Nucleon Polarizabilities:

Status Report
 and

First Partial-Wave Analysis of Compton Scattering Data

Vadim Lensky* and
Vladimir Pascalutsa
Institute for Nuclear Physics University of Mainz, Germany

* absent because of US visa delay
in Collaboration with
J.M. Alarcon, O. Gryniuk, F. Hagelstein, N. Krupina,
J. McGovern, M. Vanderhaeghen, ...

Concept of polarizabilities

- A dielectric system in external e.m. field is polarized, e.g. in a uniform electric field:

- induced electric dipole polarization:

$$
\vec{P}=\alpha_{E 1} \vec{E} \quad \text { (linear dielectric) }
$$

- for polarization induced by magnetic field:

$$
\vec{P}=\beta_{M 1} \vec{B}
$$

"Classical atom."

The external field displaces the nucleus w.r.t. the electron cloud until the forces are equal:

$$
\begin{array}{r}
\vec{F}_{\text {ext }}=\vec{F}_{\text {cloud }} \\
e \vec{E}_{\text {ext }}=\frac{1}{3} e \rho \vec{d}=\frac{e^{2}}{3 V} \vec{d}
\end{array}
$$

The induced polarization,

$$
\vec{P}=e \vec{d} \equiv \alpha_{E 1} \vec{E}_{e x t}
$$

yields:
$\alpha_{E 1}=3 V$
proportional to the volume

Quantum atom

Include the external field as perturbation:

$$
H_{p e r t}=e \vec{r} \cdot \vec{E}_{\text {ext }}=e r E_{\text {ext }} \cos \theta
$$

1st order yields the Stark effect.
2nd order, the polarizability effect:

$$
\begin{gathered}
\Delta E^{(2)}=\sum_{n=2} \frac{\langle 1 s| H_{p e r t}|n\rangle^{2}}{E_{1}-E_{n}}=\frac{1}{2} \alpha_{E 1} E_{e x t}^{2} \\
\alpha_{E 1}=-2 e^{2} \sum_{n=2} \frac{\langle 1 s| r \cos \theta|n\rangle^{2}}{E_{1}-E_{n}} \approx 1.7 \times 4 \pi a_{B o h r}^{3}=5 V \\
\text { probes the excitation spectrum! }
\end{gathered}
$$

Nucleon is different

Proton: $V \sim\left\langle r_{p}\right\rangle^{3} \approx 0.6 \mathrm{fm}^{3} \quad$, cf. experiment: $\quad \alpha_{E 1 p}^{(e x p .)}=(11 \pm 1) \times 10^{-4} \mathrm{fm}^{3}$

1000 times "stiffer" than hydrogen!

$$
\alpha_{E 1}+\beta_{M 1}=\frac{1}{4 \pi^{2}} \int_{\nu_{t h r}}^{\infty} d \nu^{\prime} \frac{\sigma_{t o t}\left(\nu^{\prime}\right)}{\nu^{\prime 2}} \simeq 14 \times 10^{-4} \mathrm{fm}^{3}
$$

[Baldin sum rule (1960)]
diamagnetic: $\beta_{M 1}<0$ paramagnetic: $\beta_{M 1}>0$

Static polarizabilities of the proton

- TAPS: fit to TAPS/MAMI data based on fixed-t DRs of L'vov et al.
Olmos de Leon et al., EPJA (2001)
- BChPT: "postdiction" Lensky \& VP, EPJC (2010)
Lensky, McGovern \& VP, EPJC (2015)
- HBChPT: fit to world data Grießhammer, McGovern \& Phillips, EPJA (2013)
- PWA: fit to world data Krupina, Lensky \& VP, PLB (2018)

Partial-Wave Analysis (PWA):

differences between DR and ChPT extractions are due to database inconsistencies, improvements - new experiments - are needed!

Effect on muonic-hydrogen Lamb shift

Muonic Hydrogen Lamb shift

$$
\Delta E_{\mathrm{LS}}^{\mathrm{th}}=206.0668(25)-5.2275(10)\left(R_{E} / \mathrm{fm}\right)^{2}
$$

```
theory uncertainty:
```

$2.5 \mu \mathrm{eV}$

Vladimir Pascalutsa - Nucleon at Very Low Q - NStar 2015 - Osaka, May 25-2, 2015

Compiled by: Hagelstein, Miskimen \& VP,
Prog. Part. Nucl. Phys. (2016)

Hyperfine splitting in muonic hydrogen

HFS theory status

Jhys. Rev. A 68052503 , Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506				Zemach $+\Delta_{\text {re }}$	$\left.{ }_{1}+\Delta_{\mathrm{pol}}\right] \Delta E_{0}^{\mathrm{HFS}}$
				$\Delta_{\text {TPE }}$	
	$\mu \mathrm{p}$		$\mu^{3} \mathrm{He}^{+}$		
	Magnitude	Uncertainty	Magnitude	Uncertainty	
$\Delta E_{0}^{\mathrm{HFS}}$	182.443 meV	0.1×10^{-6}	1370.725 meV	0.1×10^{-6}	
$\Delta_{\text {QED }}$	1.1×10^{-3}	1×10^{-6}	1.2×10^{-3}	1×10^{-6}	
$\Delta_{\text {weak+hVP }}$	2×10^{-5}	2×10^{-6}			
$\Delta_{\text {Zemach }}$	7.5×10^{-3}	7.5×10^{-5}	3.5×10^{-2}	2.2×10^{-4}	$\leftarrow G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)$
$\Delta_{\text {recoil }}$	1.7×10^{-3}	10^{-6}	2×10^{-4}		$\leftarrow G_{E}, G_{M}, F_{1}, F_{2}$
$\Delta_{\text {pol }}$	4.6×10^{-4}	8×10^{-5}	$\left(3.5 \times 10^{-3}\right)^{*}$	$\left(2.5 \times 10^{-4}\right)^{*}$	$\leftarrow g_{1}\left(x, Q^{2}\right), g_{2}\left(x, Q^{2}\right)$

BXPT LO

(Hagelstein et al. '15)
Disp. Rel.
(Martynenko et al. '02)
(Faustov et al. '06)
(Carlson et al. '08)

ETH
First experiments are planned at PSI and JPARC!

Spin structure at low Q

One of the problems is "deltaLT puzzle": where two ChPT calculations disagree by about a factor of 2

New relations among polarizabilities, e.g.:

$$
\delta_{L T}=-\gamma_{E 1 E 1}+\mathrm{VCS} \text { spin GPs }
$$

VP \& Vanderhaeghen, PRD (2015) Lensky, VP, Vanderhaeghen \& Kao, PRD (2017) Lensky, Hagelstein, VP \& Vanderhaeghen, PRD (2018) ,

The ECT* is sponsored by the "Fondazione Bruno Kessler" in collaboration with the "Assessorato alla Cultura" (Provincia Autonoma di Trento), funding agencies of EU Member and Associated States and has the support of the Department of Physics of the University of Trento.

Virtual Compton scattering (VCS) and generalized polarizabilities (GPs)

NLO-BChPT: Lensky, VP \& Vanderhaeghen, EPJC (2017) [1612.08626]
Fixed-t DR: Pasquini et al., PRC (2000); EPJA (2001)

open circle, PDG 2014 [61]; blue circle, Olmos de León et al [62]; green diamond, MIT-Bates (DR) [7, 8]; green open diamond, MIT-Bates (LEX) [7, 8]; purple solid square, MAMI (DR) [13]; purple open square, MAMI (LEX) [13]; red solid triangle, MAMI1 (LEX) [9]; red solid inverted triangle, MAMI1 (DR) [11]; red open triangle, MAMI2 (LEX) [10]. Some of the data points are shifted to the right in order to enhance their visibility; namely, Olmos de León, MIT-Bates (LEX), MAMI LEX, MAMI1 DR and MAMI2 LEX sets have the same values of Q^{2} as PDG, MIT-Bates (DR), MAMI DR, and MAMI1 LEX, respectively.

preliminary MAMI data:
L. Corea, H. Fonvieille, H. Merkel et al. [A1 Coll.]

Partial-wave analysis (PWA)
 of Compton scattering data below pion production threshold

Krupina, Lensky \& VP, Phys. Lett. B782 (2018) 34.

Sum rule determination of forward Compton scattering

PHYSICAL REVIEW D 92, 074031 (2015)
Evaluation of the forward Compton scattering off protons:
Spin-independent amplitude

Oleksii Gryniuk, ${ }^{1,2}$ Franziska Hagelstein, ${ }^{1}$ and Vladimir Pascalutsa ${ }^{1}$
${ }^{1}$ Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
${ }^{2}$ Physics Department, Taras Shevchenko Kyiv National University,
Volodymyrska 60, UA-01033 Kyiv, Ukraine
(Received 2 September 2015; published 21 October 2015)

PHYSICAL REVIEW D 94, 034043 (2016)
Evaluation of the forward Compton scattering off protons. II.
Spin-dependent amplitude and observables
Oleksii Gryniuk, Franziska Hagelstein, and Vladimir Pascalutsa
Institut fïr Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universitüt Mainz, D-55128 Mainz, Germany
(Received 7 April 2016; published 31 August 2016)

Review

Basic Introduction

Causality Rules
A light treatise on dispersion relations and sum rules
Vladimir Pascalutsa

Compton scattering specifics

FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

- No resonances (below pion production threshold)
- Multipoles are real, neglecting radiative corrections
- Forward-scattering is determined, via the sum rules (photoabsorption cross sections): yields linear relations on the multipoles, rather than bilinear
- Not much data (about 100 data points, many from old experiments)

Multipole Expansion

W. Pfeil, H. Rollnik and S. Stankowski, "A partial-wave analysis for proton Compton scattering in the delta(1232) energy region," Nucl. Phys. B 73, 166 (1974).
and references therein

$$
\begin{aligned}
& \qquad T_{\sigma^{\prime} \lambda^{\prime}, \sigma \lambda}=\sum_{J=1 / 2}^{\infty}(2 J+1) T_{\sigma^{\prime} \lambda^{\prime}, \sigma \lambda}^{J}(\omega) d_{\sigma^{\prime}-\lambda^{\prime}, \sigma-\lambda}^{J}(\theta) \\
& \text { Helicity amplítudes }
\end{aligned}
$$

PW amplítudes

Multipole amplitudes $\quad f_{\rho \rho^{\prime}}^{l \pm}(\omega), \quad$ with $\rho, \rho^{\prime}=E$ (lectric), or M (agnetic)

Unitary relation to pi-photoproduction multipoles (between 1 and 2 pion thresholds):

$$
\begin{aligned}
& \operatorname{Im} f_{E E}^{\ell \pm}=k \sum_{c}\left|E_{(\ell \pm 1) \mp}^{(c)}\right|^{2}, \quad \operatorname{Im} f_{M M}^{\ell \pm}=k \sum_{c}\left|M_{\ell \pm}^{(c)}\right|^{2} \\
& \operatorname{Im} f_{E M}^{(\ell \pm 1) \mp}=\operatorname{Im} f_{M E}^{\ell \pm}=\mp k \sum_{c} \operatorname{Re}\left(E_{\ell \pm}^{(c)} M_{\ell \pm}^{(c) *}\right),
\end{aligned}
$$

where the sum is over the charged πN states, i.e: $c=\pi^{0} p, \pi^{+} n$

We expand the non-Born piece only, truncated at $\mathrm{J}=3 / 2$ (only J=1/2,3/2 are taken into account):

$$
f=f^{\text {Born }}+\bar{f} \quad \bar{f}=\left(\bar{f}_{E E}^{1}, \bar{f}_{E E}^{1-}, \bar{f}_{M M}^{1+}, \bar{f}_{M M}^{1-}, \bar{f}_{E M}^{1+}, \bar{f}_{M E}^{1+}, \bar{f}_{E E}^{2+}, \bar{f}_{E E}^{2-}, \bar{f}_{M M}^{+}, \bar{f}_{M M}^{2-}\right)
$$

Dynamic to Static Polarizabilities

$$
\begin{aligned}
& \binom{\alpha_{E \ell}(\omega)}{\beta_{M \ell}(\omega)}=\frac{[\ell(2 \ell-1)!!]^{2}}{\omega^{2 \ell}}\left[(\ell+1) \bar{f}_{\substack{E E}}^{\ell+}(\omega)+\ell \bar{f}_{\substack{E E \\
M M}}^{\ell-}(\omega)\right] \\
& \left.\gamma_{\substack{\text { EEEQ } \\
M \ell M \ell}}(\omega)=\frac{2 \ell-1}{\omega^{2 \ell+1}}\left[\begin{array}{c}
\bar{f}_{E E}^{\ell+}(\omega)-\bar{f}_{\text {EE }}^{\ell-} \\
M M
\end{array}\right)\right], \\
& \underset{\substack{E E \\
M M}}{\bar{f}^{\ell \pm}} \sim \omega^{2 \ell}, \quad \bar{f}_{M M}^{\ell+} \sim \omega^{2 \ell+1}
\end{aligned}
$$

Static Limit, energy=0:

$$
\gamma_{0}=-\gamma_{E 1 E 1}-\gamma_{E 1 M 2}-\gamma_{M 1 M 1}-\gamma_{M 1 E 2}
$$

```
    Forward spin polarizability
    Forward spin polarizability
Backward spin polarizability
\[
\gamma_{\pi}=-\gamma_{E 1 E 1}-\gamma_{E 1 M 2}+\gamma_{M 1 M 1}+\gamma_{M 1 E 2}
\]

\section*{Observables: bilinear relations}

Angular distribution
\[
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{256 \pi^{2} s} \sum_{\sigma^{\prime} \lambda^{\prime} \sigma \lambda}\left|T_{\sigma^{\prime} \lambda^{\prime}, \sigma \lambda}\right|^{2} \quad \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\sum_{n=0}^{4} c_{n} \cos n \theta \quad \text { for } J<5 / 2
\]

Beam asymmetry
\(\Sigma_{3}=\frac{\mathrm{d} \sigma_{\|}-\mathrm{d} \sigma_{\perp}}{\mathrm{d} \sigma_{\|}+\mathrm{d} \sigma_{\perp}}\)

\[
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \Sigma_{3}=\frac{1}{128 \pi^{2} s} \sum_{\sigma^{\prime} \lambda^{\prime} \lambda} \operatorname{Re}\left(T_{\sigma^{\prime} \lambda^{\prime},-1 \lambda}^{*} T_{\sigma^{\prime} \lambda^{\prime}, 1 \lambda}\right)
\]
\[
\stackrel{J<5 / 2}{=} \sin ^{2} \theta \sum_{n=0}^{2} d_{n} \cos n \theta
\]

MAMI 2016:
Sokhoyan et al, EPJA (2016)


\section*{Forward-scattering Sum Rules: linear relations}
\[
T_{\sigma^{\prime} \lambda^{\prime} \sigma \lambda} \stackrel{t=0}{=} \chi_{\lambda^{\prime}}^{\dagger}\left\{f(v) \vec{\varepsilon}_{\sigma^{\prime}}^{*} \cdot \vec{\varepsilon}_{\sigma}+g\left(\underset{\lambda^{\prime}}{v)} \underset{\text { spin-dependent amplítude }}{i}\left(\vec{\varepsilon}_{\sigma^{\prime}}^{*} \times \vec{\varepsilon}_{\sigma}\right) \cdot \vec{\sigma}\right\} \chi_{\lambda}\right.
\]
spin-independent amplítude
\[
\begin{aligned}
f(v) & =-\frac{\alpha}{M}+\frac{v^{2}}{4 \pi^{2}} \int_{0}^{\infty} \frac{\mathrm{d} v^{\prime}}{v^{\prime 2}-v^{2}-i 0^{+}}\left[\sigma_{1 / 2}^{\mathrm{abs}}\left(v^{\prime}\right)+\sigma_{3 / 2}^{\mathrm{abs}}\left(v^{\prime}\right)\right] \\
& =\frac{\sqrt{s}}{2 M} \sum_{L=0}^{\infty}(L+1)^{2}\left\{(L+2)\left(f_{E E}^{(L+1)-}+f_{M M}^{(L+1)-}\right)+L\left(f_{E E}^{L+}+f_{M M}^{L+}\right)\right\} \\
& \stackrel{J<5 / 2}{=} \frac{\sqrt{s}}{M}\left(f_{E E}^{1-}+2 f_{E E}^{1+}+f_{M M}^{1-}+2 f_{M M}^{1+}+6 f_{E E}^{2-}+9 f_{E E}^{2+}+6 f_{M M}^{2-}+9 f_{M M}^{2+}\right), \\
g(v) & =-\frac{\alpha \varkappa^{2} v}{2 M^{2}}+\frac{v^{3}}{4 \pi^{2}} \int_{0}^{\infty} \frac{\mathrm{d} v^{\prime}}{v^{\prime}} \frac{\sigma_{1 / 2}^{\mathrm{abs}}\left(v^{\prime}\right)-\sigma_{3 / 2}^{\mathrm{abs}}\left(v^{\prime}\right)}{v^{\prime 2}-v^{2}-i 0^{+}} \\
& =\frac{\sqrt{s}}{2 M} \sum_{L=0}^{\infty}(L+1)\left\{(L+2)\left(f_{E E}^{(L+1)-}+f_{M M}^{(L+1)-}\right)-L\left(f_{E E}^{L+}+f_{M M}^{L+}\right)-2 L(L+2)\left(f_{E M}^{L+}+f_{M E}^{L+}\right)\right\} \\
& \stackrel{J<5 / 2}{=} \frac{\sqrt{s}}{M}\left(f_{E E}^{1-}-f_{E E}^{1+}-6 f_{E M}^{1+}-6 f_{M E}^{1+}+f_{M M}^{1-}-f_{M M}^{1+}+3 f_{E E}^{2-}-3 f_{E E}^{2+}+3 f_{M M}^{2-}-3 f_{M M}^{2+}\right) .
\end{aligned}
\]

\section*{Empirical Evaluation of Sum Rules}

EVALUATION OF THE FORWARD COMPTON SCATTERING .
PHYSICAL REVIEW D 92, 074031 (2015)

\(f(v)=-\frac{z^{2} \alpha}{M}+\frac{v^{2}}{2 \pi^{2}} \int_{0}^{\infty} \mathrm{d} v^{\prime} \frac{\sigma_{T}\left(v^{\prime}\right)}{v^{\prime 2}-v^{2}-i 0^{+}}\)
\(g(v)=\frac{v}{2 \pi^{2}} \int_{0}^{\infty} \mathrm{d} v^{\prime} \frac{v^{\prime} \sigma_{T T}\left(v^{\prime}\right)}{v^{\prime 2}-v^{2}-i 0^{+}}\).


\section*{Comparison with a prediction from Chiral Perturbation Theory}

\author{
Eur Phys. I. C (2015) 75:604
Do 10.1140 epjc/s \(10052-15-3\)-3 \\ 2-015-379-0
}

PHYSICAL JOURNAL C

Vadim Lensky \({ }^{\text {I2, }}\), ,A, Judith A. McGovern \({ }^{4}\), Vladimir Pascalutsa
Instiut fir Kermhysik and PRISMA Cluster of Excellence, Johames Suutenberg Universititit Mainz, 55128 Mainz, Germany
 \({ }^{3}\) National Research Nuclear University MEPRL Moscow Engineering Physics Institute), 115409 Moscow, Russia
\({ }_{4}\) Theoretical Physics Sroup, School of Physics and Astronomy, University of Mancheserer, Manchester M13 PRL, UK



\section*{Our PWA Anzatz}
I. Determine \(\ell=1\) multipoles in the following model-independent form:
\[
\begin{aligned}
& \bar{f}_{E E}^{1+}\left(E_{\gamma}\right)=E_{\gamma}^{2} \frac{M}{\sqrt{s}}\left[\frac{\alpha_{E 1}}{3}+\frac{E_{\gamma}}{3}\left(\frac{-\alpha_{E 1}+\beta_{M 1}}{M}+\gamma_{E 1 E 1}\right)+\left(\frac{E_{\gamma}}{M}\right)^{2} f_{1}^{R}\left(E_{\gamma}\right)\right], \\
& \bar{f}_{E E}^{1-}\left(E_{\gamma}\right)=E_{\gamma}^{2} \frac{M}{\sqrt{s}}\left[\frac{\alpha_{E 1}}{3}+\frac{E_{\gamma}}{3}\left(\frac{-\alpha_{E 1}+\beta_{M 1}}{M}-2 \gamma_{E 1 E 1}\right)+\left(\frac{E_{\gamma}}{M}\right)^{2} f_{2}^{R}\left(E_{\gamma}\right)\right], \\
& \bar{f}_{M M}^{1+}\left(E_{\gamma}\right)=E_{\gamma}^{2} \frac{M}{\sqrt{s}}\left[\frac{\beta_{M 1}}{3}+\frac{E_{\gamma}}{3}\left(\frac{-\beta_{M 1}+\alpha_{E 1}}{M}+\gamma_{M 1 M 1}\right)+\left(\frac{E_{\gamma}}{M}\right)^{2} f_{3}^{R}\left(E_{\gamma}\right)\right], \\
& \bar{f}_{M M}^{1-}\left(E_{\gamma}\right)=E_{\gamma}^{2} \frac{M}{\sqrt{s}}\left[\frac{\beta_{M 1}}{3}+\frac{E_{\gamma}}{3}\left(\frac{-\beta_{M 1}+\alpha_{E 1}}{M}-2 \gamma_{M 1 M 1}\right)+\left(\frac{E_{\gamma}}{M}\right)^{2} f_{4}^{R}\left(E_{\gamma}\right)\right], \\
& \bar{f}_{E M}^{1+}\left(E_{\gamma}\right)=E_{\gamma}^{3} \frac{M}{\sqrt{s}}\left[\frac{\gamma_{E 1 M 2}}{6}+\frac{E_{\gamma}}{6}\left(\frac{-6 \gamma_{E 1 M 2}+3 \gamma_{M 1 E 2}+3 \gamma_{M 1 M 1}}{4 M}-\frac{\beta_{M 1}}{8 M^{2}}\right)+\left(\frac{E_{\gamma}}{M}\right)^{2} f_{5}^{R}\left(E_{\gamma}\right)\right] \\
& \bar{f}_{M E}^{1+}\left(E_{\gamma}\right)=E_{\gamma}^{3} \frac{M}{\sqrt{s}}\left[\frac{\gamma_{M 1 E 2}}{6}+\frac{E_{\gamma}}{6}\left(\frac{-6 \gamma_{M 1 E 2}+3 \gamma_{E 1 M 2}+3 \gamma_{E 1 E 1}}{4 M}-\frac{\alpha_{E 1}}{8 M^{2}}\right)+\left(\frac{E_{\gamma}}{M}\right)^{2} f_{6}^{R}\left(E_{\gamma}\right)\right]
\end{aligned}
\]

After using sum rules,
4 global parameters (polarizabilities) and 4 energy-dependent (residual functions)
2.The \(\iota=2\) multipoles are small and are either neglected or taken from ChPT

\section*{Fitted database of unpolarized cross section}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Author & Ref. & \(E_{\gamma}[\mathrm{MeV}]\) & \(\vartheta\) [deg] & \(\mathrm{N}_{\text {data }}\) & Symbol \\
\hline Oxley et al. & [29] & 60 & 70-150 & 4 & - \\
\hline Hyman et al. & [30] & 60-128 & 50, 90 & 12 &  \\
\hline Goldansky et al. & [31] & 55 & 75-150 & 5 & \(\nabla\) \\
\hline Bernardini et al. & [32] & 120, 139 & 133 & 2 & - \\
\hline Pugh et al. & [33] & 59-135 & 50, 90, 135 & 16 & - \\
\hline Baranov et al. & [34] & 79, 89, 109 & 90, 150 & 7 & \(\nabla\) \\
\hline Federspiel et al. & [35] & 59, 70 & 60, 135 & 4 & \(\triangle\) \\
\hline Zieger et al. & [36] & 98, 132 & 180 & 2 & \(\checkmark\) \\
\hline Hallin et al. & [37] & 130-150 & 45, 60, 82, 135 & 13 & \(\square\) \\
\hline MacGibbon et al. & [38] & 73-145 & 90-135 & 18 & \(\square\) \\
\hline Olmos de León et al. & [15] & 59-149 & 59-155 & 55 & \(\checkmark\) \\
\hline
\end{tabular}
split into \(\mathrm{N}_{\text {bins }}=11\) energy bins, \(59,69,79,89,99,109,117,127,135,143,150 \mathrm{MeV}\)


Fits and Solutions
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Source & \(\alpha_{E 1}\) & \(\beta_{M 1}\) & \(\gamma_{E 1 E 1}\) & \(\gamma_{M 1 M 1}\) & \(\gamma_{E 1 M 2}\) & \(\gamma_{M 1 E 2}\) & \(\chi^{2} /\) point \\
\hline Fit 0 & \(12.2 \pm 0.3\) & \(1.8 \mp 0.3\) & \(-1.6 \pm 2.6\) & \(1.8 \pm 1.1\) & \(-1.3 \pm 3.7\) & \(2.0 \pm 0.7\) & 1.35 \\
\hline Fit 1 & \(12.2 \pm 0.3\) & \(1.8 \mp 0.3\) & \(-3.1 \pm 0.7\) & \(1.6 \pm 0.3\) & 0.0 & \(2.5 \pm 0.7\) & 1.35 \\
\hline Fit \(1_{3 \sigma}\) & \(11.8 \pm 0.3\) & \(2.2 \mp 0.3\) & \(-2.7 \pm 0.6\) & \(1.5 \pm 0.3\) & 0.0 & \(2.2 \pm 0.7\) & 0.97 \\
\hline Fit \(1^{\prime}\) & \(10.6 \pm 0.3\) & \(3.4 \mp 0.3\) & \(-1.0 \pm 0.8\) & \(1.0 \pm 0.3\) & 0.0 & \(1.0 \pm 0.7\) & 0.99 \\
\hline Fit \(1^{\prime \prime}\) & \(10.2 \pm 0.4\) & \(3.8 \mp 0.4\) & \[
-1.2 \pm 0.8
\] & \(0.6 \pm 0.3\) & 0.0 & \(1.6 \pm 0.8\) & 0.62 \\
\hline \multicolumn{8}{|l|}{\[
\text { no } l=2
\]} \\
\hline Fit 2 & \(11.7 \pm 0.3\) & \(2.3 \mp 0.3\) & \(-2.6 \pm 0.6\) & \(1.1 \pm 0.3\) & 0.0 & \(2.4 \pm 0.7\) & 1.35 \\
\hline \[
\text { Fit } 2^{\prime \prime}
\] & \(10.8 \pm 0.4\) & \(3.2 \mp 0.4\) & \[
-1.9 \pm 0.8
\] & \(0.7 \pm 0.3\) & 0.0 & \(2.2 \pm 0.8\) & 0.69 \\
\hline B \(\chi\) PT & \(11.2 \pm 0.7\) & \(3.9 \pm 0.7\) & \[
-3.3 \pm 0.8
\] & \[
2.9 \pm 1.5
\] & \[
0.2 \pm 0.2
\] & \[
1.1 \pm 0.3
\] & \\
\hline DR & 12.1 & 1.6 & -3.4 & 2.7 & 0.3 & 1.9 & \\
\hline MAMI 2015 & & & \[
-3.5 \pm 1.2
\] & \(3.16 \pm 0.85\) & \[
-0.7 \pm 1.2
\] & \[
1.99 \pm 0.29
\] & \\
\hline
\end{tabular}


\section*{Solutions for 2 different databases vs. ChPT}
\begin{tabular}{lcccc|}
\hline & \(\alpha_{E 1}+\beta_{M 1}\) & \(\gamma_{0}\) & \(\alpha_{E 1}-\beta_{M 1}\) & \(\gamma_{\pi}\) \\
\hline \hline Fit 1 & 14.0 & -0.93 & \(10.5 \pm 0.4\) & \(7.2 \pm 1.0\) \\
\hline Fit 1 & 14.0 & -0.93 & \(7.2 \pm 0.6\) & \(3.0 \pm 1.1\) \\
\hline Fit 1" & 14.0 & -0.93 & \(6.4 \pm 0.6\) & \(3.5 \pm 1.2\) \\
\hline B \(\chi\) PT & \(15.1 \pm 1.0\) & \(-0.9 \pm 1.4\) & \(7.3 \pm 1.0\) & \(7.2 \pm 1.7\) \\
\hline DR & 13.7 & -1.5 & 10.5 & 7.8 \\
\hline
\end{tabular}



\section*{Static polarizabilities of the proton}

- TAPS: fit to TAPS/MAMI data based on fixed-t DRs of L'vov et al.
Olmos de Leon et al., EPJA (2001)
- BChPT: "postdiction" Lensky \& VP, EPJC (2010)
Lensky, McGovern \& VP, EPJC (2015)
- HBChPT: fit to world data Grießhammer, McGovern \& Phillips, EPJA (2013)
- PWA: fit to world data Krupina, Lensky \& VP, PLB (2018)

\section*{Partial-Wave Analysis (PWA):}
differences between DR and ChPT extractions are due to database inconsistencies, improvements - new experiments - are needed!

\section*{How to improve on database consistency}
\begin{tabular}{lcccc|}
\hline & \(\alpha_{E 1}+\beta_{M 1}\) & \(\gamma_{0}\) & \(\alpha_{E 1}-\beta_{M 1}\) & \(\gamma_{\pi}\) \\
\hline Fit 1 & 14.0 & -0.93 & \(10.5 \pm 0.4\) & \(7.2 \pm 1.0\) \\
\hline Fit 1' & 14.0 & -0.93 & \(7.2 \pm 0.6\) & \(3.0 \pm 1.1\) \\
\hline Fit 1" & 14.0 & -0.93 & \(6.4 \pm 0.6\) & \(3.5 \pm 1.2\) \\
\hline \hline B \(\chi\) PT & \(15.1 \pm 1.0\) & \(-0.9 \pm 1.4\) & \(7.3 \pm 1.0\) & \(7.2 \pm 1.7\) \\
\hline DR & 13.7 & -1.5 & 10.5 & 7.8 \\
\hline
\end{tabular}


\section*{Zooming in ...}

\begin{tabular}{lcccc|}
\hline & \(\alpha_{E 1}+\beta_{M 1}\) & \(\gamma_{0}\) & \(\alpha_{E 1}-\beta_{M 1}\) & \(\gamma_{\pi}\) \\
\hline \hline Fit 1 & 14.0 & -0.93 & \(10.5 \pm 0.4\) & \(7.2 \pm 1.0\) \\
\hline Fit 1 \(^{\prime}\) & 14.0 & -0.93 & \(7.2 \pm 0.6\) & \(3.0 \pm 1.1\) \\
\hline Fit 1 \(^{\prime \prime}\) & 14.0 & -0.93 & \(6.4 \pm 0.6\) & \(3.5 \pm 1.2\) \\
\hline \hline B \(\chi\) PT & \(15.1 \pm 1.0\) & \(-0.9 \pm 1.4\) & \(7.3 \pm 1.0\) & \(7.2 \pm 1.7\) \\
\hline DR & 13.7 & -1.5 & 10.5 & 7.8 \\
\hline
\end{tabular}

\section*{109(10) MeV}
"sweet spot" for unpolarized cross section, because of the interplay of scalar and spin polarizabilities

\section*{Conclusions}
I.Accurate model-independent Compton PWA solutions found

\section*{Thanks to:}
- No resonances (below pion production threshold)
- Multipoles are real, neglecting radiative corrections
- Forward-scattering is determined, via the sum rules (photoabsorption cross sections): yields linear relations on the multipoles, rather than bilinear

\section*{and despite:}
- Not much data (about 100 data points, many from old experiments)
2. Discrepancies of DR vs. ChPT extractions of polarizabilities from data are due to the differences in the database
3. Database improvements needed, preferably by new precise data - coming soon from MAMI !..```

