Sexaquark Dark Matter

Glennys Farrar, NYU

6-quark, Q=0, B=2
Spin-0, scalar
Flavor singlet

Uniquely among hadrons, Fermi statistics is compatible with being symmetric in space and totally antisymmetric (singlet) in:

- color
- flavor
- spin

(Most-Attractive Channel)³

Hypothesis: S is stable and spatially compact

$M_S \lesssim 2 m_p$

This is compatible with all experiments and theory.

Eludes detection in accelerators because:

- neutrons are similar and $10^6 \times$ more abundant
- small wfn overlap \Rightarrow hard to produce or destroy.

OK with direct detection expts

Same quark content as H-dibaryon* (Jaffe 1977), but different physics:
not a loosely bound di-Λ! *mass ~ 2150 MeV in bag model \Rightarrow decays in 10^{-10} s

GRF 1708.08951

Mahdawi+GF1804.03073
DM to baryon ratio follows from stat mech, quark masses & temperature of QGP-hadronization transition.

Prediction is correct AND accurate to \(\sim 20\% \), for entire range of \(M_S \) and \(T_{QCD} \).

\[
\frac{\Omega_{DM}}{\Omega_b} = \frac{y_b \kappa_s 3 f_s}{1 - \kappa_s 3 f_s}
\]

\[
\kappa_s(m_S, T) = \frac{1}{1 + (r_{\Lambda, \Lambda} + r_{\Lambda, \Sigma} + 2r_{\Sigma, \Sigma} + 2r_{N, \Xi})}
\]

\[
r_{1,2} \equiv \exp[-(m_1 + m_2 - m_S)/T]
\]

\[
\frac{\Omega_{DM}}{\Omega_b} \text{ obs} = 5.3 \pm 0.1
\]

Prediction also applies to strange quark nuggets & PBH…

\(m_u = 2.118(38) \) MeV
\(m_d = 4.690(54) \) MeV
\(m_s = 92.52(69) \) MeV

GRF, hep-ph:1805.03723
S dark matter explains primordial ^7Li

(GRF + R. Galvez, in preparation)

The “action” is at $T \sim 80$ keV
\Rightarrow only loosely bound ^7Li & ^7Be are affected

S breaks up ^7Li & ^7Be reducing predicted abundance

CDM prediction for ^7Li is 10σ above obs.; destruction by S removes the excess

KE threshold for breakup
- ^7Be 1.58 MeV
- ^7Li 2.46 MeV
- ^3He 4.47 MeV
- ^3H 5.75 MeV
- ^4He 19.3 MeV

[d, 2.2 MeV, replenished]