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Introduction
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Muon g − 2
Precision measurement of the muon magnetic moment

~µ = g e
2mµ

~S

Want to know g factor, Dirac equation predicts g = 2
Radiative corrections alter to g = 2(1 + a) =⇒ a = g−2

2

Muon g − 2 especially sensitive to loop corrections
=⇒ deviation from expectation could point to new physics

BNL and J-PARC to measure and improve upon BNL result
PDG world average aµ = 11 659 209.1± 5.4± 3.3× 10−10

RBC/UKQCD(2018) aµ = 11 659 181.6± 3.7× 10−10

KNT(2018) aµ = 11 659 182.1± 3.6× 10−10

Experiment-Theory difference is 27.4(7.3) =⇒ 3.7σ tension!
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Pieces of Muon g − 2 Theory Prediction
Contribution Value ×1010 Uncertainty ×1010

QED 11 658 471.895 0.008
EW 15.4 0.1
HVP LO 692.5 2.7
HVP NLO −9.84 0.06
HVP NNLO 1.24 0.01
Hadronic light-by-light 10.5 2.6
Total SM prediction 11 659 181.7 3.8
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target ≈ 1.6

Hadronic pieces of g − 2 are the largest contributions to theoretical uncertainty
Dispersive approaches or lattice QCD may be used to compute

Hadronic Vacuum Polarization (HVP) and Hadronic Light-by-Light (HLbL)
Difficult to assign uncertainties to models used in dispersive approach

=⇒ lattice QCD can give better understanding of uncertainties on hadronic contributions

HVP comes from R-ratio/Lattice QCD
Glasgow Concensus [0901.0306] for best estimate of HLbL uncertainty
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Lattice QCD: Formalism

I Lattice QCD is a technique to numerically evaluate path
integral

〈O〉 =
1
Z

∫
DψDψDU exp(−S)Oψ [U]

I Discretize spacetime =⇒ #DOF finite
I Lattice spacing a provides UV cutoff
I Lattice size L provides IR cutoff

I Quark fields defined on sites =⇒ Q(x)
I Gauge fields defined between sites =⇒ Uµ(x)
I Euclidean time =⇒ correlators ∝ e−Et

L

a

Uµ
QQ̄

Typical strategy is to construct operators at “source,” allow them to propagate through time, then annihilate at “sink”

Evaluate correlation functions on fixed background gauge field, compute on many gauge fields for Monte Carlo average

Correlation functions are products of matrix elements times exponentials, e.g.

C(t) =
∑

n

|〈Ω| O |n〉|2 e−Ent
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Hadronic Light-by-Light
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HLbL Diagrams
Pieces computed only existing HLbL computation:

=⇒

Gluons+“Sea” Quark
Loops (all orders)

+ +(Higher Order)

Connected Disconnected

Connected contribution→ PRD 93 (2015) 014503 Disconnected contribution→ PRL 118 (2016) 022005

For connected diagram, improved computation method:

Same cost comparison;
Black: moment method

Red: Stochastic point source
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Systematics

Many systematic corrections to account for:

I QCD/QED discretization effects (a → 0 limit)
I QCD/QED finite volume effects (L→∞ limit)
I Sub-leading disconnected diagrams
I Long-distance π0, π+π− contributions

[C.Lehner, priv.comm.]

π0

PRL 118 (2016) 022005:
aHLbL
µ = 5.35(1.35)× 10−10

Disclaimer: Potentially large finite-volume systematics

Future work will add missing systematic corrections, combine with dispersive approach
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Hadronic Vacuum Polarization
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HVP in LQCD

acont.
µ =

∫∞
0

dt K(t)Ccont.(t) alatt.
µ =

∑
t

wt C latt.(t)

Ccont.(t) =
∫∞

0
d
√

s s R(s) e−
√

st C latt.(t) =
∑

i,n
| 〈Ω| Ji |n〉 |2e−Ent

= 1
3

∑
i,~x
〈Ji (~x, t)Ji (0)〉

wt from Bernecker, H. Meyer: 1107.4388 [hep-lat]

HVP formulated in momentum space:

aHVP
µ =

(
α

π

)2
∫ ∞

0

dQ2

m2
µ

w
(

Q2

m2
µ

)
Π̂(Q2) , Π̂(Q2) = Π(Q2)− Π(0)

= Πµν (Q) =
∫

d4xeiQ·x 〈Jµ(x)Jν (0)〉 =
(

QµQν − δµνQ2
)

Π(Q2)

wt → K(t) relate momentum space to position space
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ETMC [JHEP 1402 (2014) 099]

aHVP
µ =

∫∞
0

dQ2
Q2 w

(
Q2

m2
µ

)
Π(Q2)

[EPJ Web Conf. 175, 06006 (2018)]

Good control over low-momentum region in 2013 HVP computation (top)

Change of strategy for 2018, preliminary results in conference proceedings (bottom)
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Mainz

[JHEP 1710 (2017) 020] [von Hippel, KEK HVP workshop (2018)]

Computation of HVP in momentum space and position space (left)

Integrand of aµ for data at physical Mπ (right)
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BMW

[1711.04980 [hep-lat]]

Many physical mass ensembles, 4 quark flavors in sea

Excellent control over continuum limit
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Fermilab Lattice, HPQCD, MILC

[Van de Water, KEK HVP workshop (2018)] [PRL 120 (2018) 152001]

Πn−1 ≡ 1
(2n)!

∂2n
∂Q2n Q2Π̂(Q2)

Agreement with moments from R-ratio for physical mass ensembles

First collaboration to include strong isospin breaking (mu 6= md ) effects in sea quarks
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RBC/UKQCD

[1801.07224 [hep-lat]]

Computation of QED corrections at physical pion mass

Combined analysis of R-ratio+Lattice QCD results to get improved precision on HVP
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Summary of Results

Lattice QCD only

Combined Lattice/R-ratio

R-ratio only

[1801.07224 [hep-lat]]

Lattice calculations are less precise than R-ratio at present

Lattice QCD/R-ratio are precise in complementary regions
=⇒ Combined Lattice/R-ratio for most precise estimate of HVP

Can improve lattice-only estimate of HVP by controlling
statistical noise in long-distance correlation function
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HVP Long-Distance Reconstruction
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Long-Distance Reconstruction

Long-distance correlation function from Lattice QCD is noisy
BUT: this region well-described by only a few exponentials

Replace correlation function by an explicit sum of exponentials (N finite):

C(t)
∣∣
t>tmax

=
N∑
n

|an|2e−Ent

Replaces statistical error of correlation function with systematic error of reconstruction

Good control over systematics associated with reconstruction
=⇒ improved statistical precision of HVP
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Computation Details

All results shown for one coarse ensemble:
I a ≈ 0.20 fm ≈ 1.0 GeV−1,
I 243 × 64 (4.8 fm box)
I physical pion mass ensemble

Correlation functions computed both with local currents and distillation
4× 4 basis of correlation functions used to improve uncertainties

Have data on two other ensembles, 323 and 483 lattice volumes
Analysis is underway but incomplete

Will include at least one more lattice ensemble to control systematics:
I continuum limit
I volume dependence
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GEVP Results
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PRELIMINARY PRELIMINARY

Spectrum/overlap (matrix element) on left/right

4× 4 operator basis, 4 state reconstruction

Each choice of n asymptotes to single-state energy/overlap as t →∞

Precise determinations of overlap factors are necessary for good reconstruction
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aµ Integrand Reconstruction
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PRELIMINARY

GEVP used to reconstruct long-distance behavior of the local vector current correlation function
More states =⇒ more timeslices described well by reconstruction
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Bounding Method
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No bounding method: aHVP
µ = 516(51)

Bounding method T = 2.4 fm, no reconstruction: aHVP
µ = 563.9(9.1)

Bounding method T = 1.8 fm, 1 state reconstruction: aHVP
µ = 560.9(4.5)

Bounding method T = 1.4 fm, 2 state reconstruction: aHVP
µ = 556.8(3.8)

Disclaimer: very large lattice spacing: a−1 = 1.015 GeV, finite volume effects

Could expect 10− 20% systematic errors
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Conclusions

I g − 2 is an interesting and exciting topic to work on
I Hadronic contributions to g − 2 are difficult to estimate with theory
I Lattice QCD is a first principles method capable of accessing necessary matrix elements

Hadronic Light-by-light:
I First estimate including fully connected and leading disconnected diagrams available
I Work toward addressing neglected systematics

Hadronic Vacuum Polarization:
I Lots of activity from many collaborations
I Movement toward addressing all systematic corrections
I Study of exclusive channels able to reduce uncertainty on all-lattice computation of muon HVP
I Part of ongoing lattice study to address all lattice systematics in HVP computation

Lots of data to analyze, lots of work ahead of us!
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Thank you for your attention!
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Error Budget

[Blum et al., (2018)]

Full program of computations to reduce uncertainties:

I Reduce statistical uncertainties on light connected contribution
I Compute QED contribution
I Improve lattice spacing determination
I Finite volume and continuum extrapolation study
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Generalized EigenValue Problem
Two vector current operators:

I Local O0 =
∑

x
ψ̄(x)γµψ(x)

I Smeared O1 =
∑

xyz
ψ̄(x)f (x − z)γµf (z − y)ψ(y)

Two 2π operators with different momenta

On =
∣∣∑

xyz
ψ̄(x)f (x − z)e−i~pπ·~zγ5f (z − y)ψ(y)

∣∣2:

I O2 : L
2π~pπ = (1, 0, 0) I O3 : L

2π~pπ = (1, 1, 0)

Correlators arranged in a 4× 4 symmetric matrix:

O0 O1 O2 O3
O0 C(2)

ρ C(2)
ρ C(3)

ρ→ππ C(3)
ρ→ππ

O1 C(2)
ρ C(3)

ρ→ππ C(3)
ρ→ππ

O2 C(4)
ππ→ππ C(4)

ππ→ππ
O3 C(4)

ππ→ππ

Analyze with Generalized EigenValue Problem (GEVP) method:

C(t) V = C(t + δt) V Λ(δt) , Λnn(δt) ∼ e+Enδt
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Bounding Method

Use known results in spectrum to make a precise estimate of upper & lower bound on aHVP
µ

C̃(t; T , E) =
{

C(t) t < T

C(T )e−E(t−T ) t ≥ T

Upper bound: E = E0, ground state of spectrum

Lower bound: E = log[ C(T )
C(T +1) ]

With exclusive state reconstruction, get improved bounding method precision by replacing
C(t)→ C(t)−

∑
n
|cn|2e−Ent

Add back contribution from reconstruction after applying bounding method

29 / 26


