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Concept of polarizabilities
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• A dielectric system in external e.m. field is polarized, e.g. in a 
uniform electric field:

• induced electric dipole polarization:

~P = ↵E1
~E (linear dielectric)

electric polarizability

• for polarization induced by magnetic field:

~P = �M1
~B

magnetic polarizability
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“Classical atom.”
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The	external	field	displaces	the	
nucleus	w.r.t.	the	electron	cloud	until	
the	forces	are	equal:	

The	induced	polarization,

~P = e~d ⌘ ↵E1
~Eext

yields:

proportional	to	the	volume

~Fext = ~Fcloud

e ~Eext =
1
3e⇢

~d =
e2

3V
~d

↵E1 = 3V
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Quantum atom   
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Include	the	external	
field	as	perturbation:  

1st	order	yields	the	Stark	effect.	

2nd	order,	the	polarizability	effect:

probes	the	excitation	spectrum!

Hpert = e~r · ~Eext = e rEext cos ✓

�E(2) =
P
n=2

h1s|Hpert|ni2
E1�En

= 1
2↵E1E2

ext

↵E1 = �2e2
P
n=2

h1s|r cos ✓|ni2
E1�En

⇡ 1.7⇥ 4⇡a3
Bohr

= 5V
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Nucleon is different
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Proton:                                                      ,  cf. experiment: 

1000 times “stiffer” than hydrogen!

V ⇠ hrpi3 ⇡ 0.6 fm3 ↵(exp.)
E1p = (11± 1)⇥ 10�4 fm3

h

diamagnetic: �M1 < 0
paramagnetic: �M1 > 0

Δ (1232) M1/E2

N*(1520) E1/M2
N*(1680) E2/M3

[Baldin sum rule (1960)]

↵E1 + �M1 =
1

4⇡2

1Z

⌫thr

d⌫0
�tot(⌫0)

⌫02
' 14⇥ 10�4fm3
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Partial-Wave Analysis (PWA): 
differences between DR and ChPT extractions are due to database inconsistencies, 
improvements — new experiments — are needed! 

Static polarizabilities of the proton 
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• TAPS:			fit	to	TAPS/MAMI	data	based	
on	fixed-t	DRs	of	L’vov	et	al.																																																				
Olmos	de	Leon	et	al.,	EPJA	(2001)																	

• BChPT:		“postdiction’’																																													
Lensky	&	VP,	EPJC	(2010)																				
Lensky,	McGovern	&	VP,	EPJC	(2015)										

• HBChPT:				fit	to	world	data																									
Grieβhammer,	McGovern	&	Phillips,	EPJA	
(2013)								

• PWA:					fit	to	world	data																																											
Krupina,	Lensky	&	VP,	PLB	(2018)
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Effect on muonic-hydrogen Lamb shift
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Vladimir Pascalutsa — Nucleon at Very Low Q — NStar 2015 — Osaka, May 25-2, 2015

Muonic Hydrogen Lamb shift

13

numerical values reviewed in: A. Antognini et al., Annals Phys. 331, 127-145 (2013).

subleading effects of 
proton structure 

proposed to resolve 
the puzzle

�V (2�) = �V (2�)
elastic + �V (2�)

polariz.
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�Eth
LS = 206.0668(25)� 5.2275(10) (RE/fm)2 theory uncertainty:


2.5µeV

A. De Rujula, Phys. Lett. B693 (2010) 

G. A. Miller, Phys. Lett. B718 (2013)

Figure 7.6: �LT of the nucleons. fig:deltaLT
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Figure 7.7: Summary of available calculations for the polarizability correction to the Lamb shift in µH. fig:LSSummary

55

Compiled	by:		Hagelstein,	Miskimen	&	VP,		
																													Prog.	Part.	Nucl.	Phys.	(2016)
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Summary of polarizability in muonic hydrogen

22
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2S shift

2S HFS

Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.

25 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org418

RESEARCH ARTICLES
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Hyperfine splitting in muonic hydrogen

 8

HFS theory status

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

µp µ 3He+

Magnitude Uncertainty Magnitude Uncertainty
∆EHFS

0 182.443 meV 0.1 × 10−6 1370.725 meV 0.1 × 10−6

∆QED 1.1 × 10−3 1 × 10−6 1.2 × 10−3 1 × 10−6

∆weak+hVP 2 × 10−5 2 × 10−6

∆Zemach 7.5 × 10−3 7.5 × 10−5 3.5 × 10−2 2.2 × 10−4

∆recoil 1.7 × 10−3 10−6 2 × 10−4

∆pol 4.6 × 10−4 8 × 10−5 (3.5 × 10−3)∗ (2.5 × 10−4)∗

∆EHFS(1S) = [1 +∆QED +∆weak+hVP +∆Zemach +∆recoil +∆pol

!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""$
∆TPE

]∆EHFS
0

← GE(Q2), GM (Q2)
← GE , GM , F1, F2

← g1(x,Q2), g2(x,Q2)

A. Antognini BVR47, PSI 09.02.2016 – p. 5

First	experiments	are	planned	at	PSI	and	JPARC!
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Spin structure at low Q

�����

������� �� �����

�
��
��
��
�
��

������ �� �����

���������

����� ����

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-6

-5

-4

-3

-2

-1

δLT (10-4 fm4)

γ E
1
E1

(1
0-
4
fm
4
)

�LT = ��E1E1 +VCS spin GPs

One	of	the	problems	is	“deltaLT	puzzle”:	
where	two	ChPT	calculations	disagree		
by	about	a	factor	of	2

New	relations	among	polarizabilities,	e.g.:

VP	&	Vanderhaeghen,	PRD	(2015)
Lensky,	VP,	Vanderhaeghen	&	Kao,	PRD	(2017)

Lensky,	Hagelstein,	VP	&	Vanderhaeghen,	PRD	(2018)
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Virtual Compton scattering (VCS) and 
generalized polarizabilities (GPs) 
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3

| {z }
Born VCS

| {z }
non-Born VCS

+ += + +

| {z }
Bethe-Heitler

FIG. 1: Mechanisms contributing to ep æ ep“ in the one-photon-exchange approximation: Bethe-Heitler,
Born VCS, non-Born VCS. Thick (thin) solid lines denote the proton (the electron), wavy lines denote pho-
tons. Small circles denote the interaction vertex of a proton with a virtual photon, and the ellipse stands for
the generic non-Born VCS amplitude.

been echoed by theory advances. A number of impressive calculations have been done in heavy-
baryon chiral perturbation theory (HB‰PT) [14–18], albeit showing a rather poor convergence. A
much more empirically viable theory of proton GPs and VCS was developed by Pasquini et al. [19,
20] based on fixed-t dispersive relations (DRs) for the VCS amplitudes. Incidentally, this framework
is used in many experimental studies to extract the GPs from the VCS observables.

The present work is aiming to advance the chiral effective-field theoretic approach by applying
the manifestly Lorentz-invariant variant of baryon chiral perturbation theory (B‰PT) to nucleon
VCS and GPs. As many recent calculations demonstrate (see, e.g., [21–30]), B‰PT shows an
improved convergence over the analogous HB‰PT calculations, and, as result, a more “natural” de-
scription of the nucleon polarizabilities and Compton scattering processes [31–35]. In this paper,
we extend the previous B‰PT calculations of Lensky et al. [34–36], done for nucleon polarizabilities
appearing in real and forward doubly-virtual Compton scattering (RCS and VVCS, respectively),
to the case of GPs and VCS. As in the previous cases, the present calculation is “predictive” in the
sense that it has no free parameters to be fixed by the empirical information from Compton pro-
cesses. And, as in other cases, we find significant improvements in convergence over the analogous
HB‰PT results. Arguably, the main improvement is that our postdictions compare well with the
experimental data on VCS observables, at least given the significant theoretical uncertainties.

The paper is organized as follows. In Sec. II, we open with the general remarks concerning the
connection between polarizabilities and low-energy Compton scattering processes, and then focus
on defining the GPs and the VCS observables. Sec. III contains the details of our B‰PT calculation,
including power-counting, diagrams, theory error estimate, and remarks on a number of technical
issues which arise in these calculations. Sec. IV compares our calculation with previous estimates:
the linear ‡-model, HB‰PT calculations, and fixed-t dispersive estimates. Sec. V confronts the
results with the available experimental data. Sec. VI contains the concluding remarks. Appendix A
contains expressions for the tensors that are used in the decomposition of the VCS amplitude,
whereas Appendix B contains analytic expressions for those combinations of the invariant VCS
amplitudes that contribute to the GPs.

II. POLARIZABILITIES IN COMPTON PROCESSES

Let us start by pointing out that there are two different ways of introducing the momentum-
transfer dependence of polarizabilities: one via the forward doubly-virtual Compton scattering
(VVCS), the other via the single-virtual Compton scattering (VCS). To see the difference, consider
a general Compton scattering (CS) process in Fig. 2, described by a number of scalar amplitudes
Ai, functions of Mandelstam invariants

s = (p + q)2 = (pÕ + q
Õ)2

, t = (q ≠ q
Õ)2 = (pÕ ≠ p)2

, u = (p ≠ q
Õ)2 = (pÕ ≠ q)2

. (1)
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FIG. 11: (Color online) Generalized scalar polarizabilities: (a) –E1(Q2), (b) —M1(Q2). Description of curves
and points is the same as in Fig. 7.

response function PT T in Eq. (13). This would allow one to experimentally access the dominant
spin GP P

(M1,M1)1 for the first time and provide a strong test of the B‰PT predictions presented in
this work.

Additionally, new data on the unpolarized response functions and GPs are expected to arrive
soon from MAMI. These data will complement the Q

2 = 0.2 GeV2 points [13]. In particular,
expected are data at Q

2 = 0.1 GeV2 and Q
2 = 0.45 GeV2, which is in the domain of applicability of

B‰PT. These data will also further test the theoretical predictions.
One has to admit that the current theoretical uncertainty estimate gives a rather sizeable error

band, which should be improved upon. An O(p4) calculation of GPs in B‰PT that would include
the remaining fi� loops that contribute at O(p3) in the high-momenta regime and both the fiN

and fi� O(p4) contributions in this regime would allow to significantly decrease the theoretical
uncertainty.

Acknowledgements

We thank Hélène Fonvieille, Misha Gorchtein, Chungwen Kao, and Barbara Pasquini for stim-
ulating discussions and helpful communications. This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) through the Collaborative Research Center “The Low-Energy Fron-
tier of the Standard Model” (SFB 1044) and the Cluster of Excellence PRISMA. V. L. acknowledges
partial support of this work by the Moscow Engineering Physics Institute Academic Excellence
Project (Contract No. 02.a03.21.0005). We acknowledge the use of FORM [65] in the calculations
and of JaxoDraw [66] in preparation of the figures.

Appendix A: Tensor decomposition of the VCS amplitude

In this section we give the details of the tensor decomposition of the VCS amplitude. The basis used by
us is fli, i = 1, . . . , 12, introduced in Ref. [5]. Its decomposition in terms of Tarrach’s T1, . . . , T34 (which are
given below) reads

fl1 = ≠ q · q
Õ
T1 + T3 ,

fl2 = ≠ 4M
2
›

2
T1 ≠ 4q · q

Õ
T6 + 4M›T7 ,

fl3 = ≠ 2M›Q
2
T1 ≠ M›(T4 + T5) + Q

2(T7 ≠ T8) + q · q
Õ(T9 ≠ T10) ,
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Source “M1E2 “E1M2
B‰PT [36] 1.1 ± 0.3 0.2 ± 0.2

Fixed-t DR [20, 57] 2.2 ≠0.1
HB‰PT [58, 59] 1.9 ± 0.5 ≠0.4 ± 0.6
MAMI 2015 [60] 1.99 ± 0.29 ≠0.7 ± 1.2

TABLE I: Values of proton mixed spin polarisabilities “E1M2 and “M1E2, in units of 10≠4 fm4 resulting in the
different frameworks: O(p4

/∆) B‰PT [36], fixed-t DR [20, 57] based on the MAID-2007 [55] multipoles,
and O(p4) HB‰PT [58, 59], compared with the latest empirical extraction from experimental data [60].

show in Table I the values of the two mixed polarizabilities, “M1E2 and “E1M2, resulting in B‰PT
framework at O(p4

/∆), in fixed-t DR, in HB‰PT at O(p4), and the results of extraction of the spin
polarizabilities from experimental data of one of the beam-target asymmetries, �2x.

V. RESULTS FOR VCS OBSERVABLES

The experiments aiming to measure the GPs are based on the low-energy expansion of the
ep“ process, Eq. (13), which results in the extraction of the VCS response functions. Then, with
some further assumptions on the size of spin GPs, taken usually from the fixed-t DR framework of
Ref. [20], one obtains the two scalar GPs, –E1 and —M1. We first consider our results at the level
of the response functions, since it provides a more direct comparison to experiment.

In Figs. 7 to 10, we show our B‰PT results (red solid line, with cyan band indicating the un-
certainty estimate), compared with the fixed-t DR calculation (blue bands), and experimental data
where available. In this calculation we used the Bradford et al. [63] parametrization of nucleon

0.0 0.1 0.2 0.3 0.4 0.5
Q2 @GeV2D

0

25

50

75

P L
L-
P T

Tê∂
@G
eV
-
2 D

FIG. 7: VCS response function PLL(Q2) ≠ PT T (Q2)/Á. The total O(p3) + O(p4
/∆) result is given by the red

solid curve with the cyan band showing the estimated theoretical uncertainty as explained in the text. DR
results [20] are shown by the blue band. The curves correspond to Á = 0.65. The data shown are: black
open circle, PDG 2014 [61]; blue circle, Olmos de León et al [62]; green diamond, MIT-Bates (DR) [7, 8];
green open diamond, MIT-Bates (LEX) [7, 8]; purple solid square, MAMI (DR) [13]; purple open square,
MAMI (LEX) [13]; red solid triangle, MAMI1 (LEX) [9]; red solid inverted triangle, MAMI1 (DR) [11]; red
open triangle, MAMI2 (LEX) [10]. Some of the data points are shifted to the right in order to enhance their
visibility; namely, Olmos de León, MIT-Bates (LEX), MAMI LEX, MAMI1 DR and MAMI2 LEX sets have the
same values of Q

2 as PDG, MIT-Bates (DR), MAMI DR, and MAMI1 LEX, respectively.
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FIG. 8: VCS response function PLT (Q2). Notation is as in Fig. 7.

form factors, as input in Eq. (14). The bands of the DR results are obtained by varying the dipole
cut-offs �– and �— within the uncertainties given in Sec. IV C.

The first two response functions, PLL ≠ PT T /Á and PLT (Fig. 7 and 8), are used to extract
–E1(Q2) and —M1(Q2), respectively. Our results here are in good agreement with the data as well
as with the DR results. The only place of disagreement is PLT (0) = ≠2M—M1/–em, due to the
larger value of the static magnetic polarizability resulting in B‰PT, as mentioned already in the
previous section.
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FIG. 9: VCS response function P
‹
LT (Q2). Notation is as in Fig. 7, except from the data: red square,

MAMI [12], and the green dotted curve that shows the B‰PT result with only the contribution of PLL

included, see Eq. (15).

Apart from these two response functions extracted from unpolarized measurements, there has
been a single low-Q2 double-polarization experiment at MAMI [12] extracting the response func-
tion P

‹
LT defined in Eq. (15). This data point, together with theoretical curves, is shown in Fig. 9.

This is perhaps the only place where one can see that the B‰PT calculation is in a better agreement
with the data than the DR calculation. On the other hand, the slope at Q

2 = 0 is in a perfect
agreement between the two calculations.

preliminary MAMI data: 
L. Corea, H. Fonvieille,  

H. Merkel et al. [A1 Coll.] 

NLO-BChPT:		Lensky,	VP	&	Vanderhaeghen,	EPJC	(2017)	[1612.08626]	
			Fixed-t	DR:		Pasquini	et	al.,	PRC	(2000);	EPJA	(2001)
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Evaluation of the forward Compton scattering off protons:
Spin-independent amplitude
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We evaluate the forward Compton scattering off the proton, based on Kramers-Kronig kind of relations
which express the Compton amplitudes in terms of integrals of total photoabsorption cross sections. We
obtain two distinct fits to the world data on the unpolarized total photoabsorption cross section and evaluate
the various spin-independent sum rules using these fits. For the sum of proton electric and magnetic dipole
polarizabilities governed by the Baldin sum rule, we obtain the following average (between the two fits):
αE 1 þ βM1 ¼ 14.0ð2Þ × 10−4 fm3. An analogous sum rule involving the quadrupole polarizabilities of the
proton is evaluated too. The spin-independent forward amplitude of proton Compton scattering is evaluated
in a broad energy range. The results are compared with previous evaluations and the only experimental data
point for this amplitude (at 2.2 GeV). We remark on sum rules for the elastic component of polarizabilities.
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I. INTRODUCTION

It is long known that the forward Compton scattering
(CS) amplitudes can, by unitarity, causality, and crossing,
be expressed through integrals of the photoabsorption cross
sections [1]. The low-energy expansions of these expres-
sions lead to a number of useful sum rules, most notably
those of Baldin [2], and GDH [3,4]. Given the photo-
absorption cross sections, one can, thus, provide a reliable
assessment of some of the static electromagnetic properties
of the nucleon and nuclei, as well as of the forward CS
amplitudes in general. For the proton, the first such
assessments were performed in the early 1970s [5,6].
Since then, the knowledge of the photoabsorption cross
sections appreciably improved, and yet for the unpolarized
case, only the Baldin sum rule has been updated [7–9]. In
this work, we provide a reassessment of the forward spin-
independent amplitude of proton CS and evaluate the
associated sum rules involving the dipole and quadrupole
polarizabilities of the proton.
Sum rules are essentially the only way to gain empirical

knowledge of the forward CS amplitudes. It is impossible
to access the forward kinematics in real CS experiments.
The measurement of the forward spin-independent CS
amplitude can be done indirectly through the process of
dilepton photoproduction (γp → peþe−) [10]. The time-
like CS involved in the process of dilepton photoproduction
yields access to real CS given the small virtuality of the
outgoing photon, or equivalently, the nearly vanishing
invariant mass of the produced pair. The experimental
result [10] compared well with the aforementioned eval-
uations [5,6]. Despite the substantial additions to the
database of total photoabsorption cross sections, the works

of Damashek and Gilman (DG) [5] as well as Armstrong
et al. [6] remained to be, until now, the only evaluations of
the full amplitude.
The newer data were used, however, in the most recent

evaluations of the Baldin sum rule [8,9], which yields
the sum of the electric and magnetic dipole polarizabil-
ities, Eq. (9). These recent analyses obtained a somewhat
lower value for the sum than DG; cf. Table III. In this
work, we find that the difference between the early and
the recent evaluations arises from systematic inconsis-
tencies in the experimental database. We also obtain the
sum rule value for a combination of higher-order quadru-
pole polarizabilities and compare it with several theo-
retical predictions.
This paper is organized as follows. In Sec. II we give a

brief overview of the Kramers-Kronig relation and sum
rules for polarizabilities. In Sec. III we discuss the fitting
procedure for the unpolarized total proton photoabsorption
cross section data. The sum rule evaluations of scalar
polarizabilities and of the spin-independent forward CS
amplitude are presented in Sec. IV. Conclusions are given
in Sec. V. The Appendix demonstrates the elastic-channel
contribution to the sum rules and polarizabilities on the
example of one-loop scalar QED.

II. FORWARD COMPTON AMPLITUDE
AND SUM RULES

For a spin-1=2 target, such as the proton, the forward CS
amplitude is given by

Tfi ¼ fðνÞε0% · εþ gðνÞiðε0% × εÞ · σ; ð1Þ
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Spin-dependent amplitude and observables

Oleksii Gryniuk, Franziska Hagelstein, and Vladimir Pascalutsa
Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz,

D-55128 Mainz, Germany
(Received 7 April 2016; published 31 August 2016)

The forward Compton scattering off the proton is determined by substituting the empirical total
photoabsorption cross sections into dispersive sum rules. In addition to the spin-independent amplitude
evaluated previously [Phys. Rev. D 92 , 074031 (2015)], we obtain the spin-dependent amplitude over a
broad energy range. The two amplitudes contain all the information about the forward CS process and we
hence can reconstruct the observables. The results are compared with predictions of chiral perturbation
theory where available. The low-energy expansion of the spin-dependent Compton scattering amplitude
yields the Gerasimov-Drell-Hearn (GDH) sum rule and relations for the forward spin polarizabilities (FSPs)
of the proton. Our evaluation provides an empirical verification of the GDH sum rule for the proton and
yields empirical values of the proton FSPs. For the GDH integral, we obtain 204.5ð21.4Þ μb, in agreement
with the sum rule prediction: 204.784481ð4Þ μb. For the FSPs, we obtain γ0 ¼ −92.9ð10.5Þ × 10−6 fm4

and γ̄0 ¼ 48.4ð8.2Þ × 10−6 fm6, improving on the accuracy of previous evaluations.
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I. INTRODUCTION

The forward Compton scattering (CS) off a spin-1=2
target, such as the nucleon, is described by two complex
functions of the photon energy ν: the spin-independent
amplitude, fðνÞ, and the spin-dependent amplitude, gðνÞ.
The general requirements of unitarity and causality allow
one to express these amplitudes in terms of integrals of total
photoabsorption cross sections [1] (see Refs. [2,3] for
reviews). At least for the proton, these cross sections are
fairly well known by now, and, whereas in the previous
paper [4] we obtained the spin-independent amplitude, here
we evaluate the spin-dependent one. Having both of them,
we can reconstruct all observables of the forward CS off the
proton.
This is essentially the only way to access the forward CS

observables empirically—a direct observation of strictly
forward CS is not possible in practice. Indirectly, the
forward CS can be measured through dilepton photo-
production, where the timelike CS enters prominently in
certain kinematics, while the photon virtuality is small
(quasireal CS). However, the only experiment of this kind
was done at DESY in 1973 [5], measuring the spin-
independent amplitude f at 2.2 GeV.
The spin-dependent amplitude gðνÞ has not yet been

measured through the dilepton photoproduction, and not
much is known about it empirically. Until now, only its
low-energy expansion has been studied. The leading-order
term yields the Gerasimov-Drell-Hearn (GDH) sum rule
[6,7], which has recently been verified for the proton by the
GDH Collaboration [8–11]. The forward spin polarizability
(FSP) sum rules, arising at the next two orders, have been
evaluated by Pasquini et al. [12]. In this work, having

evaluated gðνÞ over a broad energy range, we, too, consider
its low-energy expansion and hence reevaluate the sum
rules. The results are compared with the previous evalu-
ations in Table I.
The results for the energy dependence of the amplitude

gðνÞ and the observables can be compared with theoretical
calculations. At low the energies, we shall compare to the
calculations based on chiral perturbation theory ( χPT).
More specifically, in the lower panels of Figs. 3, 4, and 5,
our results are compared to the calculations of Lensky et al.
[15,18,19] done in the manifestly covariant baryon χPT
(BχPT). Other state-of-art χPT calculations of proton CS,
based on the heavy-baryon expansion (HBχPT) [16,20],
were shown [21] to be in agreement with the aforemen-
tioned BχPT calculation, within the estimated theoretical
uncertainties. Therefore, in the figure, we only plot one of

TABLE I. Empirical evaluations of the GDH and FSP integrals.

IGDH
(μb)

γ0
(10−6 fm4)

γ̄0
(10−6 fm6)

GDH & A2 [9,11] ≈212 ≈ − 86

60$7$7
48.4$8.2

Helbing [13] 212$ 6$ 12

−90$8$11
−92.9$10.5

Bianchi-Thomas[14] 207$ 23
Pasquini et al. [12] 210$ 6$ 14
This work 204.5$ 21.4
GDH sum rule 204.784481ð4Þa

−90$ 140
−260$190

110$ 50BχPT [15]
HBχPT [16]

aRight-hand side of Eq. (7) with CODATA [17] values of
proton M and κ.
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Causality Rules
A light treatise on dispersion relations and sum rules

Vladimir Pascalutsa

Chapter 1

Introduction and outline

Once to everyone’s delight
God said in void: ‘Let there be light!’
And I’d been singing Hallelujah!
Until I wished the answer knew I
What is the light and why it speeds
And so, my friend, the answer
reads...

The subject of dispersion relations is about a century old. Its beginnings are
marked by the celebrated works of de Kronig [1] and Kramers [2] in the mid-1920s.
In particle physics it boomed in the 1950s and 60s, with the development of quantum
field theory and the rapid advancement of the physics of strongly interacting
particles—hadrons and atomic nuclei. Amid these developments, Gell-Mann,
Goldberger and Thirring [3] derived a relativistic Kramers–Kronig type of relation
for the forward Compton scattering, which paved the way for the discovery of new
profound relations called sum rules. The prominent examples of these relations, to be
discussed here, include the ones named after Baldin [4], Gerasimov–Drell–Hearn
(GDH) [5, 6], Burkhardt–Cottingham (BC) [7], and Schwinger [8].

For a while, dispersion theory became the main approach to the physics of the
strong interaction. That is, of course, until quantum chromodynamics (QCD) took
over in the 1970s and 80s. Nonetheless, dispersive methods continue to be intensely
used in this field, complementing the ab initio calculations based on lattice QCD
and/or (chiral) effective field theories.

The use of dispersion relations and sum rules in hadron and nuclear physics is
often of an empirical nature. These are general, model-independent relations
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We review the current state of knowledge of the nucleon polarizabilities and of their
role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic
concepts, the recent lattice QCD calculations and advances in chiral effective-field theory.
On the experimental side, we review the ongoing programs aimed to measure the
nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real
and virtual photons. A great part of the review is devoted to the general constraints
based on unitarity, causality, discrete and continuous symmetries, which result in model-
independent relations involving nucleon polarizabilities. We (re-)derive a variety of such
relations and discuss their empirical value. The proton polarizability effects are presently
themajor sources of uncertainty in the assessment of themuonic hydrogen Lamb shift and
hyperfine structure. Recent calculations of these effects are reviewed here in the context
of the ‘‘proton-radius puzzle’’. We conclude with summary plots of the recent results and
prospects for the near-future work.
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•No resonances (below pion production threshold) 

•Multipoles are real, neglecting radiative corrections 

•Forward-scattering is determined, via the sum rules (photoabsorption cross sections): 

yields linear relations on the multipoles, rather than bilinear 

•Not much data (about 100 data points, many from old experiments)

2

| {z }
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| {z }
non-Born
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FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,

f̄ =
�

f̄
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EE
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EE
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MM
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MM
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, f̄
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�
,

(2)
the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]

f̄
l±
EE

⇠ f̄
l±
MM

⇠ w2l , f̄
l+
EM

⇠ f̄
l+
ME

⇠ w2l+1 , (3)

Furthermore, the existing BcPT calculations [13, 14] show
that the four l = 2 non-Born multipoles, f̄

2+
EE

, f̄
2�
EE

, f̄
2+
MM

, f̄
2�
MM

,
give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]
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Furthermore, the existing BcPT calculations [13, 14] show
that the four l = 2 non-Born multipoles, f̄
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give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:

f̄
1+
EE

(n) = n2 Mp
s


aE1

3
+

n
3

✓
�aE1 +bM1

M
+ gE1E1

◆
+
⇣ n

M

⌘2
f

R

1 (n)
�
,

f̄
1�
EE

(n) = n2 Mp
s


aE1

3
+

n
3

✓
�aE1 +bM1

M
�2gE1E1

◆
+
⇣ n

M

⌘2
f

R

2 (n)
�
,

f̄
1+
MM

(n) = n2 Mp
s


bM1

3
+

n
3

✓
�bM1 +aE1

M
+ gM1M1

◆
+
⇣ n

M

⌘2
f

R

3 (n)
�
, (4)

f̄
1�
MM

(n) = n2 Mp
s


bM1

3
+

n
3

✓
�bM1 +aE1

M
�2gM1M1

◆
+
⇣ n

M

⌘2
f

R

4 (n)
�
,

f̄
1+
EM

(n) = n3 Mp
s


gE1M2

6
+

n
6

✓
�6gE1M2 +3gM1E2 +3gM1M1

4M
� bM1

8M2

◆
+
⇣ n

M

⌘2
f

R

5 (n)
�
,

f̄
1+
ME

(n) = n3 Mp
s


gM1E2

6
+

n
6

✓
�6gM1E2 +3gE1M2 +3gE1E1

4M
� aE1

8M2

◆
+
⇣ n

M

⌘2
f

R

6 (n)
�
,

where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w
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brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
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. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.
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tipoles. This is of course the usual situation for any PWA, an
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helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:
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where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f
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i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.
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helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
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s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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Extending these arguments to the Compton channel, we obtain

T
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� � = V

Jp
� � +

3/2X

I=1/2

��T IJp
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��2 �
� tan �I

`p + i
�
. (3.39)

There are two interesting results here. The first is that the imaginary part of the partial-wave RCS amplitude is given by the
isospin sum of the photoproduction amplitudes squared. In this case the sum over the isospin is equivalent to the sum over
the charged states, hence, e.g., for the proton
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The second result concerns the �(1232) resonance, which is the only resonance occurring between the one- and two-
pion production thresholds. Recall that, in the⇡N scattering, this resonance occurs in the P33 partial wave (i.e., I = 3/2 = J ,
` = 1, p = +). The position, M�, of such an elastic resonance is identified with the phase-shift crossing 90�. This means
the tangent terms in Eq. (3.39) blow up and can only be canceled by a singularity in V� � . Near the resonance position the
K -matrix takes the form
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⇡

M���
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�)

, (3.41)

where �� is the resonance width, and hence the cancellation is achieved when
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Thus, unitarity provides a stringent relation among the�(1232)-resonance parameters occurring in the different processes.
As a consequence, the �(1232)-resonance contribution to polarizabilities is constrained too.

These results apply as well to the multipole amplitudes. In particular, the imaginary parts of the Compton multipoles,
between the one- and two-pion production thresholds, are given by the pion photoproduction multipoles:
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where the sum is over the charged ⇡N states, i.e: c = ⇡0p, ⇡+n and c = ⇡0n, ⇡�p for the proton and neutron RCS,
respectively. As mentioned above, an equivalent result is obtained by summing over the isospin states.

3.6. Expansion in static versus dynamic polarizabilities

The celebrated LET for RCS [137–139] can be extended to include higher-order terms, parametrized in terms of
polarizabilities [1]. It is customary to separate out the Born contribution by writing

T = T Born
+ T , (3.44)

such that T Born is the Born contribution specified in Appendix A. In the low-energy limit, it yields the classic LET. The rest
(non-Born), T , is expanded in powers of energy with coefficients given by static polarizabilities. For example, the LEX of the
non-Born part of the 6 invariant amplitudes of the decomposition (3.27) goes as (in the Breit frame):
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Unitary	relation	to	pi-photoproduction	multipoles	
(	between	1	and	2	pion	thresholds	):
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initial (final) nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

with J the total angular momentum of the photon-proton sys-
tem, T

J

s 0l 0,sl (w) the partial-wave amplitudes, d
J

l 0,l (q) the
Wigner d-function, w and q the photon energy and scatter-
ing angle in the center-of-mass frame; s, t, u are Mandelstam
invariants.

The partial-wave amplitudes T
J(w) are then linearly re-

lated to the amplitudes with definite parity and angu-
lar momentum l, i.e., multipoles f

l±
rr 0(w), with r,r 0 =

E(lectric), or M(agnetic). The infinite sum over half-integer J

is then replaced by the sum over integer l = J⌥1/2. Note that
f

0+
rr 0 = 0, by definition; hence the summation starts at l = 1.

In this work, we first write the amplitude as the sum of
the Born, T

Born, and the rest (non-Born) T̄ , as illustrated in
Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born + f̄ . We then truncate the multipole expansion of
the non-Born amplitude at J = 3/2, whereas the Born ampli-

tude is treated exactly. We thus retain the ten lowest non-Born
multipoles,
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [25]
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given by the latest BcPT calculation [14]. We shall therefore
fit only the six l = 1 non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:
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where we changed the photon energy from the center-of-mass
w to the lab frame Eg = w

p
s/M. The first term in each

of the square brackets of Eq. (4) is given by one of the six
static polarizabilities, four of which, denoted by g’s, are spin-
dependent. The 2nd terms are the recoil corrections (see, e.g.,
Ref. [14]). The 3rd terms are given by the “residual func-
tions” f

R

i
. The parametrization of Eq. (4) ensures the correct

low-energy behavior of these multipoles. It does not imply
any approximation: the six static polarizabilities as well as

the residual functions are free parameters, which will next be
determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
experimental observable, such as cross section or asymmetry,
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Fig. 3.3. The scalar dipole and quadrupole dynamic polarizabilities of the proton, in units of 10�4 fm3 and 10�4 fm5, respectively. The curves are the results
of the B�PT calculation of Lensky et al. [54] (red bands), compared with the results of the DR calculation of Hildebrandt et al. [119] (black dot-dashed) and
with the results of Aleksejevs and Barkanova [141,142] (green dotted, not shown for the quadrupole polarizabilities). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Certainly, the convergence radius of such a Taylor expansion is limited by the first singularity, which in the nucleon case
is set by the pion-production branch cut (neglecting the small effects from radiative corrections). An expansion which
extends beyond the pion-production threshold is the multipole expansion. The relation between the two expansions
(i.e., polarizability versus multipole) is as follows.

One can divide out the Born contribution in the multipole amplitudes, f = f Born + f̄ . The non-Born part of the multipoles
is then used to define the dynamic polarizabilities as [143]:
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Given that the low-energy behavior of the non-Born part of multipoles goes as

f̄ `±
EE
MM

⇠ !2`, f̄ `+
EM
ME

⇠ !2`+1, (3.47)

the low-energy limit of (3.46a) and (3.46c) is straightforward and corresponds with the static polarizabilities. The limit of
(3.46b) needs more care, but the matching to the static polarizabilities is possible as well [54]. As an illustration, Fig. 3.3
shows the plots of the scalar dynamic polarizabilities of the proton from Ref. [54].

3.7. Polarized observables

Besides the unpolarized differential cross section, given by Eq. (3.9), and the linearly-polarized photon beam asymmetry
⌃3, Eq. (3.16), there is a number of observables that depend on polarization of the (nucleon) target. Here we only consider
the case when the polarizations of the final particles (scattered photon and recoiled nucleon) are not observed.

We consider the photon, traveling along the z-axis, with a linear polarization and P�
T at the angle � with respect to the

scattering plane xz, and the right-handed circular polarization P�
R . The degree of the target polarization along the x-, y-,

z-direction is denoted as Px, Py, Pz respectively. In this case the polarized cross-section element is given by

d� = d� unpol.⇥1 + P�
T ⌃3 cos 2� + Px

�
P�
R ⌃2x + P�

T ⌃1x sin 2�
�

+ Py
�
⌃y + P�

T ⌃3y cos 2�
�
+ Pz

�
P�
R ⌃2z + P�

T ⌃1z sin 2�
�⇤

, (3.48)

where d� unpol. stands for the unpolarized cross section and ⌃ ’s denote the various asymmetries. This notation for
asymmetries ismotivated by Babusci et al. [96]. The conversion to the standard notation adopted inmeson photoproduction
(see, e.g., Appendix A of Worden [144]) is as follows:

⌃3 = �⌃, ⌃2x = F , ⌃1x = �H, ⌃y = T , ⌃3y = �P, ⌃2z = �E, ⌃1z = G. (3.49)
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4.3. Determination of proton spin polarizabilities

Compared to the situation for the proton scalar polarizabilities, relatively little is known experimentally about the spin
polarizabilities. Prior to the advent of single-polarized and double-polarized CS asymmetry measurements, only two linear
combinations of the polarizabilities were known. One combination is the forward spin polarizability:

�0 = ��E1E1 � �E1M2 � �M1M1 � �M1E2, (4.8)

fixed by the GTT sum rule (5.24). The results of the GTT sum rule evaluation are summarized in Table 5.2. The other
combination is the backward spin polarizability �⇡ :

�⇡ = ��E1E1 � �E1M2 + �M1M1 + �M1E2. (4.9)

The forward (backward) spin polarizability, according to its name, appears in the spin-dependent CS amplitude at forward
(backward) kinematics. More specifically, in both kinematics the CS amplitude splits into a spin-independent and spin-
dependent part, i.e.:

1
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and the low-energy expansion for the scalar amplitudes goes as follows [96]:
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Hence, �0 and �⇡ appear at O(⌫3) in the LEX of the spin-flip amplitude at, respectively, the forward and backward scattering
angle.

Fig. 4.6 shows the sensitivity of backward angle CS cross sections in the �(1232) region to �⇡ . The most widely accepted
value for �⇡ is actually an average of three measurements at MAMI performed with different detector configurations:
TAPS [17], LARA [18,19], and SENECA [20]. All three of themeasurements agreewithin their statistical and systematic errors,
and the average value is [20]:

�⇡ = (8.0 ± 1.8) ⇥ 10�4 fm4, (4.12)
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4.3. Determination of proton spin polarizabilities

Compared to the situation for the proton scalar polarizabilities, relatively little is known experimentally about the spin
polarizabilities. Prior to the advent of single-polarized and double-polarized CS asymmetry measurements, only two linear
combinations of the polarizabilities were known. One combination is the forward spin polarizability:

�0 = ��E1E1 � �E1M2 � �M1M1 � �M1E2, (4.8)

fixed by the GTT sum rule (5.24). The results of the GTT sum rule evaluation are summarized in Table 5.2. The other
combination is the backward spin polarizability �⇡ :

�⇡ = ��E1E1 � �E1M2 + �M1M1 + �M1E2. (4.9)

The forward (backward) spin polarizability, according to its name, appears in the spin-dependent CS amplitude at forward
(backward) kinematics. More specifically, in both kinematics the CS amplitude splits into a spin-independent and spin-
dependent part, i.e.:
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Hence, �0 and �⇡ appear at O(⌫3) in the LEX of the spin-flip amplitude at, respectively, the forward and backward scattering
angle.

Fig. 4.6 shows the sensitivity of backward angle CS cross sections in the �(1232) region to �⇡ . The most widely accepted
value for �⇡ is actually an average of three measurements at MAMI performed with different detector configurations:
TAPS [17], LARA [18,19], and SENECA [20]. All three of themeasurements agreewithin their statistical and systematic errors,
and the average value is [20]:

�⇡ = (8.0 ± 1.8) ⇥ 10�4 fm4, (4.12)
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Fig. 3.3. The scalar dipole and quadrupole dynamic polarizabilities of the proton, in units of 10�4 fm3 and 10�4 fm5, respectively. The curves are the results
of the B�PT calculation of Lensky et al. [54] (red bands), compared with the results of the DR calculation of Hildebrandt et al. [119] (black dot-dashed) and
with the results of Aleksejevs and Barkanova [141,142] (green dotted, not shown for the quadrupole polarizabilities). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Certainly, the convergence radius of such a Taylor expansion is limited by the first singularity, which in the nucleon case
is set by the pion-production branch cut (neglecting the small effects from radiative corrections). An expansion which
extends beyond the pion-production threshold is the multipole expansion. The relation between the two expansions
(i.e., polarizability versus multipole) is as follows.

One can divide out the Born contribution in the multipole amplitudes, f = f Born + f̄ . The non-Born part of the multipoles
is then used to define the dynamic polarizabilities as [143]:
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Given that the low-energy behavior of the non-Born part of multipoles goes as
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⇠ !2`+1, (3.47)

the low-energy limit of (3.46a) and (3.46c) is straightforward and corresponds with the static polarizabilities. The limit of
(3.46b) needs more care, but the matching to the static polarizabilities is possible as well [54]. As an illustration, Fig. 3.3
shows the plots of the scalar dynamic polarizabilities of the proton from Ref. [54].

3.7. Polarized observables

Besides the unpolarized differential cross section, given by Eq. (3.9), and the linearly-polarized photon beam asymmetry
⌃3, Eq. (3.16), there is a number of observables that depend on polarization of the (nucleon) target. Here we only consider
the case when the polarizations of the final particles (scattered photon and recoiled nucleon) are not observed.

We consider the photon, traveling along the z-axis, with a linear polarization and P�
T at the angle � with respect to the

scattering plane xz, and the right-handed circular polarization P�
R . The degree of the target polarization along the x-, y-,

z-direction is denoted as Px, Py, Pz respectively. In this case the polarized cross-section element is given by
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where d� unpol. stands for the unpolarized cross section and ⌃ ’s denote the various asymmetries. This notation for
asymmetries ismotivated by Babusci et al. [96]. The conversion to the standard notation adopted inmeson photoproduction
(see, e.g., Appendix A of Worden [144]) is as follows:

⌃3 = �⌃, ⌃2x = F , ⌃1x = �H, ⌃y = T , ⌃3y = �P, ⌃2z = �E, ⌃1z = G. (3.49)
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Figure 7.1: ↵E1 and �M1 of the nucleons. fig:alphaVSbeta

Figure 7.2: Dipole polarizabilities for the proton. fig:alphabeta_p
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3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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involves the amplitude squared.
Take for instance the unpolarized angular distribution
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where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
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term in the sum-rule expressions (due to the proton charge
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are different).
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tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.
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The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f
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3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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ciple, each cn can be extracted from the fit to the data, and
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are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

Angular distribution

Beam asymmetry

4

dependent functions.

III. CS DATABASE AND FITTING STRATEGY

The world database on the unpolarized angular distribution
of proton CS, below the pion-production threshold, is summa-
rized in Table I, cf. [3, 28]. The number of data points con-
tributed by each experiment is indicated in the column Ndata.
The database is split into Nbins = 11 energy bins, with the cen-
tral values at1

59, 69, 79, 89, 99, 109, 117, 127, 135, 143, 150 MeV. (12)

We fit all these data simultaneously, hence the number of pa-
rameters is 4 + 4Nbins = 48. This is quite a large number,
and we perform the fitting in two stages: 1) a Monte-Carlo
swipe fixing the residual functions, by finding the least c2 for
a large ensemble of parameters taking random values from
normal (Gaussian) distribution; 2) the c2 is further reduced
by fitting the static polarizabilities, whilst keeping the resid-
ual functions fixed. The first stage sampled f

R

1,4(Eg) from a
normal distribution centered at zero with standard deviation
10⇥10�4 fm3, whereas the distributions for f

R

5,6(Eg) are cen-
tered at zero, with the standard deviation 10�4 fm4. These
choices for the widths of the normal distribution are dictated
by the “natural size” argument based on the known values of
the static polarizabilities. However, the use of normal distribu-
tion allows for these functions to take any values in principle.

Our fit to the database of Table I results in Fit 0 of Table II.
The results of Fit 1 correspond to the fit where the small (ac-
cording to many existing analyses, cf. the last 3 rows of Ta-
ble II) spin polarizability gE1M2 is set to zero. The results of
the two fits are consistent with each other, albeit Fit 1 provides
a much better accuracy. We take it as a sign of insufficient
data quality for the accurate determination of the small value
of gE1M2, and keep gE1M2 = 0 in our subsequent fits.

FIG. 2: Distribution of c2 contributions per data point in Fit 1. The
4 points above the 3s line correspond with: Ref. [15] at {Eg ,J} =
{89 MeV, 155�} and {109 MeV, 133�}; Ref. [29] at {60 MeV, 150�};
Ref. [31] at {55 MeV, 150�}.

1 We have tried to optimize the number of energy-bins to minimize the num-
ber of fitting parameters. Thus, we omitted the data from the very low-
energy region (below 50 MeV), such as those of Federspiel et al. [35],
which would have relatively low number of points per bin. We have also
omitted two data points from the same source taken at 65.8 MeV, in order
to avoid having a separate bin.
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FIG. 3: The beam asymmetry as function of the scattering angle at
79� 98, 98� 119 and 119� 139 MeV of beam energy. The exper-
imental data are from Sokhoyan et al. [43]. The blue and red bands
correspond to the solutions of Fit 1 and Fit 100, respectively.

The three subsequent fits in Table II are done upon various
“refinements” of the database involving deletion of “outliers”.
Namely,

• in Fit 13s , the outliers are identified according to the
simple 3s rule [41, 42], i.e., as those that deviate more
than 3s from Fit 1, see Fig. 2.

• In Fit 10, the 4 deleted outliers are: Ref. [15] at
{Eg ,J} = {89 MeV, 133�} and {109 MeV, 133�};
Ref. [29] at {60 MeV, 120�} and {60 MeV, 150�}.
Hence, two of the deleted points are the same as in the
previous fit and two are different. The latter two point
are selected by hand such as to drive the fit closer to the
BcPT-predicted cross section.

• In Fit 100, we purge the database in accordance to what
is done in cPT fits as described in [3], i.e.: omit the
data of Oxley et al. [29] entirely, Bernardini et al. [32]
entirely, Baranov et al. [34] at qlab = 150�, and Olmos
de León et al. [15] at {109 MeV, 133�}. Furthermore, as
in [3], we add 5% systematic uncertainty (point-to-point
in quadrature with the statistical error) to the points of
Ref. [15]. Unlike [3], we do not include the floating
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FIG. 5: Unpolarized cross section of proton CS as function of scat-
tering angle in the lab frame at photon-beam energy 59 MeV (top
panel) and 109 MeV (bottom panel). The legend for experimental
data points is given in Table I. The error band on the fit 1 is obtained
by the simple error-propagation of the fit values of the static polariz-
abilities only. The other fits have a comparable error band, which is
not shown here for clarity.

V. SUMMARY AND CONCLUSION

We presented a first partial-wave analysis of proton Comp-
ton scattering data below the pion-production threshold (Eg .
150 MeV). The only approximations, or model-dependent as-
sumptions, we made concern the truncation of the partial-
wave expansion:

• we account for the lowest l = 1 and 2 terms, neglecting
J � 5/2 contributions;

• for the l = 2 multipoles, we assume the values given by
the NNLO BcPT calculation [13, 14], and check that
the results do not change qualitatively if we put them to
0 (cf. Fit 2 variety in Table II).

The proper low-energy behavior of the (non-Born piece of)
multipoles is ensured through the parameterization in terms of
lowest static polarizabilities, see Eq. (4). The sum rules for the
forward amplitudes impose two linear relations on the multi-
poles, leaving us with only four of the six amplitudes to be
determined from the Compton angular-distribution data. The
accuracy of the resulting solutions is significantly improved
by setting (the small spin polarizability) gE1M2 = 0 by hand.

The extracted multipoles depend significantly upon very
mild refinements of the world database of proton Compton
scattering. The characteristic difference between the state-
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FIG. 6: Same as in Fig. 5, for all the energy bins.

of-art DR and cPT analyses is likely to be explained by the
database inconsistencies, rather than by differences in the the-
oretical framework. We claim that these inconsistencies are
best to be addressed by a new precise measurement of the
angular distribution at Eg ⇡ 109 MeV and backward angles
(cf. Fig. 5). Accurate data on polarized observables, such as
the beam asymmetry, could be helpful too.

The ongoing Compton scattering experiment by the A2
Collaboration at MAMI may soon provide a considerable im-
provement of the database, in both the angular distribution
and beam asymmetry. Until then, the static polarizabilities
may continue to be extracted in a rather wide range of values,
manifested by our fit results in Table II.
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involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:
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J<5/2
= sin2 q

2

Â
n=0

dn cosnq , (8)

thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:

Ts 0l 0sl
t=0
= c†

l 0
�

f (n)~e⇤s 0 ·~es +g(n) i(~e⇤s 0⇥~es ) ·~s
 

cl , (9)

where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
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sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:
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The 2nd moments appear in the following generalization of the forward spin polarizabilities [61]:

�0(Q 2) =
16↵M2

Q 6

Z x0

0
dx x2 gTT (x,Q 2) =

1
2⇡2

Z
1

0

d⌫
⌫3 �TT (⌫,Q 2), (5.41)

�LT (Q 2) =
16↵M2

Q 6

Z x0

0
dx x2[g1 + g2](x,Q 2) =

1
2⇡2

Z
1

0

d⌫
⌫2Q

�LT (⌫,Q 2), (5.42)

which evidently satisfy the following relations at Q 2 = 0:

�0 = lim
Q 2!0

16↵M2

Q 6

Z x0

0
dx x2 g1(x,Q 2), (5.43)

�LT = �0 + lim
Q 2!0

16↵M2

Q 6

Z x0

0
dx x2 g2 (x,Q 2). (5.44)

The first of these is simply the GTT sum rule given in Eq. (5.24). At large Q 2, where the Wandzura–Wilczek relation [199]
[quoted in Eq. (6.45)] is applicable and the elastic contributions can be neglected, one can show that [61]: �LT (Q 2) =
1
3�0(Q 2).

From the Q 2 term in the expansion of S1, and the ⌫2 term in the expansion of S2, one obtains the following relations
involving the GPs [59]:

↵I 01(0) =
1
12

↵~2
hr2i2 +

1
2
M2�E1M2 �

3
2
↵M3 ⇥
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, (5.45a)

�LT = ��E1E1 + 3↵M
⇥
P 0(M1,M1)1(0) � P 0(L1,L1)1(0)

⇤
. (5.45b)

The momentum derivatives of the GPs are given by:

P 0 (M1,M1)1(0) ± P 0 (L1,L1)1(0) ⌘
d

dq2

h
P (M1,M1)1(q2) ± P (L1,L1)1(q2)

i

q2=0
, (5.46)

with q
2 being the initial photon c.m. three-momentum squared. The superscript indicates the multipolarities, L1(M1)

denoting electric (magnetic) dipole transitions of the initial and final photons, and ‘1’ implies that these transitions involve
the spin-flip of the nucleon, cf. [66,171]. An empirical implication of these relations, in the context of the so-called
‘‘�LT -puzzle’’, is briefly considered in Section 7.

Another combination of the 2nd moments of spin structure functions, i.e.:

d̄2(Q 2) =

Z x0

0
dx x2

⇥
3g2(x,Q 2) + 2g1(x,Q 2)

⇤
, (5.47)

is of interest in connection to the concept of color polarizability [200]. In terms of the above-introduced quantities it reads:
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8M4
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, (5.48)

and goes as Q 6 for low Q .

5.6. Empirical evaluations of sum rules

Recall that the forward RCS is described by two scalar amplitudes, denoted here [and in Eq. (4.10a)] as:
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where the helicity amplitudes �i are introduced in Section 3.2. The corresponding DRs, Eqs. (5.16) and (5.20), read then as
follows:
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⌫ 0 2 � ⌫2 � i0+
. (5.50b)

Therefore, given the total unpolarized cross section �T and the helicity-difference cross-section �TT , the forward CS can be
completely determined. The cross sections for the proton are fairly well known. Their most recent fits and the evaluation
of the integrals are performed by Gryniuk et al. [60]. The corresponding results for the amplitudes are displayed in Figs. 5.3
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Fig. 5.3. Amplitude f (⌫) for the proton obtained from Eq. (5.50a) using different fits of the total photoabsorption cross section [17,60,201,202] (fit I & II
refer to the results of Ref. [60]). The experimental point is from DESY [181].

Fig. 5.4. Spin-dependent amplitude g(⌫) obtained from Eq. (5.50b). The lower panel shows also the B�PT predictions for this amplitude [49,54].

and 5.4. The first figure shows also the results of previous evaluations and an experimental point from the DESY 1973
experiment [181]. In the second figure the upper panel shows the fit to Im g together with the corresponding result for
the real part. The lower panel shows a comparison of these results with a B�PT calculation at lower energy. Given these
amplitudes, one can determine the two non-vanishing (in the forward limit) observables:

d�
d⌦L

✓=0
= |f |2 + |g|2, ⌃2z

✓=0
= �

fg⇤ + f ⇤g
|f |2 + |g|2

. (5.51)

The obtained ⌃2z [203], compared with the B�PT predictions, demonstrates the importance of chiral dynamics in this
observable, cf. [54, Fig. 16].

One can also evaluate the various sum rules presented in Section 5.4. Evaluations of the sum rules deriving from f (⌫)
(i.e., Baldin sum rule, etc.) are gathered in Table 5.1 for the proton and neutron, respectively. These results are summarized
and compared to the state-of-art �PT results in Figs. 7.1 and 7.2.

Damashek andGilman [201] initiated a study of the high-energy behavior of the amplitude f (⌫) for the proton. In addition
to the Regge prediction, they found a constant contribution comparable in sign and magnitude to the Thomson term:
�↵/M ' �3.03 µb GeV. This extra constant is assumed to correspond to a fixed J = 0 Regge pole (↵i(t) = 0) [204,205],

where W ¼
ffiffiffi
s

p
is the total energy of the γp system. The

background function is from [6]:

σBðWÞ ¼
X2

k¼−2
CkðW −W0Þk; ð12Þ

where W0 ¼ Mp þ mπ corresponds with the pion photo-
production threshold.
Observing a significant discrepancy between SAID and

MAID around the Δð1232Þ-resonance peak and a similar

discrepancy between two sets of experimental data, we
have made two different fits:

(I) MAID [12] þ LEGS [13] þ Armstrong et al. [6],
(II) SAID [14] þ MacCormick et al. [15].

They are shown in Fig. 1 by the red solid and blue dashed
lines, respectively. The corresponding values of parameters
are given in Tables I and II. In both fits, we have also made
use of the GRAAL 2007 data [16] shown in the figure by
light blue squares. These data were not available at the time
of the previous sum rule evaluations.
Finally, for the high-energy region, we use the standard

Regge form [20] (p. 191):

σReggeðWÞ ¼ c1Wp1 þ c2Wp2 : ð13Þ

For W in GeV and the cross section in μb, we obtain the
following parameters (for both of our fits):

FIG. 1 (color online). Fits of the experimental data for the total photoabsorption cross section on the proton. Fit I is obtained using
MAID [12] results below the 2π production and data from LEGS [13] and Armstrong et al. [6] above it. Fit II uses SAID [14] and the data
of MacCormick et al. [15]. Both fits use Bartalini et al. [16] and the high-energy data [17–19] displayed in the inset.

TABLE I. Fitting parameters for the resonances (11) obtained
for fits I and II.

M (MeV) Γ (MeV) AðμbÞ
Fit I 1213.6 % 0.1 117.6 % 1.9 522.7 % 17.0

1412.8 % 5.9 82.8 % 26.8 40.1 % 33.8
1496.0 % 2.8 136.5 % 11.1 161.8 % 32.4
1649.4 % 4.1 135.3 % 15.3 83.2 % 22.7
1697.5 % 2.6 18.8 % 12.6 18.2 % 26.0
1894.3 % 15.6 302.0 % 41.3 31.5 % 8.7

Fit II 1214.8 % 0.1 99.0 % 1.1 502.3 % 12.3
1403.9 % 6.2 118.2 % 19.6 51.8 % 23.8
1496.9 % 2.1 133.4 % 9.4 162.0 % 29.2
1648.0 % 4.4 135.2 % 15.9 83.6 % 23.8
1697.2 % 2.7 21.2 % 13.2 18.7 % 25.9
1893.7 % 17.4 323.5 % 45.3 31.7 % 9.1

TABLE II. Fitting parameters for the background (12) obtained
for fits I and II in the resonance region.

Fit I Fit II

C−2 ðμb GeV2Þ 0.44 % 0.22 0.26 % 0.17
C−1 ðμb GeVÞ −11.06 % 3.69 −7.97 % 2.89
C0 ðμbÞ 74.38 % 20.16 57.27 % 16.09
C1 ðμb GeV−1Þ 22.18 % 37.71 54.26 % 31.07
C2 ðμb GeV−2Þ 37.69 % 21.48 19.51 % 18.17
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Fig. 5.3. Amplitude f (⌫) for the proton obtained from Eq. (5.50a) using different fits of the total photoabsorption cross section [17,60,201,202] (fit I & II
refer to the results of Ref. [60]). The experimental point is from DESY [181].

Fig. 5.4. Spin-dependent amplitude g(⌫) obtained from Eq. (5.50b). The lower panel shows also the B�PT predictions for this amplitude [49,54].

and 5.4. The first figure shows also the results of previous evaluations and an experimental point from the DESY 1973
experiment [181]. In the second figure the upper panel shows the fit to Im g together with the corresponding result for
the real part. The lower panel shows a comparison of these results with a B�PT calculation at lower energy. Given these
amplitudes, one can determine the two non-vanishing (in the forward limit) observables:
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The obtained ⌃2z [203], compared with the B�PT predictions, demonstrates the importance of chiral dynamics in this
observable, cf. [54, Fig. 16].

One can also evaluate the various sum rules presented in Section 5.4. Evaluations of the sum rules deriving from f (⌫)
(i.e., Baldin sum rule, etc.) are gathered in Table 5.1 for the proton and neutron, respectively. These results are summarized
and compared to the state-of-art �PT results in Figs. 7.1 and 7.2.

Damashek andGilman [201] initiated a study of the high-energy behavior of the amplitude f (⌫) for the proton. In addition
to the Regge prediction, they found a constant contribution comparable in sign and magnitude to the Thomson term:
�↵/M ' �3.03 µb GeV. This extra constant is assumed to correspond to a fixed J = 0 Regge pole (↵i(t) = 0) [204,205],

4

TABLE II. Empirical evaluations of the GDH and FSP integrals.

IGDH �0 �̄0
(µb) (10�6 fm4) (10�6 fm6)

GDH & A2 [9, 11] ⇡ 212 ⇡ �86

Helbing [21] 212± 6± 12

Bianchi-Thomas [24] 207± 23

Pasquini et al. [12] 210± 6± 14 �90± 8± 11 60± 7± 7

This work 204.5± 21.4 �92.9± 10.5 48.4± 8.2

GDH sum rule 204.784481(4)a

B�PT [15] �90± 140 110± 50

HB�PT [17] �260± 190

a Right-hand side of Eq. (7) with CODATA [19] values of proton M and .

We note that the main contribution to the estimated uncer-
tainty of the GDH integral comes from the high-energy Regge
behavior, which is possibly both due to the fact that parame-
ters seem to be not well “fixed” and because we have used a
simplified covariance matrix estimation for these parameters.
As for the higher-order sum rules, it appears that the main con-
tribution to the uncertainty comes from our assumption about
the systematic uncertainty of the partial-wave analyses (low-
energy region).

TABLE III. Contributions to the GDH and FSP integrals by regions.

Sum Rule
Region low-energy medium-energy high-energy

IGDH (µb) 43.6± 6.0 175.7± 3.7 �14.8± 19.9

�0 (10�6 fm4) 3.6± 10.3 �96.5± 2.0 (2± 7)⇥ 10�2

�̄0 (10�6 fm6) 77.1± 8.2 �28.7± 0.6 (2± 36)⇥ 10�5

FIG. 2. The GDH and FSP integrals as a function of the upper inte-
gration bound. Bands represent estimated errors. Asymptotic values
of the integrals are displayed on the right and marked with colored
triangles.

We next evaluate the entire spin-dependent amplitude g(⌫).
In order to improve on the accuracy, we use the subtracted

dispersion relation:

Re g(⌫) = � ↵
2

2M2
⌫ � ⌫

3

4⇡2

 1

⌫0

d⌫
0 ��abs(⌫0)

(⌫0 2 � ⌫2) ⌫0 . (12)

The only difference with the unsubtracted one, Eq. (6), is ac-
curacy. Indeed, the subtraction replaces the value of the GDH
integral (see “This work” in Table II) by the much more accu-
rate GDH sum rule value (next row) and leads to the smaller
uncertainty.

The remaining integral in Eq. (12) converges very fast in the
considered energy range. The resulting amplitude is plotted in
Fig. 3. The upper panel shows the real and imaginary parts in
the energy range where the data (for the imaginary part) are
available.

The lower panel of Fig. 3 zooms into the lower energy range
where our results can be compared with next-next-to-leading
order �PT calculations of Lensky et al. [15]. One notes here
that the imaginary parts differ appreciably at energies around
0.25 GeV. Nevertheless, their integrals (i.e., the real parts)
agree perfectly at low ⌫. This is a “scientific miracle” of the
effective field theory — the low-energy quantities are well de-
scribed, even though they are obtained as loop or dispersive
integrals which include higher-energy domains where the the-
ory is inapplicable.

FIG. 3. Spin-dependent amplitude g(⌫) obtained from numerical in-
tegration of the fit of data for the helicity-difference photoproduction
cross section. Dashed and dotted curves in the bottom panel are the
B�PT predictions of Ref. [15]. Bands represent the error estimate.

V. OBSERVABLES

Given both amplitudes, f(⌫) and g(⌫), one can reconstruct
the energy dependence of the forward CS observables. The
differential cross section of the forward CS in the laboratory

O(⌫) O(⌫3) O(⌫5)
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Abstract We update the predictions of the SU(2) baryon
chiral perturbation theory for the dipole polarisabilities of the
proton, {αE1, βM1}p = {11.2(0.7), 3.9(0.7)} × 10−4 fm3,
and obtain the corresponding predictions for the quadrupole,
dispersive, and spin polarisabilities: {αE2, βM2}p
= {17.3(3.9), −15.5(3.5)} × 10−4 fm5, {αE1ν, βM1ν}p
= {−1.3(1.0), 7.1(2.5)} × 10−4 fm5, and {γE1E1, γM1M1,

γE1M2, γM1E2}p = {−3.3(0.8), 2.9(1.5), 0.2(0.2), 1.1
(0.3)} × 10−4 fm4. The results for the scalar polarisabilities
are in significant disagreement with semi-empirical analy-
ses based on dispersion relations; however, the results for
the spin polarisabilities agree remarkably well. Results for
proton Compton-scattering multipoles and polarised observ-
ables up to the Delta(1232) resonance region are presented
too. The asymmetries %3 and %2x reproduce the experi-
mental data from LEGS and MAMI. Results for %2z agree
with a recent sum rule evaluation in the forward kinemat-
ics. The asymmetry %1z near the pion production thresh-
old shows a large sensitivity to chiral dynamics, but no data
is available for this observable. We also provide the pre-
dictions for the polarisabilities of the neutron, the numer-
ical values being {αE1, βM1}n = {13.7(3.1), 4.6(2.7)} ×
10−4 fm3, {αE2, βM2}n = {16.2(3.7), −15.8(3.6)} ×
10−4 fm5, {αE1ν, βM1ν}n = {0.1(1.0), 7.2(2.5)} × 10−4

fm5, and {γE1E1, γM1M1, γE1M2, γM1E2}n = {−4.7(1.1),
2.9(1.5), 0.2(0.2), 1.6(0.4)} × 10−4 fm4. The neutron
dynamical polarisabilities and multipoles are examined too.
We also discuss subtleties related to matching the dynamical
and static polarisabilities.

a e-mail: lensky@itep.ru
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1 Introduction

Low-energy Compton scattering off the nucleon is tradi-
tionally used to access the nucleon polarisabilities, but the

123
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Fig. 15 Reaction asymmetry !3 as a function of the c.m. angle at dif-
ferent values of Eγ (annotated values are in MeV), compared with data
from LEGS [60] (open diamonds) and MAMI [61] (cyan squares). The

theoretical bands correspond to the full calculation and their width is
determined as explained in the text. The blue dashed lines correspond
to only the Born + Delta-pole graphs included in the calculation

Fig. 16 Reaction asymmetry !2z as a function of the cms angle at
the same values of Eγ as in Fig. 15 (annotated values are in MeV).
The black triangles show the results of the forward sum rule evaluation
of Ref. [62]. The theoretical bands correspond to the full calculation

and their width is determined as explained in the text. The blue dashed
lines correspond to only the Born + Delta-pole graphs included in the
calculation

able agreement with the forward values extracted via the sum
rule. The dashed curve does not contain the chiral loops, and
the difference shows the great importance of the latter in this
observable.

Figure 17 shows the comparison of our prediction for !2x
with the recent experimental data from A2@MAMI [18].
These data correspond to the photon energy in the range
between 272.7 and 303.3 MeV, and they are compared
with our theoretical curve at Eγ = 286 MeV, which is
almost equal to the central point of the experimental inter-
val, Eγ = 288 MeV. One can see that our theoretical

prediction also describes these new data on !2x well, the
estimated theoretical uncertainty band being considerably
smaller than the experimental errors. The typical width of
the band is comparable to the variation of the theoretical
curve with energy over the A2 experimental range given
above. Again, the curves that include only the nucleon Born
and Delta-pole graphs illustrate the relative importance of
these and of the loop graphs in these asymmetries. One
can see that the loop graphs generally become more impor-
tant at lower energies, in accordance to what one would
expect given that the Delta-pole amplitude, dominating

123
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FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

initial (final) nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

with J the total angular momentum of the photon-proton sys-
tem, T

J

s 0l 0,sl (w) the partial-wave amplitudes, d
J

l 0,l (q) the
Wigner d-function, w and q the photon energy and scatter-
ing angle in the center-of-mass frame; s, t, u are Mandelstam
invariants.

The partial-wave amplitudes T
J(w) are then linearly re-

lated to the amplitudes with definite parity and angu-
lar momentum l, i.e., multipoles f

l±
rr 0(w), with r,r 0 =

E(lectric), or M(agnetic). The infinite sum over half-integer J

is then replaced by the sum over integer l = J⌥1/2. Note that
f

0+
rr 0 = 0, by definition; hence the summation starts at l = 1.

In this work, we first write the amplitude as the sum of
the Born, T

Born, and the rest (non-Born) T̄ , as illustrated in
Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born + f̄ . We then truncate the multipole expansion of
the non-Born amplitude at J = 3/2, whereas the Born ampli-

tude is treated exactly. We thus retain the ten lowest non-Born
multipoles,

f̄ =
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(2)
the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [25]

f̄
l±
EE

⇠ f̄
l±
MM

⇠ w2l , f̄
l+
EM

⇠ f̄
l+
ME

⇠ w2l+1 . (3)

Furthermore, the existing cPT calculations [13, 14, 19] show
that the four l = 2 non-Born multipoles, f̄

2+
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2�
EE
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2+
MM

, f̄
2�
MM

,
give tiny contributions below the pion threshold. In what fol-
lows we will either neglect them, or fix them to the values
given by the latest BcPT calculation [14]. We shall therefore
fit only the six l = 1 non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:
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where we changed the photon energy from the center-of-mass
w to the lab frame Eg = w

p
s/M. The first term in each

of the square brackets of Eq. (4) is given by one of the six
static polarizabilities, four of which, denoted by g’s, are spin-
dependent. The 2nd terms are the recoil corrections (see, e.g.,
Ref. [14]). The 3rd terms are given by the “residual func-
tions” f

R

i
. The parametrization of Eq. (4) ensures the correct

low-energy behavior of these multipoles. It does not imply
any approximation: the six static polarizabilities as well as

the residual functions are free parameters, which will next be
determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
experimental observable, such as cross section or asymmetry,

1. Determine l=1 multipoles in the following model-independent form:

2.The l=2 multipoles are small and are either neglected or taken from ChPT

After using sum rules, 
4 global parameters (polarizabilities) and 4 energy-dependent (residual functions)



Vladimir Pascalutsa — Nucleon Polarizabilities— CIPANP —- Indian Wells, CA—  May 31,  2018                

Fitted database of unpolarized cross section

 20

5

TABLE I: Unpolarized proton CS experiments below the pion-production threshold. The column Ndata indicates the number of data points we
use for the fitting. The photon energy, Eg , and the scattering angle, J , are given in the lab frame.

Author Ref. Eg [MeV] J [deg] Ndata Symbol

Oxley et al. [29] 60 70-150 4

Hyman et al. [30] 60-128 50, 90 12

Goldansky et al. [31] 55 75-150 5

Bernardini et al. [32] 120, 139 133 2

Pugh et al. [33] 59-135 50, 90, 135 16

Baranov et al. [34] 79, 89, 109 90, 150 7

Federspiel et al. [35] 59, 70 60, 135 4

Zieger et al. [36] 98, 132 180 2 ⌅
Hallin et al. [37] 130-150 45, 60, 82, 135 13 ⌅

MacGibbon et al. [38] 73-145 90-135 18 ⌅

Olmos de León et al. [15] 59-149 59-155 55 ⌅

TABLE II: The proton scalar and spin polarizabilities in units 10�4 fm3 (scalar) and 10�4 fm4 (spin), obtained in the various fits described
in the text, compared with the BcPT predictions [14], DR calculations [15, 39] (note that only aE1 + bM1 is calculated in DR, with their
difference fitted to CS data), and an experimental extraction of spin polarizabilities at MAMI [40] (performed using subtracted DRs [9]).

Source aE1 bM1 gE1E1 gM1M1 gE1M2 gM1E2 c2/point

Fit 0 12.2±0.3 1.8⌥0.3 �1.6±2.6 1.8±1.1 �1.3±3.7 2.0±0.7 1.35

Fit 1 12.2±0.3 1.8⌥0.3 �3.1±0.7 1.6±0.3 0.0 2.5±0.7 1.35

Fit 13s
11.8±0.3 2.2⌥0.3 �2.7±0.6 1.5±0.3 0.0 2.2±0.7 0.97

Fit 10 10.6±0.3 3.4⌥0.3 �1.0±0.8 1.0±0.3 0.0 1.0±0.7 0.99

Fit 100 10.2±0.4 3.8⌥0.4 �1.2±0.8 0.6±0.3 0.0 1.6±0.8 0.62

no l = 2

Fit 2 11.7±0.3 2.3⌥0.3 �2.6±0.6 1.1±0.3 0.0 2.4±0.7 1.35

Fit 200 10.8±0.4 3.2⌥0.4 �1.9±0.8 0.7±0.3 0.0 2.2±0.8 0.69

BcPT 11.2±0.7 3.9±0.7 �3.3±0.8 2.9±1.5 0.2±0.2 1.1±0.3

DR 12.1 1.6 �3.4 2.7 0.3 1.9

MAMI 2015 �3.5±1.2 3.16±0.85 �0.7±1.2 1.99±0.29

normalization factors. Also, the points of Federspiel
et al. [35] are treated as described in the footnote (i.e.,
omitting them below 50 and at 65.8 MeV), rather than
just removing the point {44 MeV, 135�} as done in [3].

We do not include the data on beam asymmetry in our fits,
since the only data (below pion-production threshold), coming
from the pilot experiment at MAMI [43], are of significantly
poorer quality compared to the unpolarized data. Hopefully,
the currently running A2/MAMI experiment will improve the
accuracy for this observable, and thus play a crucial role in an
accurate determination the magnetic polarizability bM1 [44].
At present we only verify that all our fits are in agreement
with the pilot data [43], see Fig. 3.

IV. RESULTS AND DISCUSSION

Table II presents the static polarizability values resulting
from the 5 fits described in the previous section. The last col-
umn shows c2/point, a measure of the fit quality. The ob-
tained polarizabilities can be compared with the last 3 rows

showing respectively the BcPT prediction, DR extraction, and
the first experimental extraction of the spin polarizabilities
(MAMI 2015).

The striking result here is that the polarizability values are
fairly sensitive to the slight refinements of the database. For
example, for bM1 we obtain the values ranging from 1.8(3) us-
ing the original database in Fit 1 to 3.8(4) using an improved
one in Fit 100. The latter modification of the database is similar
to the one used in the cPT fits of McGovern et al. [3, 12, 16],
which could explain why the cPT fits are significantly differ-
ent from the DR fits, which in particular yield a low value of
bM1.

Let us emphasize that the BcPT row in the Table is not
an extraction from CS data, but is rather a prediction, albeit
of a low order [13, 14]. Nonetheless, if we are to take the
claimed uncertainties seriously, we must conclude that the re-
fined databases agree somewhat better with cPT.

Besides the static polarizabilities, our fits yield the multi-
pole amplitudes at the considered energy bins. The non-Born
multipoles can equivalently be represented by the so-called
dynamical polarizabilities (see, e.g., [5, Sec. 2] for definition).
The blue (red) points in Fig. 4 show the dynamical polarizabil-

4

dependent functions.

III. CS DATABASE AND FITTING STRATEGY

The world database on the unpolarized angular distribution
of proton CS, below the pion-production threshold, is summa-
rized in Table I, cf. [3, 28]. The number of data points con-
tributed by each experiment is indicated in the column Ndata.
The database is split into Nbins = 11 energy bins, with the cen-
tral values at1

59, 69, 79, 89, 99, 109, 117, 127, 135, 143, 150 MeV. (12)

We fit all these data simultaneously, hence the number of pa-
rameters is 4 + 4Nbins = 48. This is quite a large number,
and we perform the fitting in two stages: 1) a Monte-Carlo
swipe fixing the residual functions, by finding the least c2 for
a large ensemble of parameters taking random values from
normal (Gaussian) distribution; 2) the c2 is further reduced
by fitting the static polarizabilities, whilst keeping the resid-
ual functions fixed. The first stage sampled f

R

1,4(Eg) from a
normal distribution centered at zero with standard deviation
10⇥10�4 fm3, whereas the distributions for f

R

5,6(Eg) are cen-
tered at zero, with the standard deviation 10�4 fm4. These
choices for the widths of the normal distribution are dictated
by the “natural size” argument based on the known values of
the static polarizabilities. However, the use of normal distribu-
tion allows for these functions to take any values in principle.

Our fit to the database of Table I results in Fit 0 of Table II.
The results of Fit 1 correspond to the fit where the small (ac-
cording to many existing analyses, cf. the last 3 rows of Ta-
ble II) spin polarizability gE1M2 is set to zero. The results of
the two fits are consistent with each other, albeit Fit 1 provides
a much better accuracy. We take it as a sign of insufficient
data quality for the accurate determination of the small value
of gE1M2, and keep gE1M2 = 0 in our subsequent fits.

FIG. 2: Distribution of c2 contributions per data point in Fit 1. The
4 points above the 3s line correspond with: Ref. [15] at {Eg ,J} =
{89 MeV, 155�} and {109 MeV, 133�}; Ref. [29] at {60 MeV, 150�};
Ref. [31] at {55 MeV, 150�}.

1 We have tried to optimize the number of energy-bins to minimize the num-
ber of fitting parameters. Thus, we omitted the data from the very low-
energy region (below 50 MeV), such as those of Federspiel et al. [35],
which would have relatively low number of points per bin. We have also
omitted two data points from the same source taken at 65.8 MeV, in order
to avoid having a separate bin.
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FIG. 3: The beam asymmetry as function of the scattering angle at
79� 98, 98� 119 and 119� 139 MeV of beam energy. The exper-
imental data are from Sokhoyan et al. [43]. The blue and red bands
correspond to the solutions of Fit 1 and Fit 100, respectively.

The three subsequent fits in Table II are done upon various
“refinements” of the database involving deletion of “outliers”.
Namely,

• in Fit 13s , the outliers are identified according to the
simple 3s rule [41, 42], i.e., as those that deviate more
than 3s from Fit 1, see Fig. 2.

• In Fit 10, the 4 deleted outliers are: Ref. [15] at
{Eg ,J} = {89 MeV, 133�} and {109 MeV, 133�};
Ref. [29] at {60 MeV, 120�} and {60 MeV, 150�}.
Hence, two of the deleted points are the same as in the
previous fit and two are different. The latter two point
are selected by hand such as to drive the fit closer to the
BcPT-predicted cross section.

• In Fit 100, we purge the database in accordance to what
is done in cPT fits as described in [3], i.e.: omit the
data of Oxley et al. [29] entirely, Bernardini et al. [32]
entirely, Baranov et al. [34] at qlab = 150�, and Olmos
de León et al. [15] at {109 MeV, 133�}. Furthermore, as
in [3], we add 5% systematic uncertainty (point-to-point
in quadrature with the statistical error) to the points of
Ref. [15]. Unlike [3], we do not include the floating
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79� 98, 98� 119 and 119� 139 MeV of beam energy. The exper-
imental data are from Sokhoyan et al. [43]. The blue and red bands
correspond to the solutions of Fit 1 and Fit 100, respectively.

The three subsequent fits in Table II are done upon various
“refinements” of the database involving deletion of “outliers”.
Namely,

• in Fit 13s , the outliers are identified according to the
simple 3s rule [41, 42], i.e., as those that deviate more
than 3s from Fit 1, see Fig. 2.

• In Fit 10, the 4 deleted outliers are: Ref. [15] at
{Eg ,J} = {89 MeV, 133�} and {109 MeV, 133�};
Ref. [29] at {60 MeV, 120�} and {60 MeV, 150�}.
Hence, two of the deleted points are the same as in the
previous fit and two are different. The latter two point
are selected by hand such as to drive the fit closer to the
BcPT-predicted cross section.

• In Fit 100, we purge the database in accordance to what
is done in cPT fits as described in [3], i.e.: omit the
data of Oxley et al. [29] entirely, Bernardini et al. [32]
entirely, Baranov et al. [34] at qlab = 150�, and Olmos
de León et al. [15] at {109 MeV, 133�}. Furthermore, as
in [3], we add 5% systematic uncertainty (point-to-point
in quadrature with the statistical error) to the points of
Ref. [15]. Unlike [3], we do not include the floating

4

dependent functions.

III. CS DATABASE AND FITTING STRATEGY

The world database on the unpolarized angular distribution
of proton CS, below the pion-production threshold, is summa-
rized in Table I, cf. [3, 28]. The number of data points con-
tributed by each experiment is indicated in the column Ndata.
The database is split into Nbins = 11 energy bins, with the cen-
tral values at1

59, 69, 79, 89, 99, 109, 117, 127, 135, 143, 150 MeV. (12)

We fit all these data simultaneously, hence the number of pa-
rameters is 4 + 4Nbins = 48. This is quite a large number,
and we perform the fitting in two stages: 1) a Monte-Carlo
swipe fixing the residual functions, by finding the least c2 for
a large ensemble of parameters taking random values from
normal (Gaussian) distribution; 2) the c2 is further reduced
by fitting the static polarizabilities, whilst keeping the resid-
ual functions fixed. The first stage sampled f

R

1,4(Eg) from a
normal distribution centered at zero with standard deviation
10⇥10�4 fm3, whereas the distributions for f

R

5,6(Eg) are cen-
tered at zero, with the standard deviation 10�4 fm4. These
choices for the widths of the normal distribution are dictated
by the “natural size” argument based on the known values of
the static polarizabilities. However, the use of normal distribu-
tion allows for these functions to take any values in principle.

Our fit to the database of Table I results in Fit 0 of Table II.
The results of Fit 1 correspond to the fit where the small (ac-
cording to many existing analyses, cf. the last 3 rows of Ta-
ble II) spin polarizability gE1M2 is set to zero. The results of
the two fits are consistent with each other, albeit Fit 1 provides
a much better accuracy. We take it as a sign of insufficient
data quality for the accurate determination of the small value
of gE1M2, and keep gE1M2 = 0 in our subsequent fits.
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FIG. 2: Distribution of c2 contributions per data point in Fit 1. The
4 points above the 3s line correspond with: Ref. [15] at {Eg ,J} =
{89 MeV, 155�} and {109 MeV, 133�}; Ref. [29] at {60 MeV, 150�};
Ref. [31] at {55 MeV, 150�}.

1 We have tried to optimize the number of energy-bins to minimize the num-
ber of fitting parameters. Thus, we omitted the data from the very low-
energy region (below 50 MeV), such as those of Federspiel et al. [35],
which would have relatively low number of points per bin. We have also
omitted two data points from the same source taken at 65.8 MeV, in order
to avoid having a separate bin.
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imental data are from Sokhoyan et al. [43]. The blue and red bands
correspond to the solutions of Fit 1 and Fit 100, respectively.

The three subsequent fits in Table II are done upon various
“refinements” of the database involving deletion of “outliers”.
Namely,

• in Fit 13s , the outliers are identified according to the
simple 3s rule [41, 42], i.e., as those that deviate more
than 3s from Fit 1, see Fig. 2.

• In Fit 10, the 4 deleted outliers are: Ref. [15] at
{Eg ,J} = {89 MeV, 133�} and {109 MeV, 133�};
Ref. [29] at {60 MeV, 120�} and {60 MeV, 150�}.
Hence, two of the deleted points are the same as in the
previous fit and two are different. The latter two point
are selected by hand such as to drive the fit closer to the
BcPT-predicted cross section.

• In Fit 100, we purge the database in accordance to what
is done in cPT fits as described in [3], i.e.: omit the
data of Oxley et al. [29] entirely, Bernardini et al. [32]
entirely, Baranov et al. [34] at qlab = 150�, and Olmos
de León et al. [15] at {109 MeV, 133�}. Furthermore, as
in [3], we add 5% systematic uncertainty (point-to-point
in quadrature with the statistical error) to the points of
Ref. [15]. Unlike [3], we do not include the floating

detecting outliers
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TABLE I: Unpolarized proton CS experiments below the pion-production threshold. The column Ndata indicates the number of data points we
use for the fitting. The photon energy, Eg , and the scattering angle, J , are given in the lab frame.

Author Ref. Eg [MeV] J [deg] Ndata Symbol

Oxley et al. [29] 60 70-150 4

Hyman et al. [30] 60-128 50, 90 12

Goldansky et al. [31] 55 75-150 5

Bernardini et al. [32] 120, 139 133 2

Pugh et al. [33] 59-135 50, 90, 135 16

Baranov et al. [34] 79, 89, 109 90, 150 7

Federspiel et al. [35] 59, 70 60, 135 4

Zieger et al. [36] 98, 132 180 2 ⌅
Hallin et al. [37] 130-150 45, 60, 82, 135 13 ⌅

MacGibbon et al. [38] 73-145 90-135 18 ⌅

Olmos de León et al. [15] 59-149 59-155 55 ⌅

TABLE II: The proton scalar and spin polarizabilities in units 10�4 fm3 (scalar) and 10�4 fm4 (spin), obtained in the various fits described
in the text, compared with the BcPT predictions [14], DR calculations [15, 39] (note that only aE1 + bM1 is calculated in DR, with their
difference fitted to CS data), and an experimental extraction of spin polarizabilities at MAMI [40] (performed using subtracted DRs [9]).

Source aE1 bM1 gE1E1 gM1M1 gE1M2 gM1E2 c2/point

Fit 0 12.2±0.3 1.8⌥0.3 �1.6±2.6 1.8±1.1 �1.3±3.7 2.0±0.7 1.35

Fit 1 12.2±0.3 1.8⌥0.3 �3.1±0.7 1.6±0.3 0.0 2.5±0.7 1.35

Fit 13s
11.8±0.3 2.2⌥0.3 �2.7±0.6 1.5±0.3 0.0 2.2±0.7 0.97

Fit 10 10.6±0.3 3.4⌥0.3 �1.0±0.8 1.0±0.3 0.0 1.0±0.7 0.99

Fit 100 10.2±0.4 3.8⌥0.4 �1.2±0.8 0.6±0.3 0.0 1.6±0.8 0.62

no l = 2

Fit 2 11.7±0.3 2.3⌥0.3 �2.6±0.6 1.1±0.3 0.0 2.4±0.7 1.35

Fit 200 10.8±0.4 3.2⌥0.4 �1.9±0.8 0.7±0.3 0.0 2.2±0.8 0.69

BcPT 11.2±0.7 3.9±0.7 �3.3±0.8 2.9±1.5 0.2±0.2 1.1±0.3

DR 12.1 1.6 �3.4 2.7 0.3 1.9

MAMI 2015 �3.5±1.2 3.16±0.85 �0.7±1.2 1.99±0.29

normalization factors. Also, the points of Federspiel
et al. [35] are treated as described in the footnote (i.e.,
omitting them below 50 and at 65.8 MeV), rather than
just removing the point {44 MeV, 135�} as done in [3].

We do not include the data on beam asymmetry in our fits,
since the only data (below pion-production threshold), coming
from the pilot experiment at MAMI [43], are of significantly
poorer quality compared to the unpolarized data. Hopefully,
the currently running A2/MAMI experiment will improve the
accuracy for this observable, and thus play a crucial role in an
accurate determination the magnetic polarizability bM1 [44].
At present we only verify that all our fits are in agreement
with the pilot data [43], see Fig. 3.

IV. RESULTS AND DISCUSSION

Table II presents the static polarizability values resulting
from the 5 fits described in the previous section. The last col-
umn shows c2/point, a measure of the fit quality. The ob-
tained polarizabilities can be compared with the last 3 rows

showing respectively the BcPT prediction, DR extraction, and
the first experimental extraction of the spin polarizabilities
(MAMI 2015).

The striking result here is that the polarizability values are
fairly sensitive to the slight refinements of the database. For
example, for bM1 we obtain the values ranging from 1.8(3) us-
ing the original database in Fit 1 to 3.8(4) using an improved
one in Fit 100. The latter modification of the database is similar
to the one used in the cPT fits of McGovern et al. [3, 12, 16],
which could explain why the cPT fits are significantly differ-
ent from the DR fits, which in particular yield a low value of
bM1.

Let us emphasize that the BcPT row in the Table is not
an extraction from CS data, but is rather a prediction, albeit
of a low order [13, 14]. Nonetheless, if we are to take the
claimed uncertainties seriously, we must conclude that the re-
fined databases agree somewhat better with cPT.

Besides the static polarizabilities, our fits yield the multi-
pole amplitudes at the considered energy bins. The non-Born
multipoles can equivalently be represented by the so-called
dynamical polarizabilities (see, e.g., [5, Sec. 2] for definition).
The blue (red) points in Fig. 4 show the dynamical polarizabil-
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FIG. 5: Unpolarized cross section of proton CS as function of scat-
tering angle in the lab frame at photon-beam energy 59 MeV (top
panel) and 109 MeV (bottom panel). The legend for experimental
data points is given in Table I. The error band on the fit 1 is obtained
by the simple error-propagation of the fit values of the static polariz-
abilities only. The other fits have a comparable error band, which is
not shown here for clarity.

V. SUMMARY AND CONCLUSION

We presented a first partial-wave analysis of proton Comp-
ton scattering data below the pion-production threshold (Eg .
150 MeV). The only approximations, or model-dependent as-
sumptions, we made concern the truncation of the partial-
wave expansion:

• we account for the lowest l = 1 and 2 terms, neglecting
J � 5/2 contributions;

• for the l = 2 multipoles, we assume the values given by
the NNLO BcPT calculation [13, 14], and check that
the results do not change qualitatively if we put them to
0 (cf. Fit 2 variety in Table II).

The proper low-energy behavior of the (non-Born piece of)
multipoles is ensured through the parameterization in terms of
lowest static polarizabilities, see Eq. (4). The sum rules for the
forward amplitudes impose two linear relations on the multi-
poles, leaving us with only four of the six amplitudes to be
determined from the Compton angular-distribution data. The
accuracy of the resulting solutions is significantly improved
by setting (the small spin polarizability) gE1M2 = 0 by hand.

The extracted multipoles depend significantly upon very
mild refinements of the world database of proton Compton
scattering. The characteristic difference between the state-
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FIG. 6: Same as in Fig. 5, for all the energy bins.

of-art DR and cPT analyses is likely to be explained by the
database inconsistencies, rather than by differences in the the-
oretical framework. We claim that these inconsistencies are
best to be addressed by a new precise measurement of the
angular distribution at Eg ⇡ 109 MeV and backward angles
(cf. Fig. 5). Accurate data on polarized observables, such as
the beam asymmetry, could be helpful too.

The ongoing Compton scattering experiment by the A2
Collaboration at MAMI may soon provide a considerable im-
provement of the database, in both the angular distribution
and beam asymmetry. Until then, the static polarizabilities
may continue to be extracted in a rather wide range of values,
manifested by our fit results in Table II.
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ities resulting from Fit 1 (100). Note that the point at zero en-
ergy corresponds with the static polarizability. The error bars
result from the uncertainties on the fit parameters. The results
are compared with the BcPT (cyan bands) and DR (dashed
lines) results. Again, we see that our solution based on the
raw database (Fit 1) agrees well with DR calculation, whereas
the one based on the refined database (Fit 100) agrees better
with BcPT.

Therefore, the differences between the cPT and DR results
for polarizabilities are likely to be caused by deficiencies in
the experimental database. How to resolve those? We first
of all need to find the place where the differences among the
different fits are largest. For the unpolarized cross section, the
“sweet spot” is apparently at Eg ' 109 MeV and backward
angles, see Fig. 5. At both higher and lower energies the dif-
ference among the fits quickly diminishes, cf. Fig. 6. Hence
the best hope for resolving this “database consistency prob-
lem” is to obtain new precise cross-section data at energies
close to 109 MeV.

Let us consider this energy region in more detail. In Fig. 5,
besides the data and the results of 3 fits, we show the Born
contribution (dash-dotted curve) and the BcPT prediction [13,
14] (dotted curve). The deviation from the Born contribution
is the effect of (dynamical) polarizabilities we are after. The
polarizability contribution is at low-energy dominated by the
scalar dipole polarizabilities, aE1 and bM1, but already at 109
MeV the spin polarizabilities start to play a crucial role.

To see this, consider Table III, where the forward and back-
ward combinations of scalar and spin polarizabilities are pre-
sented. In the fits the forward combinations are fixed by
the sum rules, Eq. (11), whereas the backward combinations,
aE1 �bM1 and gp =�gE1E1 +gM1M1 �gE1M2 +gM1E2 are dif-
ferent from fit to fit. Fit 1 has the highest value of aE1 �bM1

and hence has the biggest deviation from the Born term at 59
MeV; the gp value is not important at these energies. Fits 10
and 100 have aE1 � bM1 close to BcPT and as the result the
three curves practically coincide at 59 MeV.

However, at 109 MeV, Fit 10 converges to Fit 1 precisely be-
cause of the different gp value. The similar effect for Fit 100 is
diminished by the difference in the value of aE1 �bM1. Thus,
at these energies the scalar and spin polarizabilities are rather
entangled and cannot be extracted independently from this ob-
servable. The present PWA, on the other hand, provides a ba-
sis for a simultaneous extractions of aE1 �bM1 and the back-
ward spin polarizability gp .

TABLE III: Results the fits 1, 10 and fit 100 for the forward and back-
ward combinations of polarizabilities compared to the corresponding
values from the BcPT [14] and DR [15, 39] calculations.

aE1 +bM1 g0 aE1 �bM1 gp

Fit 1 14.0 �0.93 10.5±0.4 7.2±1.0

Fit 10 14.0 �0.93 7.2±0.6 3.0±1.1

Fit 100 14.0 �0.93 6.4±0.6 3.5±1.2

BcPT 15.1±1.0 �0.9±1.4 7.3±1.0 7.2±1.7

DR 13.7 �1.5 10.5 7.8
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ities resulting from Fit 1 (100). Note that the point at zero en-
ergy corresponds with the static polarizability. The error bars
result from the uncertainties on the fit parameters. The results
are compared with the BcPT (cyan bands) and DR (dashed
lines) results. Again, we see that our solution based on the
raw database (Fit 1) agrees well with DR calculation, whereas
the one based on the refined database (Fit 100) agrees better
with BcPT.

Therefore, the differences between the cPT and DR results
for polarizabilities are likely to be caused by deficiencies in
the experimental database. How to resolve those? We first
of all need to find the place where the differences among the
different fits are largest. For the unpolarized cross section, the
“sweet spot” is apparently at Eg ' 109 MeV and backward
angles, see Fig. 5. At both higher and lower energies the dif-
ference among the fits quickly diminishes, cf. Fig. 6. Hence
the best hope for resolving this “database consistency prob-
lem” is to obtain new precise cross-section data at energies
close to 109 MeV.

Let us consider this energy region in more detail. In Fig. 5,
besides the data and the results of 3 fits, we show the Born
contribution (dash-dotted curve) and the BcPT prediction [13,
14] (dotted curve). The deviation from the Born contribution
is the effect of (dynamical) polarizabilities we are after. The
polarizability contribution is at low-energy dominated by the
scalar dipole polarizabilities, aE1 and bM1, but already at 109
MeV the spin polarizabilities start to play a crucial role.

To see this, consider Table III, where the forward and back-
ward combinations of scalar and spin polarizabilities are pre-
sented. In the fits the forward combinations are fixed by
the sum rules, Eq. (11), whereas the backward combinations,
aE1 �bM1 and gp =�gE1E1 +gM1M1 �gE1M2 +gM1E2 are dif-
ferent from fit to fit. Fit 1 has the highest value of aE1 �bM1

and hence has the biggest deviation from the Born term at 59
MeV; the gp value is not important at these energies. Fits 10
and 100 have aE1 � bM1 close to BcPT and as the result the
three curves practically coincide at 59 MeV.

However, at 109 MeV, Fit 10 converges to Fit 1 precisely be-
cause of the different gp value. The similar effect for Fit 100 is
diminished by the difference in the value of aE1 �bM1. Thus,
at these energies the scalar and spin polarizabilities are rather
entangled and cannot be extracted independently from this ob-
servable. The present PWA, on the other hand, provides a ba-
sis for a simultaneous extractions of aE1 �bM1 and the back-
ward spin polarizability gp .

TABLE III: Results the fits 1, 10 and fit 100 for the forward and back-
ward combinations of polarizabilities compared to the corresponding
values from the BcPT [14] and DR [15, 39] calculations.

aE1 +bM1 g0 aE1 �bM1 gp

Fit 1 14.0 �0.93 10.5±0.4 7.2±1.0

Fit 10 14.0 �0.93 7.2±0.6 3.0±1.1

Fit 100 14.0 �0.93 6.4±0.6 3.5±1.2

BcPT 15.1±1.0 �0.9±1.4 7.3±1.0 7.2±1.7

DR 13.7 �1.5 10.5 7.8
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Partial-Wave Analysis (PWA): 
differences between DR and ChPT extractions are due to database inconsistencies, 
improvements — new experiments — are needed! 
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• TAPS:			fit	to	TAPS/MAMI	data	based	
on	fixed-t	DRs	of	L’vov	et	al.																																																				
Olmos	de	Leon	et	al.,	EPJA	(2001)																	

• BChPT:		“postdiction’’																																													
Lensky	&	VP,	EPJC	(2010)																				
Lensky,	McGovern	&	VP,	EPJC	(2015)										

• HBChPT:				fit	to	world	data																									
Grieβhammer,	McGovern	&	Phillips,	EPJA	
(2013)								

• PWA:					fit	to	world	data																																											
Krupina,	Lensky	&	VP,	PLB	(2018)
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FIG. 4: The dynamical polarizabilities as functions of the photon lab energy Eg . The black dashed curve is the subtracted DR result [19], the
cyan band corresponds to the BcPT prediction, and the points with error bars are the results of fit 1 (blue) and fit 100 (red).

ities resulting from Fit 1 (100). Note that the point at zero en-
ergy corresponds with the static polarizability. The error bars
result from the uncertainties on the fit parameters. The results
are compared with the BcPT (cyan bands) and DR (dashed
lines) results. Again, we see that our solution based on the
raw database (Fit 1) agrees well with DR calculation, whereas
the one based on the refined database (Fit 100) agrees better
with BcPT.

Therefore, the differences between the cPT and DR results
for polarizabilities are likely to be caused by deficiencies in
the experimental database. How to resolve those? We first
of all need to find the place where the differences among the
different fits are largest. For the unpolarized cross section, the
“sweet spot” is apparently at Eg ' 109 MeV and backward
angles, see Fig. 5. At both higher and lower energies the dif-
ference among the fits quickly diminishes, cf. Fig. 6. Hence
the best hope for resolving this “database consistency prob-
lem” is to obtain new precise cross-section data at energies
close to 109 MeV.

Let us consider this energy region in more detail. In Fig. 5,
besides the data and the results of 3 fits, we show the Born
contribution (dash-dotted curve) and the BcPT prediction [13,
14] (dotted curve). The deviation from the Born contribution
is the effect of (dynamical) polarizabilities we are after. The
polarizability contribution is at low-energy dominated by the
scalar dipole polarizabilities, aE1 and bM1, but already at 109
MeV the spin polarizabilities start to play a crucial role.

To see this, consider Table III, where the forward and back-
ward combinations of scalar and spin polarizabilities are pre-
sented. In the fits the forward combinations are fixed by
the sum rules, Eq. (11), whereas the backward combinations,
aE1 �bM1 and gp =�gE1E1 +gM1M1 �gE1M2 +gM1E2 are dif-
ferent from fit to fit. Fit 1 has the highest value of aE1 �bM1

and hence has the biggest deviation from the Born term at 59
MeV; the gp value is not important at these energies. Fits 10
and 100 have aE1 � bM1 close to BcPT and as the result the
three curves practically coincide at 59 MeV.

However, at 109 MeV, Fit 10 converges to Fit 1 precisely be-
cause of the different gp value. The similar effect for Fit 100 is
diminished by the difference in the value of aE1 �bM1. Thus,
at these energies the scalar and spin polarizabilities are rather
entangled and cannot be extracted independently from this ob-
servable. The present PWA, on the other hand, provides a ba-
sis for a simultaneous extractions of aE1 �bM1 and the back-
ward spin polarizability gp .

TABLE III: Results the fits 1, 10 and fit 100 for the forward and back-
ward combinations of polarizabilities compared to the corresponding
values from the BcPT [14] and DR [15, 39] calculations.

aE1 +bM1 g0 aE1 �bM1 gp

Fit 1 14.0 �0.93 10.5±0.4 7.2±1.0

Fit 10 14.0 �0.93 7.2±0.6 3.0±1.1

Fit 100 14.0 �0.93 6.4±0.6 3.5±1.2

BcPT 15.1±1.0 �0.9±1.4 7.3±1.0 7.2±1.7

DR 13.7 �1.5 10.5 7.8
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V. SUMMARY AND CONCLUSION

We presented a first partial-wave analysis of proton Comp-
ton scattering data below the pion-production threshold (Eg .
150 MeV). The only approximations, or model-dependent as-
sumptions, we made concern the truncation of the partial-
wave expansion:

• we account for the lowest l = 1 and 2 terms, neglecting
J � 5/2 contributions;

• for the l = 2 multipoles, we assume the values given by
the NNLO BcPT calculation [13, 14], and check that
the results do not change qualitatively if we put them to
0 (cf. Fit 2 variety in Table II).

The proper low-energy behavior of the (non-Born piece of)
multipoles is ensured through the parameterization in terms of
lowest static polarizabilities, see Eq. (4). The sum rules for the
forward amplitudes impose two linear relations on the multi-
poles, leaving us with only four of the six amplitudes to be
determined from the Compton angular-distribution data. The
accuracy of the resulting solutions is significantly improved
by setting (the small spin polarizability) gE1M2 = 0 by hand.

The extracted multipoles depend significantly upon very
mild refinements of the world database of proton Compton
scattering. The characteristic difference between the state-
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of-art DR and cPT analyses is likely to be explained by the
database inconsistencies, rather than by differences in the the-
oretical framework. We claim that these inconsistencies are
best to be addressed by a new precise measurement of the
angular distribution at Eg ⇡ 109 MeV and backward angles
(cf. Fig. 5). Accurate data on polarized observables, such as
the beam asymmetry, could be helpful too.

The ongoing Compton scattering experiment by the A2
Collaboration at MAMI may soon provide a considerable im-
provement of the database, in both the angular distribution
and beam asymmetry. Until then, the static polarizabilities
may continue to be extracted in a rather wide range of values,
manifested by our fit results in Table II.
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J � 5/2 contributions;
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the results do not change qualitatively if we put them to
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(cf. Fig. 5). Accurate data on polarized observables, such as
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The ongoing Compton scattering experiment by the A2
Collaboration at MAMI may soon provide a considerable im-
provement of the database, in both the angular distribution
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ities resulting from Fit 1 (100). Note that the point at zero en-
ergy corresponds with the static polarizability. The error bars
result from the uncertainties on the fit parameters. The results
are compared with the BcPT (cyan bands) and DR (dashed
lines) results. Again, we see that our solution based on the
raw database (Fit 1) agrees well with DR calculation, whereas
the one based on the refined database (Fit 100) agrees better
with BcPT.

Therefore, the differences between the cPT and DR results
for polarizabilities are likely to be caused by deficiencies in
the experimental database. How to resolve those? We first
of all need to find the place where the differences among the
different fits are largest. For the unpolarized cross section, the
“sweet spot” is apparently at Eg ' 109 MeV and backward
angles, see Fig. 5. At both higher and lower energies the dif-
ference among the fits quickly diminishes, cf. Fig. 6. Hence
the best hope for resolving this “database consistency prob-
lem” is to obtain new precise cross-section data at energies
close to 109 MeV.

Let us consider this energy region in more detail. In Fig. 5,
besides the data and the results of 3 fits, we show the Born
contribution (dash-dotted curve) and the BcPT prediction [13,
14] (dotted curve). The deviation from the Born contribution
is the effect of (dynamical) polarizabilities we are after. The
polarizability contribution is at low-energy dominated by the
scalar dipole polarizabilities, aE1 and bM1, but already at 109
MeV the spin polarizabilities start to play a crucial role.

To see this, consider Table III, where the forward and back-
ward combinations of scalar and spin polarizabilities are pre-
sented. In the fits the forward combinations are fixed by
the sum rules, Eq. (11), whereas the backward combinations,
aE1 �bM1 and gp =�gE1E1 +gM1M1 �gE1M2 +gM1E2 are dif-
ferent from fit to fit. Fit 1 has the highest value of aE1 �bM1

and hence has the biggest deviation from the Born term at 59
MeV; the gp value is not important at these energies. Fits 10
and 100 have aE1 � bM1 close to BcPT and as the result the
three curves practically coincide at 59 MeV.

However, at 109 MeV, Fit 10 converges to Fit 1 precisely be-
cause of the different gp value. The similar effect for Fit 100 is
diminished by the difference in the value of aE1 �bM1. Thus,
at these energies the scalar and spin polarizabilities are rather
entangled and cannot be extracted independently from this ob-
servable. The present PWA, on the other hand, provides a ba-
sis for a simultaneous extractions of aE1 �bM1 and the back-
ward spin polarizability gp .

TABLE III: Results the fits 1, 10 and fit 100 for the forward and back-
ward combinations of polarizabilities compared to the corresponding
values from the BcPT [14] and DR [15, 39] calculations.

aE1 +bM1 g0 aE1 �bM1 gp

Fit 1 14.0 �0.93 10.5±0.4 7.2±1.0

Fit 10 14.0 �0.93 7.2±0.6 3.0±1.1

Fit 100 14.0 �0.93 6.4±0.6 3.5±1.2

BcPT 15.1±1.0 �0.9±1.4 7.3±1.0 7.2±1.7

DR 13.7 �1.5 10.5 7.8

109(10) MeV 
“sweet spot” for unpolarized cross section, 

because of the interplay  
of scalar and spin polarizabilities
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•No resonances (below pion production threshold) 

•Multipoles are real, neglecting radiative corrections 

•Forward-scattering is determined, via the sum rules (photoabsorption cross sections): 

yields linear relations on the multipoles, rather than bilinear 

 and despite:
•Not much data (about 100 data points, many from old experiments)

1. Accurate model-independent Compton PWA solutions found  

Thanks to:

2. Discrepancies of DR vs. ChPT extractions of polarizabilities from data
are due to the differences in the database 

3. Database improvements needed, 
    preferably by new precise data — coming soon from MAMI !.. 


