
shift is a validation of our previous result [4,6].

More important than the small reduction in the radiative
corrections, our new method provides a more systematic
estimate of the hadronic uncertainties as well as experi-
mental verification of its validity [16]. Allowing for a
' 10% uncertainty for the CBorn correction in Eq. (17), a
' 100% uncertainty for the interpolator contribution in the

"0:823 GeV#2 $ Q2 < "1:5 GeV#2 region, and ' 0:0001
uncertainty from neglected higher order effects, we find
the total uncertainty in the electroweak radiative correc-
tions is ’ ' 0:00038, which leads to a ’' 0:000 19 uncer-
tainty in Vud. That corresponds to more than a factor of 2
reduction in the loop uncertainty from hadronic effects.

Employing our new analysis, we find the improved
relationship between Vud, the neutron lifetime, and gA (
GA=GV ,

jVudj2 !
4908:7"1:9# s

%n"1 ) 3g2
A#
"neutron#: (18)

Future precision measurements of %n and gA used in con-
junction with Eq. (18) will ultimately be the best way to
determine Vud, but for now it is not competitive [6].

In the case of superallowed (0) ! 0) transitions) nu-
clear & decays, there are a number of corrections, some
nucleus dependent, that must be applied to the ft values.
They are collectively called RC in Eq. (2). To make contact
with previous studies [1,7], we factorize them as follows:

1 ) RC ! "1 ) 'R#"1 % 'C#"1 ) !#: (19)

The first two factors are nucleus dependent, while ! is
roughly nucleus independent, coming primarily from
short-distance loop effects. The axial-vector contributions
discussed above are included in the product "1 ) 'R# &
"1 ) !#, where 'R includes long-distance radiative correc-
tions as well as nuclear structure effects. Because we
include leading logs from higher orders as well as some
next-to-leading logs [4,6], the factorization is not exact and
! will exhibit some small nucleus dependence. The uncer-
tainty in 1 ) 'R comes from Z2!3 and nuclear structure
contributions while a common ' 0:03% error in the
Coulomb distortion effect is assigned to 1 % 'C.

Employing the corrections given by Hardy and Towner
[7,11] along with the results in [6] and our new analysis
together with Eqs. (2) and (19) given above leads to the RC
and Vud values illustrated in Table I. One finds for the
weighted average

Vud ! 0:973 77"11#"15#"19#"superallowed & decays#:
(20)

Comparing with Eq. (3) we see that our analysis gives a
somewhat larger Vud due to a ' 0:000 07 increase from our
new prescription along with refinements from Ref. [6]
which were not included in Savard et al. [8]. Also,
Savard et al. rounded down in their analysis.

We note that 46V gives a somewhat low value for Vud. It
differs from the average by 2:7(. That particular nucleus
recently underwent a Q value revision [8] which lowered
its Vud. It may be indicating problems with other Q values.
If the other nuclear Q values follow the lead of 46V, we
could see a fairly significant reduction in the weighted
average for Vud. Clearly, remeasurements of Q values
and half-lives of the superallowed decays are highly
warranted.

PRL 96, 032002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 JANUARY 2006
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a reduction from our own previous result in Eq. (9), where
the integration was carried up to Q2 ! 1.

Details of the above calculations will be given in a
subsequent publication [12]. Here, we briefly discuss the
basis of our improvements along with the results of the
above analysis and its implications.

The QCD corrections to the asymptotic form of F"Q2#
have been given in Eq. (10) to O"!3

s#. The additional terms
are identical (in the chiral limit) to QCD corrections to the
Bjorken sum rule [13] for polarized electroproduction and
can be read off from well-studied calculations [14,15] for
that process. Their validity has been well tested experi-
mentally [16]. The equivalence of the QCD corrections to
all orders (in the chiral limit) can be easily understood. A
chiral transformation d! "5d followed by an isospin
rotation in the current correlator of Eq. (5) converts it
into the vector-vector correlator responsible for the
Bjorken sum rule. Since QCD respects both symmetries
in the chiral limit, the QCD corrections must be identical
for both cases.

The interpolating function in Eq. (13) is motivated by
large N QCD, which predicts it should correspond to an
infinite sum of vector and axial-vector resonances [17]. We
impose three conditions that determine the residues:
(i) The integral of Eqs. (6) and (13) should equal that of
Eqs. (6) and (10) in the asymptotic domain "1:5 GeV#2 $
Q2 $ 1, which amounts to a matching requirement be-
tween domains 1 and 2. (ii) In the large Q2 limit, the
coefficient of the 1=Q4 term in the expansion of Eq. (13)
should vanish as required by chiral symmetry [18].
(iii) The interpolator should vanish at Q2 ! 0 as required
by chiral perturbation theory. Three conditions limit us to
three resonances.

The Q2 ! "0:823 GeV#2 match between domains 2 and
3 was chosen to be the value at which Eq. (13) equals the
integrand of the long-distance contribution. Interestingly,
that matching occurs near the # mass. A novel technical
point in the formulation is that in the evaluation of the
Feynman diagrams associated with the long-distance con-
tributions the integral over the auxiliary variables is carried
out first. This leads to integrands that depend onQ2 and can
therefore be matched with Eq. (13).

Using this approach, we find that at the one-loop elec-
troweak level the last three terms in Eq. (4) are effectively
replaced by 2:82 !

$ in the case of neutron decay.
Comparison with Eqs. (4) and (9) in conjunction with
mA ! 1:2 GeV, Ag ! % 0:34 shows that in the new for-
mulation these corrections are reduced by 1:4 & 10% 4,
which increases Vud by 7 & 10% 5. The smallness of that
shift is a validation of our previous result [4,6].

More important than the small reduction in the radiative
corrections, our new method provides a more systematic
estimate of the hadronic uncertainties as well as experi-
mental verification of its validity [16]. Allowing for a
' 10% uncertainty for the CBorn correction in Eq. (17), a
' 100% uncertainty for the interpolator contribution in the

"0:823 GeV#2 $ Q2 < "1:5 GeV#2 region, and ' 0:0001
uncertainty from neglected higher order effects, we find
the total uncertainty in the electroweak radiative correc-
tions is ’ ' 0:00038, which leads to a ’' 0:000 19 uncer-
tainty in Vud. That corresponds to more than a factor of 2
reduction in the loop uncertainty from hadronic effects.

Employing our new analysis, we find the improved
relationship between Vud, the neutron lifetime, and gA (
GA=GV ,
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"neutron#: (18)

Future precision measurements of %n and gA used in con-
junction with Eq. (18) will ultimately be the best way to
determine Vud, but for now it is not competitive [6].

In the case of superallowed (0) ! 0) transitions) nu-
clear & decays, there are a number of corrections, some
nucleus dependent, that must be applied to the ft values.
They are collectively called RC in Eq. (2). To make contact
with previous studies [1,7], we factorize them as follows:

1 ) RC ! "1 ) 'R#"1 % 'C#"1 ) !#: (19)

The first two factors are nucleus dependent, while ! is
roughly nucleus independent, coming primarily from
short-distance loop effects. The axial-vector contributions
discussed above are included in the product "1 ) 'R# &
"1 ) !#, where 'R includes long-distance radiative correc-
tions as well as nuclear structure effects. Because we
include leading logs from higher orders as well as some
next-to-leading logs [4,6], the factorization is not exact and
! will exhibit some small nucleus dependence. The uncer-
tainty in 1 ) 'R comes from Z2!3 and nuclear structure
contributions while a common ' 0:03% error in the
Coulomb distortion effect is assigned to 1 % 'C.

Employing the corrections given by Hardy and Towner
[7,11] along with the results in [6] and our new analysis
together with Eqs. (2) and (19) given above leads to the RC
and Vud values illustrated in Table I. One finds for the
weighted average

Vud ! 0:973 77"11#"15#"19#"superallowed & decays#:
(20)

Comparing with Eq. (3) we see that our analysis gives a
somewhat larger Vud due to a ' 0:000 07 increase from our
new prescription along with refinements from Ref. [6]
which were not included in Savard et al. [8]. Also,
Savard et al. rounded down in their analysis.

We note that 46V gives a somewhat low value for Vud. It
differs from the average by 2:7(. That particular nucleus
recently underwent a Q value revision [8] which lowered
its Vud. It may be indicating problems with other Q values.
If the other nuclear Q values follow the lead of 46V, we
could see a fairly significant reduction in the weighted
average for Vud. Clearly, remeasurements of Q values
and half-lives of the superallowed decays are highly
warranted.
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a reduction from our own previous result in Eq. (9), where
the integration was carried up to Q2 ! 1.

Details of the above calculations will be given in a
subsequent publication [12]. Here, we briefly discuss the
basis of our improvements along with the results of the
above analysis and its implications.

The QCD corrections to the asymptotic form of F"Q2#
have been given in Eq. (10) to O"!3

s#. The additional terms
are identical (in the chiral limit) to QCD corrections to the
Bjorken sum rule [13] for polarized electroproduction and
can be read off from well-studied calculations [14,15] for
that process. Their validity has been well tested experi-
mentally [16]. The equivalence of the QCD corrections to
all orders (in the chiral limit) can be easily understood. A
chiral transformation d! "5d followed by an isospin
rotation in the current correlator of Eq. (5) converts it
into the vector-vector correlator responsible for the
Bjorken sum rule. Since QCD respects both symmetries
in the chiral limit, the QCD corrections must be identical
for both cases.

The interpolating function in Eq. (13) is motivated by
large N QCD, which predicts it should correspond to an
infinite sum of vector and axial-vector resonances [17]. We
impose three conditions that determine the residues:
(i) The integral of Eqs. (6) and (13) should equal that of
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Q2 $ 1, which amounts to a matching requirement be-
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should vanish as required by chiral symmetry [18].
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The Q2 ! "0:823 GeV#2 match between domains 2 and
3 was chosen to be the value at which Eq. (13) equals the
integrand of the long-distance contribution. Interestingly,
that matching occurs near the # mass. A novel technical
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out first. This leads to integrands that depend onQ2 and can
therefore be matched with Eq. (13).

Using this approach, we find that at the one-loop elec-
troweak level the last three terms in Eq. (4) are effectively
replaced by 2:82 !

$ in the case of neutron decay.
Comparison with Eqs. (4) and (9) in conjunction with
mA ! 1:2 GeV, Ag ! % 0:34 shows that in the new for-
mulation these corrections are reduced by 1:4 & 10% 4,
which increases Vud by 7 & 10% 5. The smallness of that
shift is a validation of our previous result [4,6].

More important than the small reduction in the radiative
corrections, our new method provides a more systematic
estimate of the hadronic uncertainties as well as experi-
mental verification of its validity [16]. Allowing for a
' 10% uncertainty for the CBorn correction in Eq. (17), a
' 100% uncertainty for the interpolator contribution in the

"0:823 GeV#2 $ Q2 < "1:5 GeV#2 region, and ' 0:0001
uncertainty from neglected higher order effects, we find
the total uncertainty in the electroweak radiative correc-
tions is ’ ' 0:00038, which leads to a ’' 0:000 19 uncer-
tainty in Vud. That corresponds to more than a factor of 2
reduction in the loop uncertainty from hadronic effects.

Employing our new analysis, we find the improved
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Future precision measurements of %n and gA used in con-
junction with Eq. (18) will ultimately be the best way to
determine Vud, but for now it is not competitive [6].

In the case of superallowed (0) ! 0) transitions) nu-
clear & decays, there are a number of corrections, some
nucleus dependent, that must be applied to the ft values.
They are collectively called RC in Eq. (2). To make contact
with previous studies [1,7], we factorize them as follows:

1 ) RC ! "1 ) 'R#"1 % 'C#"1 ) !#: (19)

The first two factors are nucleus dependent, while ! is
roughly nucleus independent, coming primarily from
short-distance loop effects. The axial-vector contributions
discussed above are included in the product "1 ) 'R# &
"1 ) !#, where 'R includes long-distance radiative correc-
tions as well as nuclear structure effects. Because we
include leading logs from higher orders as well as some
next-to-leading logs [4,6], the factorization is not exact and
! will exhibit some small nucleus dependence. The uncer-
tainty in 1 ) 'R comes from Z2!3 and nuclear structure
contributions while a common ' 0:03% error in the
Coulomb distortion effect is assigned to 1 % 'C.

Employing the corrections given by Hardy and Towner
[7,11] along with the results in [6] and our new analysis
together with Eqs. (2) and (19) given above leads to the RC
and Vud values illustrated in Table I. One finds for the
weighted average

Vud ! 0:973 77"11#"15#"19#"superallowed & decays#:
(20)

Comparing with Eq. (3) we see that our analysis gives a
somewhat larger Vud due to a ' 0:000 07 increase from our
new prescription along with refinements from Ref. [6]
which were not included in Savard et al. [8]. Also,
Savard et al. rounded down in their analysis.

We note that 46V gives a somewhat low value for Vud. It
differs from the average by 2:7(. That particular nucleus
recently underwent a Q value revision [8] which lowered
its Vud. It may be indicating problems with other Q values.
If the other nuclear Q values follow the lead of 46V, we
could see a fairly significant reduction in the weighted
average for Vud. Clearly, remeasurements of Q values
and half-lives of the superallowed decays are highly
warranted.
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a reduction from our own previous result in Eq. (9), where
the integration was carried up to Q2 ! 1.

Details of the above calculations will be given in a
subsequent publication [12]. Here, we briefly discuss the
basis of our improvements along with the results of the
above analysis and its implications.

The QCD corrections to the asymptotic form of F"Q2#
have been given in Eq. (10) to O"!3

s#. The additional terms
are identical (in the chiral limit) to QCD corrections to the
Bjorken sum rule [13] for polarized electroproduction and
can be read off from well-studied calculations [14,15] for
that process. Their validity has been well tested experi-
mentally [16]. The equivalence of the QCD corrections to
all orders (in the chiral limit) can be easily understood. A
chiral transformation d! "5d followed by an isospin
rotation in the current correlator of Eq. (5) converts it
into the vector-vector correlator responsible for the
Bjorken sum rule. Since QCD respects both symmetries
in the chiral limit, the QCD corrections must be identical
for both cases.

The interpolating function in Eq. (13) is motivated by
large N QCD, which predicts it should correspond to an
infinite sum of vector and axial-vector resonances [17]. We
impose three conditions that determine the residues:
(i) The integral of Eqs. (6) and (13) should equal that of
Eqs. (6) and (10) in the asymptotic domain "1:5 GeV#2 $
Q2 $ 1, which amounts to a matching requirement be-
tween domains 1 and 2. (ii) In the large Q2 limit, the
coefficient of the 1=Q4 term in the expansion of Eq. (13)
should vanish as required by chiral symmetry [18].
(iii) The interpolator should vanish at Q2 ! 0 as required
by chiral perturbation theory. Three conditions limit us to
three resonances.

The Q2 ! "0:823 GeV#2 match between domains 2 and
3 was chosen to be the value at which Eq. (13) equals the
integrand of the long-distance contribution. Interestingly,
that matching occurs near the # mass. A novel technical
point in the formulation is that in the evaluation of the
Feynman diagrams associated with the long-distance con-
tributions the integral over the auxiliary variables is carried
out first. This leads to integrands that depend onQ2 and can
therefore be matched with Eq. (13).

Using this approach, we find that at the one-loop elec-
troweak level the last three terms in Eq. (4) are effectively
replaced by 2:82 !

$ in the case of neutron decay.
Comparison with Eqs. (4) and (9) in conjunction with
mA ! 1:2 GeV, Ag ! % 0:34 shows that in the new for-
mulation these corrections are reduced by 1:4 & 10% 4,
which increases Vud by 7 & 10% 5. The smallness of that
shift is a validation of our previous result [4,6].

More important than the small reduction in the radiative
corrections, our new method provides a more systematic
estimate of the hadronic uncertainties as well as experi-
mental verification of its validity [16]. Allowing for a
' 10% uncertainty for the CBorn correction in Eq. (17), a
' 100% uncertainty for the interpolator contribution in the

"0:823 GeV#2 $ Q2 < "1:5 GeV#2 region, and ' 0:0001
uncertainty from neglected higher order effects, we find
the total uncertainty in the electroweak radiative correc-
tions is ’ ' 0:00038, which leads to a ’' 0:000 19 uncer-
tainty in Vud. That corresponds to more than a factor of 2
reduction in the loop uncertainty from hadronic effects.

Employing our new analysis, we find the improved
relationship between Vud, the neutron lifetime, and gA (
GA=GV ,

jVudj2 !
4908:7"1:9# s

%n"1 ) 3g2
A#
"neutron#: (18)

Future precision measurements of %n and gA used in con-
junction with Eq. (18) will ultimately be the best way to
determine Vud, but for now it is not competitive [6].

In the case of superallowed (0) ! 0) transitions) nu-
clear & decays, there are a number of corrections, some
nucleus dependent, that must be applied to the ft values.
They are collectively called RC in Eq. (2). To make contact
with previous studies [1,7], we factorize them as follows:

1 ) RC ! "1 ) 'R#"1 % 'C#"1 ) !#: (19)

The first two factors are nucleus dependent, while ! is
roughly nucleus independent, coming primarily from
short-distance loop effects. The axial-vector contributions
discussed above are included in the product "1 ) 'R# &
"1 ) !#, where 'R includes long-distance radiative correc-
tions as well as nuclear structure effects. Because we
include leading logs from higher orders as well as some
next-to-leading logs [4,6], the factorization is not exact and
! will exhibit some small nucleus dependence. The uncer-
tainty in 1 ) 'R comes from Z2!3 and nuclear structure
contributions while a common ' 0:03% error in the
Coulomb distortion effect is assigned to 1 % 'C.

Employing the corrections given by Hardy and Towner
[7,11] along with the results in [6] and our new analysis
together with Eqs. (2) and (19) given above leads to the RC
and Vud values illustrated in Table I. One finds for the
weighted average

Vud ! 0:973 77"11#"15#"19#"superallowed & decays#:
(20)

Comparing with Eq. (3) we see that our analysis gives a
somewhat larger Vud due to a ' 0:000 07 increase from our
new prescription along with refinements from Ref. [6]
which were not included in Savard et al. [8]. Also,
Savard et al. rounded down in their analysis.

We note that 46V gives a somewhat low value for Vud. It
differs from the average by 2:7(. That particular nucleus
recently underwent a Q value revision [8] which lowered
its Vud. It may be indicating problems with other Q values.
If the other nuclear Q values follow the lead of 46V, we
could see a fairly significant reduction in the weighted
average for Vud. Clearly, remeasurements of Q values
and half-lives of the superallowed decays are highly
warranted.
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a reduction from our own previous result in Eq. (9), where
the integration was carried up to Q2 ! 1.

Details of the above calculations will be given in a
subsequent publication [12]. Here, we briefly discuss the
basis of our improvements along with the results of the
above analysis and its implications.

The QCD corrections to the asymptotic form of F"Q2#
have been given in Eq. (10) to O"!3

s#. The additional terms
are identical (in the chiral limit) to QCD corrections to the
Bjorken sum rule [13] for polarized electroproduction and
can be read off from well-studied calculations [14,15] for
that process. Their validity has been well tested experi-
mentally [16]. The equivalence of the QCD corrections to
all orders (in the chiral limit) can be easily understood. A
chiral transformation d! "5d followed by an isospin
rotation in the current correlator of Eq. (5) converts it
into the vector-vector correlator responsible for the
Bjorken sum rule. Since QCD respects both symmetries
in the chiral limit, the QCD corrections must be identical
for both cases.

The interpolating function in Eq. (13) is motivated by
large N QCD, which predicts it should correspond to an
infinite sum of vector and axial-vector resonances [17]. We
impose three conditions that determine the residues:
(i) The integral of Eqs. (6) and (13) should equal that of
Eqs. (6) and (10) in the asymptotic domain "1:5 GeV#2 $
Q2 $ 1, which amounts to a matching requirement be-
tween domains 1 and 2. (ii) In the large Q2 limit, the
coefficient of the 1=Q4 term in the expansion of Eq. (13)
should vanish as required by chiral symmetry [18].
(iii) The interpolator should vanish at Q2 ! 0 as required
by chiral perturbation theory. Three conditions limit us to
three resonances.

The Q2 ! "0:823 GeV#2 match between domains 2 and
3 was chosen to be the value at which Eq. (13) equals the
integrand of the long-distance contribution. Interestingly,
that matching occurs near the # mass. A novel technical
point in the formulation is that in the evaluation of the
Feynman diagrams associated with the long-distance con-
tributions the integral over the auxiliary variables is carried
out first. This leads to integrands that depend onQ2 and can
therefore be matched with Eq. (13).

Using this approach, we find that at the one-loop elec-
troweak level the last three terms in Eq. (4) are effectively
replaced by 2:82 !

$ in the case of neutron decay.
Comparison with Eqs. (4) and (9) in conjunction with
mA ! 1:2 GeV, Ag ! % 0:34 shows that in the new for-
mulation these corrections are reduced by 1:4 & 10% 4,
which increases Vud by 7 & 10% 5. The smallness of that
shift is a validation of our previous result [4,6].

More important than the small reduction in the radiative
corrections, our new method provides a more systematic
estimate of the hadronic uncertainties as well as experi-
mental verification of its validity [16]. Allowing for a
' 10% uncertainty for the CBorn correction in Eq. (17), a
' 100% uncertainty for the interpolator contribution in the

"0:823 GeV#2 $ Q2 < "1:5 GeV#2 region, and ' 0:0001
uncertainty from neglected higher order effects, we find
the total uncertainty in the electroweak radiative correc-
tions is ’ ' 0:00038, which leads to a ’' 0:000 19 uncer-
tainty in Vud. That corresponds to more than a factor of 2
reduction in the loop uncertainty from hadronic effects.

Employing our new analysis, we find the improved
relationship between Vud, the neutron lifetime, and gA (
GA=GV ,

jVudj2 !
4908:7"1:9# s

%n"1 ) 3g2
A#
"neutron#: (18)

Future precision measurements of %n and gA used in con-
junction with Eq. (18) will ultimately be the best way to
determine Vud, but for now it is not competitive [6].

In the case of superallowed (0) ! 0) transitions) nu-
clear & decays, there are a number of corrections, some
nucleus dependent, that must be applied to the ft values.
They are collectively called RC in Eq. (2). To make contact
with previous studies [1,7], we factorize them as follows:

1 ) RC ! "1 ) 'R#"1 % 'C#"1 ) !#: (19)

The first two factors are nucleus dependent, while ! is
roughly nucleus independent, coming primarily from
short-distance loop effects. The axial-vector contributions
discussed above are included in the product "1 ) 'R# &
"1 ) !#, where 'R includes long-distance radiative correc-
tions as well as nuclear structure effects. Because we
include leading logs from higher orders as well as some
next-to-leading logs [4,6], the factorization is not exact and
! will exhibit some small nucleus dependence. The uncer-
tainty in 1 ) 'R comes from Z2!3 and nuclear structure
contributions while a common ' 0:03% error in the
Coulomb distortion effect is assigned to 1 % 'C.

Employing the corrections given by Hardy and Towner
[7,11] along with the results in [6] and our new analysis
together with Eqs. (2) and (19) given above leads to the RC
and Vud values illustrated in Table I. One finds for the
weighted average

Vud ! 0:973 77"11#"15#"19#"superallowed & decays#:
(20)

Comparing with Eq. (3) we see that our analysis gives a
somewhat larger Vud due to a ' 0:000 07 increase from our
new prescription along with refinements from Ref. [6]
which were not included in Savard et al. [8]. Also,
Savard et al. rounded down in their analysis.

We note that 46V gives a somewhat low value for Vud. It
differs from the average by 2:7(. That particular nucleus
recently underwent a Q value revision [8] which lowered
its Vud. It may be indicating problems with other Q values.
If the other nuclear Q values follow the lead of 46V, we
could see a fairly significant reduction in the weighted
average for Vud. Clearly, remeasurements of Q values
and half-lives of the superallowed decays are highly
warranted.
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a reduction from our own previous result in Eq. (9), where
the integration was carried up to Q2 ! 1.

Details of the above calculations will be given in a
subsequent publication [12]. Here, we briefly discuss the
basis of our improvements along with the results of the
above analysis and its implications.

The QCD corrections to the asymptotic form of F"Q2#
have been given in Eq. (10) to O"!3

s#. The additional terms
are identical (in the chiral limit) to QCD corrections to the
Bjorken sum rule [13] for polarized electroproduction and
can be read off from well-studied calculations [14,15] for
that process. Their validity has been well tested experi-
mentally [16]. The equivalence of the QCD corrections to
all orders (in the chiral limit) can be easily understood. A
chiral transformation d! "5d followed by an isospin
rotation in the current correlator of Eq. (5) converts it
into the vector-vector correlator responsible for the
Bjorken sum rule. Since QCD respects both symmetries
in the chiral limit, the QCD corrections must be identical
for both cases.

The interpolating function in Eq. (13) is motivated by
large N QCD, which predicts it should correspond to an
infinite sum of vector and axial-vector resonances [17]. We
impose three conditions that determine the residues:
(i) The integral of Eqs. (6) and (13) should equal that of
Eqs. (6) and (10) in the asymptotic domain "1:5 GeV#2 $
Q2 $ 1, which amounts to a matching requirement be-
tween domains 1 and 2. (ii) In the large Q2 limit, the
coefficient of the 1=Q4 term in the expansion of Eq. (13)
should vanish as required by chiral symmetry [18].
(iii) The interpolator should vanish at Q2 ! 0 as required
by chiral perturbation theory. Three conditions limit us to
three resonances.

The Q2 ! "0:823 GeV#2 match between domains 2 and
3 was chosen to be the value at which Eq. (13) equals the
integrand of the long-distance contribution. Interestingly,
that matching occurs near the # mass. A novel technical
point in the formulation is that in the evaluation of the
Feynman diagrams associated with the long-distance con-
tributions the integral over the auxiliary variables is carried
out first. This leads to integrands that depend onQ2 and can
therefore be matched with Eq. (13).

Using this approach, we find that at the one-loop elec-
troweak level the last three terms in Eq. (4) are effectively
replaced by 2:82 !

$ in the case of neutron decay.
Comparison with Eqs. (4) and (9) in conjunction with
mA ! 1:2 GeV, Ag ! % 0:34 shows that in the new for-
mulation these corrections are reduced by 1:4 & 10% 4,
which increases Vud by 7 & 10% 5. The smallness of that
shift is a validation of our previous result [4,6].

More important than the small reduction in the radiative
corrections, our new method provides a more systematic
estimate of the hadronic uncertainties as well as experi-
mental verification of its validity [16]. Allowing for a
' 10% uncertainty for the CBorn correction in Eq. (17), a
' 100% uncertainty for the interpolator contribution in the

"0:823 GeV#2 $ Q2 < "1:5 GeV#2 region, and ' 0:0001
uncertainty from neglected higher order effects, we find
the total uncertainty in the electroweak radiative correc-
tions is ’ ' 0:00038, which leads to a ’' 0:000 19 uncer-
tainty in Vud. That corresponds to more than a factor of 2
reduction in the loop uncertainty from hadronic effects.

Employing our new analysis, we find the improved
relationship between Vud, the neutron lifetime, and gA (
GA=GV ,

jVudj2 !
4908:7"1:9# s

%n"1 ) 3g2
A#
"neutron#: (18)

Future precision measurements of %n and gA used in con-
junction with Eq. (18) will ultimately be the best way to
determine Vud, but for now it is not competitive [6].

In the case of superallowed (0) ! 0) transitions) nu-
clear & decays, there are a number of corrections, some
nucleus dependent, that must be applied to the ft values.
They are collectively called RC in Eq. (2). To make contact
with previous studies [1,7], we factorize them as follows:

1 ) RC ! "1 ) 'R#"1 % 'C#"1 ) !#: (19)

The first two factors are nucleus dependent, while ! is
roughly nucleus independent, coming primarily from
short-distance loop effects. The axial-vector contributions
discussed above are included in the product "1 ) 'R# &
"1 ) !#, where 'R includes long-distance radiative correc-
tions as well as nuclear structure effects. Because we
include leading logs from higher orders as well as some
next-to-leading logs [4,6], the factorization is not exact and
! will exhibit some small nucleus dependence. The uncer-
tainty in 1 ) 'R comes from Z2!3 and nuclear structure
contributions while a common ' 0:03% error in the
Coulomb distortion effect is assigned to 1 % 'C.

Employing the corrections given by Hardy and Towner
[7,11] along with the results in [6] and our new analysis
together with Eqs. (2) and (19) given above leads to the RC
and Vud values illustrated in Table I. One finds for the
weighted average

Vud ! 0:973 77"11#"15#"19#"superallowed & decays#:
(20)

Comparing with Eq. (3) we see that our analysis gives a
somewhat larger Vud due to a ' 0:000 07 increase from our
new prescription along with refinements from Ref. [6]
which were not included in Savard et al. [8]. Also,
Savard et al. rounded down in their analysis.

We note that 46V gives a somewhat low value for Vud. It
differs from the average by 2:7(. That particular nucleus
recently underwent a Q value revision [8] which lowered
its Vud. It may be indicating problems with other Q values.
If the other nuclear Q values follow the lead of 46V, we
could see a fairly significant reduction in the weighted
average for Vud. Clearly, remeasurements of Q values
and half-lives of the superallowed decays are highly
warranted.
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FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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But data tell us differently:

prominent broad QE peak - 

mostly 1N knock-out 

QE peak is common for all nuclei

Modify the universal correction

to account for bulk QE effect



QE contribution to γW-box
Bulk nuclear properties: Fermi momentum and break-up threshold

✏1 = MA�p +Mn �MA ✏2 = MA0�n +Mn �MA

✏ =
p
✏1✏2

20 decays: 10C -> 10B through 74Rb -> 74Kr (Towner&Hardy ’14 review)
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Decay ✏2 (MeV) ✏1 (MeV) ✏ (MeV)
10
C !10

B 8.44 4.79 6.36
14
O !14

N 10.55 5.41 7.55
18
Ne !18

F 9.15 4.71 6.56
22
Mg !22

Na 11.07 6.28 8.34
26
Si !26

Al 11.36 6.30 8.46
30
S !30

P 11.32 5.18 7.66
34
Ar !34

Cl 11.51 5.44 7.91
38
Ca !38

K 12.07 5.33 8.02
42
T i !42

Sc 11.55 4.55 7.25
26m

Al !26
Mg 11.09 6.86 8.72

34
Cl !34

S 11.42 5.92 8.22
38m

K !38
Ar 11.84 5.79 8.28

42
Sc !42

Ca 11.48 5.05 7.61
46
V a !46

T i 13.19 6.14 9.00
50
Mn !50

Cr 13.00 5.37 8.35
54
Co !54

Fe 13.38 5.13 8.28
62
Ga !62

Zn 12.90 3.72 6.94
66
As !66

Ge 13.29 3.16 6.48
70
Br !70

Se 13.82 3.20 6.65
74
Rb !74

Kr 13.85 3.44 6.90

TABLE I: E↵ective removal energy ✏ as calculated from the mother and daughter removal energies ✏2,1 for all superallowed �

decays listed in Hardy, Towner [3]

VIII. RELATION TO SCATTERING DATA

The ��W interference matrix element is not directly accessible in experiment. However, isospin symmetry relates
it to � � Z matrix element which can be measured in parity-violating eN -scattering. Defining:

W (0)µ⌫
�W =

1

4⇡

Z
d4xeiq·x hp| [J (0)µ

� (x), J⌫
W (0)] |ni =

i"µ⌫↵�p↵q�
2p · q

F (0)
3 + ... (58)

and

WN,µ⌫
�Z =

1

4⇡

Z
d4xeiq·x hN | [Jµ

� (x), J
⌫
Z(0)] |Ni =

i"µ⌫↵�p↵q�
2p · q

FN
3,�Z + ... (59)

(N = p, n) where J (0)µ
� is the isosinglet component of the electromagnetic current, isospin symmetry then gives:

F (0)
3 = F p

3,�Z � Fn
3,�Z . (60)

The structure functions at RHS are in principle measurable in PV scattering experiments.

Appendix A: Elastic (Born) contribution

In this appendix we present the details in obtaining the Born contribution (23) to ⇤�W . First, we notice that
according to our definitions, Gp

M (Q2) > 0, Gn
M (Q2) < 0, GA(Q2) < 0 and |Gp

M (Q2)| > |Gn
M (Q2)| for all relevant

values of Q2. So, we can write ⇤V A,Born
�W as:

⇤V A,Born
�W =

↵

⇡

Z 1

0
dQ

2
p
4m2

N +Q2 +Q
⇣p

4m2
N +Q2 +Q

⌘2 |GA(Q
2)|

�
|Gp

M (Q2)|� |Gn
M (Q2)|

�
(A1)

so that every single multiplicative term in the integrand is positive definite.
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Since in this model kF is the only relevant scale for the momentum distribution, the mismatch between the two
distributions may be expected to be not too large. Details of the calculation are reported in Appendix C, and we
show the final result,

F (0),A
3 (⌫, Q2) = NGAG

S
M

3Q2

16q
FP (|~q|, kF )

⇣
k̃2+ � k̃2�

⌘

k3F
(50)

Above, k± denote the limits of integration over the nucleon three-momentum k. These arise due to the on-shell
condition for the intermediate nucleon and are given by

k± = ±
q

2

MA�1 + ⌫ � ⌫min
MA
2 + ⌫ � ⌫min

+
MA + ⌫

2

p
(⌫ � ⌫min)(2MMA�1/MA + ⌫ � ⌫min)

MA
2 + ⌫ � ⌫min

, (51)

where we introduced the threshold energy for the quasielastic breakup,

⌫min =
Q2

2MA
+ ✏, (52)

with ✏ = MA�1 +M �MA the nucleon removal energy. This nucleon removal energy is another scale that is relevant
for QE scattering. Because of a non-zero Q-value for each decay, in every pair mother-daughter there is not one, but
two removal energies. Specifically, for �+ decay these are given by

✏1 = MA00 +Mp �MA0 ,

✏2 = MA00 +Mp �MA 6= ✏1, (53)

with A00 = A�p = A0
�n the spectator nucleus. For �� decay the proton and neutron masses should be exchanged in

this definition. Again, to avoid accounting for too much details of nuclear structure at this step we define an average
removal energy for each pair,

✏ =
p
✏1✏2 (54)

We consider 14 isotopes collected in the 2015 review by Hardy and Towner [3], use the known Q-values of the decays
and calculate relevant nucleon removal energies and summarize the results in Table I.

We notice that while individual breakup thresholds vary significantly from isotope to isotope, the average removal
energies are all reasonably close to each other, ✏ = 7.68 ± 1.32 MeV. Fermi momentum also varies in a small range,
from 228 MeV to 245 MeV, from lightest to heaviest nucleus. The use of a model with an average Fermi momentum
and average breakup threshold for calculating the universal, bulk nuclear e↵ect on ⇤Born

�W is thus well-justified. This
approximation will need to be corrected to account for fine details of the structure of individual nuclei, and this
correction will be accommodated in the nucleus-specific correction term �NS .

With the parameters obtained above, numerical evaluation of Eq. (??) with the QE contribution in Fermi gas
model gives

⇤QE
�W =

↵

2⇡
(0.44± 0.04), (55)

which should replace the free nucleon Born contribution from MS

⇤Born
�W =

↵

2⇡
(0.89± 0.03). (56)

We observe that the nuclear environment reduces the size of the elastic box correction by about a half. This e↵ect
can be qualitatively understood by noticing the 1/⌫2 weighting under the integral. As compared to the free nucleon
case where the threshold is at ⌫ = Q2/(2M), binding e↵ects in nuclei shift that threshold to ⌫ = Q2/(2MA)+ ✏. The
integral is peaked around < ⌫ >⇡ 76 MeV and < Q2 >⇡ 0.12 GeV2, and for these values of Q2 and A > 10 the shift
by a finite value ✏ leads to an observed reduction.

VII. RESULTS FOR NUCLEAR � DECAYS

I stick to the original MS notation,
↵

2⇡
(· · ·+ CB + . . . ), (57)

because CY gives his results in those terms. In units of (↵/2⇡) the free neutron result shifted by +0.25. Accounting
for quasielastic response reduces Born by �0.47±0.04. The sum then is shifted by �0.22±�0.04± . . . which is about
one sigma: �0.22(↵/2⇡) = �2.5⇥ 10�4. But the individual shifts are large.

Effective removal energies - all in a small range

Fermi momentum also not too different for all A
kF (A = 10) = 228MeV, kF (A = 74) = 245MeV

Can define a universal correction that 

correctly represents bulk nuclear effect!

Further ingredients:

Free Fermi gas model (or superscaling)

+ Pauli blocking



QE contribution to γW-box

⇤free n
�W =

↵

2⇡
0.91(5) ! ⇤QE

�W =
↵

2⇡
0.44(4)

Z

Q2

2M

d⌫

⌫2
Fn
3 !

Z

Q2

2MA
+✏

d⌫

⌫2
FNucl
3

γW-box for bound neutron:

Reduction: finite breakup threshold

New formulation of the γW-box: 

⇤MS
�W =

↵

2⇡
2.79(17) = 3.24(20)⇥ 10�3

⇤Nucl.New
�W =

↵

2⇡
2.56(4) = 2.97(5)⇥ 10�3

A mere shift by 1 sigma; uncertainty significantly reduced.

Nuclear Structure corrections should be revisited and possibly redefined

Vud from superallowed β: 1 sigma larger



Summary

• New dispersive representation of the 𝛾W-box


• Data driven uncertainties


• Crucial input: GLS sum rule


• New formulation of RC for Vud extraction: 

 overall small effect; uncertainty significantly reduced


• Nuclear Structure corrections may need to be reformulated


• Backup: can nuclear structure effects lead to additional energy 
dependence?



Turn “inner” correction inside-out?
𝛾W-box correction at zero energy

4
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Dispersive Approach: Formalism

FIG. 2: The contour in the complex ⌫ plane.

We apply Cauchy’s theorem to the definite isospin amplitudes T (I)
3 (⌫, Q2) (I = 0, 3)accounting for their singularities

in the complex ⌫ plane. These lie on the real axis: poles due to a single nucleon intermediate state in the s� and

u-channels at ⌫ = ±⌫B = ±
Q2

2M , respectively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where ⌫⇡ = (2Mm⇡ +m2
⇡ +

Q2)/(2M), m⇡ being the pion mass. The contour is constructed such as to go around all these singularities, and is
closed at infinity, see Fig. 2. The discontinuity of the forward amplitude in the physical region (i.e. ⌫ > 0) is given
by the generalization of the DIS structure functions to the �W -interference in the standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2) = 4⇡iF (I)

3 (⌫, Q2) (13)

where
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em |Xi hX| J⌫

W |ni
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✓
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F (I)
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2(p · q)

F (I)
3 , (14)

and for the sake of a unified description, within F (I)
i we keep both the �-functions at the nucleon poles, and the

discontinuities along the multi-particle cuts. The full function T (I)
3 (⌫, Q2) is reconstructed from a fixed-Q2 dispersion

relation

T (I)
3 (⌫, Q2) =

1

2⇡i

Z 1

0
d⌫0


1

⌫0 � ⌫ � i✏
+ ⇠I

1

⌫0 + ⌫ + i✏

�
4⇡iF (I)

3 (⌫0, Q2), (15)

modulo possible subtractions which are needed to make the dispersion integral convergent. The form of the dispersion
relation depends on the crossing behavior, the relative sign ⇠I between the contributions along the positive and
negative real ⌫ axis. It can be shown that the isoscalar amplitude is an odd function of ⌫, hence ⇠0 = �1, while the
isovector amplitude is even. Correspondingly, the isoscalar requires no subtractions, while the isovector one may have
to be subtracted one time.

Putting together Eqs. (10,15) and performing the loop integral via Wick rotation we arrive at

⇤V A (0)
�W =

↵

⇡M

Z 1

0

dQ2M2
W

M2
W +Q2

Z 1

0
d⌫

(⌫ + 2q)

⌫(⌫ + q)2
F (0)
3 (⌫, Q2),

⇤V A (3)
�W = 0, (16)

where we introduced the virtual photon three-momentum q =
p

⌫2 +Q2. The vanishing of the isovector contribution
is the consequence of the crossing symmetry, as has already been noticed by Sirlin [5]. Thus from now onward we

shall represent ⇤V A,(0)
�W simply by ⇤V A

�W without causing any confusion.

𝛾W-box correction with linear E-dependece

3

As a result, the �W -box will contain both even and odd powers of energy,
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The respective contributions to the imaginary parts read
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly

when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
this subtraction I use an overscored notation for the E-even correction ⇤even

�W . Changing the order of integration
and assuming that the energy released in the �-decay process is smaller than the nuclear excitations, we obtain the
dispersion representation for the leading E-behavior of the �W -box correction:
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,(13)

where Emin = (⌫ +
p
⌫2 +Q2)/2, ⌫thr = ✏+Q2/(2M) and in terms of the invariants ⌫ = (W 2 �M2 +Q2)/2M , W

being the invairant mass of the excited nuclear intermediate state.

II. SIMPLISTIC DIMENSION ANALYSIS

To assess the size of the correction I use the Baldin sum rule that expresses the sum of the dipole electric and
magnetic polarizabilities as

↵E + �M =
2↵em

M

Z
d!

!3
F1(!, Q

2 = 0) = 2↵em

Z
d!

!2

F2(!, Q2)

Q2

����
Q2=0

. (14)

The equality between the representations with F1 and F2 is a reflection of gauge invariance. Assuming the dominance
of very low Q2 under the integral (hence Emin ! !) and assuming further that the Q2 dependence of the dipole
polarizability follows the charge form factor ⇠ Exp[�R2

ChQ
2/6] I obtain

Re⇤odd
�W ⇠ 2

⇡
E
↵E + �M

R2
Ch

, (15)

where for simplicity the contribution of F3 was discarded for a moment.
Using the observed rough scaling of the nuclear radii with the atomic number RCh ⇠ R0A1/3 [data tables in de

Vries et al] with R0 ⇠ 1 fm, and ↵E + �M ⇠ (2.2⇥ 10�3)A5/3 [Berman Fultz],

Re⇤odd
�W ⇠ 1⇥ 10�3
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◆
. (16)
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly

when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
this subtraction I use an overscored notation for the E-even correction ⇤even

�W . Changing the order of integration
and assuming that the energy released in the �-decay process is smaller than the nuclear excitations, we obtain the
dispersion representation for the leading E-behavior of the �W -box correction:
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⌫2 +Q2)/2, ⌫thr = ✏+Q2/(2M) and in terms of the invariants ⌫ = (W 2 �M2 +Q2)/2M , W

being the invairant mass of the excited nuclear intermediate state.
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To assess the size of the correction I use the Baldin sum rule that expresses the sum of the dipole electric and
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where for simplicity the contribution of F3 was discarded for a moment.
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Common wisdom: E-dep. negligible because should come as (α/2π) E/mπ < 10-5

But nuclear excitations live at few MeV —> large nuclear polarizabilities
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly

when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
this subtraction I use an overscored notation for the E-even correction ⇤even
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
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when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
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being the invairant mass of the excited nuclear intermediate state.
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where for simplicity the contribution of F3 was discarded for a moment.
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly
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