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　　　　　　　　　　　　are tree level processes

⌧

⌫

B̄ D(⇤)

Nevertheless,

・the SM values are NOT in agreement with data 

・Precise prediction on the Ratio has been done

RD =
�(B̄ ! D⌧ ⌫̄)

�(B̄ ! D`⌫̄)
= 0.299 ± 0.003

RD⇤ =
�(B̄ ! D⇤⌧ ⌫̄)

�(B̄ ! D⇤`⌫̄)
= 0.257 ± 0.003

⇠ 1%



BaBar :  PRL 109, 101802 (2012),  PRD 88, 072012 (2013)
Belle    :  PRD 92, 072014 (2015),  PRD 94, 072007 (2016),  arXiv 1608.06391 
LHCb   :  PRL 115, 111803 (2015),  arXiv 1708.08856
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Topics

・SM predictions

・NP explanations

・Relevant observables



SM predictions

[1] Form Factor

Using Heavy Quark Effective Theory, q^2 dependence can be described 

G = h+ �
1 � rD

1 + rD
h� = ⇠IW (q2) +

↵s

⇡
�1(q

2) +
⇤QCD

mc,b
�2(q

2) + · · ·

The functions are then determined with QCD sum-rule / lattice 　
+ fit to data of the light lepton mode.

Main uncertainty in RD(*) comes from Form Factors

hD(v0)|c̄�µb|B(v)i=p
mBmD

h
h+(q2)(v + v0)µ + h�(q2)(v � v0)µ

i

d�(B ! D`⌫)

dw
=

G2
F |Vcb|2 ⌘2 m5

B

48⇡3
(w(q2)2 � 1)3/2 r3D (1 + rD)2 G(q2)2



Scenario R(D) R(D⇤) Correlation

L
w=1 0.292± 0.005 0.255± 0.005 41%

L
w=1+SR 0.291± 0.005 0.255± 0.003 57%

NoL 0.273± 0.016 0.250± 0.006 49%

NoL+SR 0.295± 0.007 0.255± 0.004 43%

L
w�1 0.298± 0.003 0.261± 0.004 19%

L
w�1+SR 0.299± 0.003 0.257± 0.003 44%

th:L
w�1+SR 0.306± 0.005 0.256± 0.004 33%

Data [9] 0.403± 0.047 0.310± 0.017 �23%

Refs. [53, 57, 59] 0.300± 0.008 — —

Ref. [58] 0.299± 0.003 — —

Ref. [34] — 0.252± 0.003 —

TABLE IV. The R(D) and R(D⇤) predictions for our fit scenarios, the world average of the data,

and other theory predictions. The fit scenarios are described in the text and in Table I. The bold

numbers are our most precise predictions.

In Fig. 5 we illustrate the impacts NP might have on the allowed R(D)�R(D⇤) regions,

assuming the dominance of one new physics operator in a standard four-Fermi basis. NP

couplings are permitted to have an arbitrary phase, generating allowed regions rather than

single contours. We display the allowed regions generated for the “NoL+SR” best fit values;

the “L
w�1+SR” best fit values; and for leading order contributions only, i.e., ↵

s

, "
c,b

! 0,

with ⇢̄2⇤ = 1.24. The small variation between the “NoL+SR” and “L
w�1+SR” regions

illustrates the good consistency of the predictions obtained with and without LQCD. On

each plot, we also include for comparison the corresponding contours (dashed lines) produced

by a NP O
V

� O
A

coupling. The latter rescales R(D) and R(D⇤) keeping their ratio fixed.

Solid dots indicate the SM point for each case. For scalar currents, if NP only contributes

to O
S

(O
P

) then only R(D) (R(D⇤)) is a↵ected in accordance with Eq. (10b) (Eq. (11a)),

respectively. We plot the allowed regions for the O
S

± O
P

linear combinations, which are

also motivated by specific NP models.

22

Ligeti et al.,  1703.05330

Previous 
studies

Measurements

This study

QCDSR + lattice QCD + Fit to Belle data of 　
up to the NLO,  i.e. 

B ! D(⇤)`⌫ (` = e, µ)

O(↵s), O(1/mQ)



[2] Radiative correction

Another development. Soft-photon effects depend on lepton mass, 
which leads to corrections even in RD(*)

Kitahara et al.,  1803.05881
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We evaluate long-distance electromagnetic (QED) contributions to B0 ! D+⌧�⌫⌧ and B� !
D0⌧�⌫⌧ relative to B0 ! D+µ�⌫µ and B� ! D0µ�⌫µ, respectively, in the standard model. We
point out that the QED corrections to the ratios R(D+) and R(D0) are not negligible, contrary to
the expectation that radiative corrections are almost canceled out in the ratio of the two branching
fractions. The reason is that long-distance QED corrections depend on the masses and relative
velocities of the daughter particles. We find that theoretical predictions for R(D+)⌧/µ and R(D0)⌧/µ

can be amplified by ⇠ 5% and ⇠ 3%, respectively, for the soft-photon energy cut in range 20–40
MeV.

Keywords: long-distance contribution, semileptonic B decays

The semileptonic B-meson decays that are at the ele-
mentary level induced by the b ! c`⌫` transitions pro-
vide a potentially interesting avenue for testing the stan-
dard model (SM) at low energies. In this respect, it turns
out useful to construct the ratios R(H), H = D,D⇤,
between the branching fractions that involve ⌧ -leptons
and those involving light leptons. These observables do
not depend on the Cabibbo–Kobayashi–Maskawa matrix
element Vcb and are also theoretically cleaner due to
the (partial) cancellation of the hadronic uncertainties
parametrized by the corresponding form factors. The
forthcoming Belle-II experiment is expected to reduce
the corresponding measurement uncertainties to the level
of around 3% [1], comparable to the current theoretical
uncertainties. This is also the typical size of electromag-
netic (QED) e↵ects which we turn to study in this Letter,
focusing on long-distance QED e↵ects in R(D).
Short-distance electroweak contributions to branching

fractions of semileptonic decays were evaluated to 1.3%
[2–4], but since such corrections are lepton-universal they
cancel in the ratio R(D). The complete understand-
ing of QED e↵ects in meson decays is a nontrivial task
due to the complicated interplay with QCD dynamics,
e.g., structure-dependent contributions which probe the
hadronic content [5–7]. In this Letter, we evaluate the
lepton-mass dependent soft-photon e↵ects which give rise
to important corrections.
We point out terms that distinguish the cases of the

neutral and charged B-decays

R(D+) ⌘ B �

B0 ! D+⌧�⌫⌧
�

B �

B0 ! D+`�⌫`
� , (1)

R(D0) ⌘ B �

B� ! D0⌧�⌫⌧
�

B (B� ! D0`�⌫`)
. (2)

The up-to-date average [2] of the lattice-QCD predictions
[8, 9] is

R(D+)
SM

= R(D0)
SM

= 0.300± 0.008 , (3)

B̄0

D+

!−

ν̄!

...

...

...

(a)

B−

D0

!−

ν̄!

...

...

(b)

1

FIG. 1. (a) Soft-photon contributions to R(D+) and (b)
R(D0), where the self-energy diagrams are omitted for sim-
plicity. The dots represent an arbitrary number of soft pho-
tons.

which is consistent with previous evaluations involving
di↵erent approaches, see [10–14]. The corresponding ex-
perimental average [15] of the BaBar [16, 17] and Belle
[18] measurements is

R(D)
exp

= 0.403± 0.040± 0.024 , (4)

which combines electrons and muons for the decay into
the light lepton and averages neutral and charged B-
decays. One should note that these measured results
include soft-photons [19, 20]. The averaged experimental
result exceeds the SM expectation at the level of 2.2�.
Combined with current discrepancy with respect to the
SM in R(D⇤), these have been considered as a hint of
physics beyond the SM.
For previous studies of QED e↵ects in (semi)leptonic

B-decays, we refer the reader to Refs. [6, 7, 21–23]. Re-
lated works regarding b ! s`+`� transitions can be
found in Refs. [24–26].

QED CORRECTIONS IN B ! D`⌫`

In this section, we calculate the QED corrections to
the processes B ! D`⌫` (` = µ, ⌧) at large distances,
where the electromagnetic interactions of the charged
scalar mesons are well described by the scalar QED.
The correction factors exhibit dependence on the kine-

matic variables sD` ⌘ (pD + p`)
2 and q2 ⌘ (pB � pD)2 =
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Soft-photon corrections to RD result in 　

　(1) leading to RD^+ ≠ RD^0　
　(2) depending on photon energy cut　
　(3) non-negligible constructive contribution to RD, 

        at most 4～6%
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FIG. 3. The (leading) long-distance QED corrections to
R(D+)⌧/µ and R(D0)⌧/µ as a function of E

max

.

we choose µ = mB . Varying 1GeV < µ < 10GeV in-
duces a shift up to ±0.5%. To illustrate the impact of the
Coulomb contributions, we also show B(B0 ! D+`�⌫`)
with ⌦C set to 1 in Eq. (9).

We observe that the corrections to ⌧ -modes are almost
independent of E

max

. This can be understood in the
non-relativistic region of Eqs. (11) and (12), where

(2E
max

)�
2↵
⇡ (1�2bij) ' 1 +

2↵

3⇡
ln (2E

max

)�2

ij , (26)

hence, the E
max

dependence is suppressed by the small
relative velocity involving ⌧ -leptons. On the other hand,
the corrections to µ-modes are sensitive to E

max

and
negative. The total e↵ects to the ratios R(D+) and
R(D0) are, therefore, positive and dependent on E

max

from the muonic modes. Furthermore, one observes that
the Coulomb contribution to the ⌧ -mode is larger than
the one to the µ-mode because of the smaller relative
velocity in the former case.

Figure 3 is our main result. We show the long-distance
QED corrections to R(D+)⌧/µ and R(D0)⌧/µ, where we
define them as the ratios of ⌧ - and µ-modes and use the
same E

max

for both type of leptons. We observe that
the correction to R(D+)⌧/µ and R(D0)⌧/µ are di↵erent
by 1.5–2% and propose to properly weight charged and
neutral decays in averaging R(D). We find that the in-
dividual corrections are comparable to or larger than the
current uncertainty of R(D)

SM

given in Eq. (3). Choos-

ing E
max

= 20 MeV, R(D+)⌧/µ
SM

and R(D0)⌧/µ
SM

can be
amplified by 5.5% and 3.6%, respectively. We check that
the renormalization scale dependence of the corrections
to the ratios is negligible. To estimate the potential im-
pacts by the modifications of the momentum dependence
of the form factors from virtual loop momenta, we com-
pare our full (long distance) results to the ones (leading
long distance) that discard the second line in Eq. (20).
We obtain a di↵erence of ⇠ 0.8%, which indicates that
the impacts are subleading.

NUMERICAL RESULT: M2

miss

DEPENDENCE

In order to relate our formulae to experimental anal-
yses which fit the missing mass squared (M2

miss

) distri-
bution, we consider long-distance QED corrections as a
function of

M2

miss

⌘ �

pe+e� � pBtag � pD � p`
�

2

, (27)

where pe+e� , pBtag , pD, and p` are the four-momenta

of the e+e� beams, tagged B, and signal B daughter
particles, respectively. The distribution is dominated by
the detector resolution of these four-momenta, giving a
symmetric shape [20]. We estimate the single soft-photon
contribution as

M2

miss,� = (p⌫ + p�)
2 = 2E⌫E� (1� cos ✓⌫�) > 0 , (28)

where ✓⌫� is the angle between ⌫` and the soft pho-
ton. Hence, single soft photons give only positive con-
tributions to the missing mass squared, resulting in an
asymmetric distribution. Assuming an isotropic distri-
bution for ✓⌫� gives M2

miss,� ⇡ 2E⌫E� . Using E⌫ =
�

m2

B � sD`

�

/2mB , we estimate the soft-photon energy
as

E� . E
max

⇡ mB

m2

B � sD`
M̂2

miss,� , (29)

where M̂2

miss,� corresponds to the maximal missing mass
squared from single photon emissions. For instance, us-
ing M̂2

miss,� = 0.1GeV2 and sD` = 10GeV one obtains
E

max

⇡ 30MeV.
Substituting Eq. (29) into Eqs. (11) and (12), we assess

the long-distance QED corrections to B(B0 ! D+µ�⌫µ)
as {�3.0,�2.1,�1.2}% and to B(B� ! D0µ�⌫µ) as

{�3.0,�2.3,�1.7}% for M̂2

miss,� = {0.05, 0.1, 0.2}GeV2,
respectively, at µ = mB . Note that the above analy-
sis can not be applied for the ⌧ -lepton because of addi-
tional neutrinos from its subsequent decay, however, the
⌧ -mode is insensitive to E

max

, see Fig. 2.

CONCLUSIONS

We evaluate the soft-photon corrections to R(D+)⌧/µ

and R(D0)⌧/µ as a function of the photon energy cut,
see Fig. 3. For example, by taking E

max

= 20 MeV, we

find that R(D+)⌧/µ
SM

and R(D0)⌧/µ
SM

can be amplified by
5.5% and 3.6%, respectively, which are larger than the
current lattice-QCD uncertainty of R(D)

SM

. We em-
phasize the impact of lepton-mass dependent contribu-
tions and to distinguish between neutral and charged B-
decays. Note, however, that a caution is required for
introducing the presented e↵ects into the comparisons
of the theoretical observables and the available measure-
ments for two reasons: The e↵ects depend on the precise

Kitahara et al.,  1803.05881



NP explanations
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There exist several solutions to the RD(*) anomaly.　
In terms of effective operators, possible NPs are given as follows

LNP
e↵ ⌘ �2

p
2GFVcb CNPONP

         VーA :  OV1 = (c̄�µPLb)(⌧̄ �µPL⌫)

     Models :  (SM), W’ boson, Vector Leptoquark, ...

Fit to data :  CV1 ⇠ +0.17

　　　・NP with 17% contribution of the SM value is required

　　　・Assuming NP coupling =1, it implies ～2TeV NP scale



V＋A (quark sector) :  OV2 = (c̄�µPRb)(⌧̄ �µPL⌫)

                    Models  :     W’ boson, ...?

                Fit to data :    CV2 ⇠ 0.01 + 0.6i

　　　　　　　　　　　　　・Complex coupling is necessary

           Scalar types :  

                    Models  :     Charged Higgs,  Scalar Leptoquark, ...

                Fit to data :    

OS1(2)
= (c̄ PR(L)b)(⌧̄PL⌫)

CS1 = no solution , CS2 ⇠ �1.5

　　　　　　　　　　　　　・2HDM of typeII is disfavored

　　　　　　　　　　　　　・Large scalar contribution is needed

             Tensor type :  

                    Models  :     Doublet vector/scalar Leptoquark (in part)

                Fit to data :    

OT = (c̄�µ⌫PLb)(⌧̄�µ⌫PL⌫)

CT ⇠ 0.3



Relevant observables

[1] q^2 distribution
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Figure 4: The RD(⇤)(q2) distributions, predicted in the SM (black) and various NP scenarios listed in

Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to the

theoretical errors in the hadronic form factor parameters

In Fig. 4, for illustration, we show the RD(⇤)(q2) distributions, predicted for the five94

scenarios described in Section 2. The width of each curve is due to the theoretical errors95

in the hadronic form factor parameters, which are varied within ±1� ranges. The dis-96

tributions for the vector V
1,2 NP scenarios (with best fitted values of Wilson coe�cients97

CV1 = 0.16 and CV2 = 0.01 ± 0.60i respectively) have small theoretical uncertainties as98

in the SM, but are practically indistinguishable from the distribution of the tensor (LQ
1

)99

NP scenario for the D(D⇤) mode. Therefore we omit plotting them in Fig. 4.100

We find that RD(q2) is very sensitive to the scalar contribution and RD⇤(q2) is more101

sensitive to the tensor operator. Moreover, one can easily see from Figs. 3 and 4 that the102

theoretical uncertainties in RD(⇤)(q2) are significantly smaller than those of the di↵erential103

branching fractions. Hence, the RD(⇤)(q2) distributions provide a good test of NP in104

addition to R(D(⇤)).105

4 Discriminative potential at Belle II106

In order to demonstrate the discriminating power of RD(⇤)(q2), we simulate “experimental107

data” for the binned RD(⇤)(q2) distributions, assuming one of the scenarios, listed in108

Section 2, that can explain the observed deviation in R(D) and R(D⇤), and compare109

them with other various model predictions by calculating �2 defined in the following way:110

111

�2 =
NbinsX

i,j=1

(Rexp

i �Rmodel

i )(V exp + V model)�1

ij (R
exp

j �Rmodel

j ) , (9)

where i and j denote the q2-bin indices, V exp and V model are the experimental and the-112

oretical covariance matrices of the simulated “experimental data” and the tested model113

respectively. Here the binned Ri is defined as Ri = (N ⌧
i /N

`
i )f(q

2

i ) with f(q2i ) for shortness114

denoting purely kinematic factors introduced in Eq. (8), where N ⌧,`
i are the numbers of115

signal events in the ith bin for a given luminosity. We evaluate N ⌧,`
i for each benchmark116

scenario using the central values of the hadronic parameters.117

For model predictions, the uncertainties of the HQET hadronic form factors and the118

7

Distributions for the case that         = best fit to the current results of CNP RD(⇤)

RW et al.  1412.3761,  B2TiP report

Some simple test with statistics was done and it turns out that 　
“5ab^-1 data for q^2 distributions enable us to distinguish the NP scenarios
in case that the present anomalies still remain in the future”



[2] Bc ! J/ ⌧⌫

　　　　　　　　　　　　　  has been observed at LHCb

RJ/ =
�(Bc ! J/ ⌧⌫̄)

�(Bc ! J/ µ⌫̄)
⌫

Bc J/ 
b c

c

⌧, µ

data : LHCb,  1711.05623RJ/ = 0.71 ± 0.17 ± 0.18

  SM :     RW,  1709.08644 

　　　　　・Perturbative QCD analysis provides the form factor. 

　　　　　・Still large errors both in data (35%) and SM (17%)

　　　　　・Deviation ～1.7σ

RJ/ = 0.283 ± 0.048

  NP :   Central value of the data cannot be reproduced

RW,  1709.08644 



V1

T

LQ+
LQ�

V2

S1,2

×



[3] Bc ! ⌧⌫ Grinstein et al,  1611.06676 

Not directly measured, 
but some limits have been estimated from Bc decay

Akeroyd,  1708.04072 

From Bc life time :   uncertainty of theoretical evaluation implies  
From LEP data      :   extracted from data at the Z boson peak 　

　・Indirect bound is then given as 

　・This kills the Scalar NP explanation

B(Bc ! ⌧⌫) < 10 – 30%

⇣
[�2]S2;min

J/ +D+D⇤ = 2.5
⌘

CS2 ⇠ �1.5

[Best fit point]





3

FD` =
1

2

mDm`
p

1� �2

D`

Z

1

0

dz
E(z)

P (z) [E(z)2 � P (z)2]
ln

E(z) + P (z)

E(z)� P (z)
, (18)

FB` =
1

4�B`

⇢

Li
2

✓

1� �B`

2

◆

� Li
2

✓

1 + �B`

2

◆

+ 4Li
2

(�B`)� Li
2

�

�2

B`

�

+ ln 2 ln
1 + �B`

1� �B`

+
1

2
ln2 (1� �B`)� 1

2
ln2 (1 + �B`)

�

, (19)

Hij = � 1

2�ij

(

1

2
ln2

mi

mj
� 1

8
ln2

1 + �ij

1� �ij
� 1

2
ln2
�

�

�

�

�

�i
ij +�ij�ij

�j
ij +�ij�ij

�

�

�

�

�

� Li
2

 

2�ij�ij

�i
ij +�ij�ij

!

� Li
2

 

2�ij�ij

�j
ij +�ij�ij

!)

+
1

4
ln

mimj

µ2

� 1

2
� m2

i �m2

j

4sij
ln

mi

mj
� 1

4
�ij�ij ln

1 + �ij

1� �ij
, (20)

where

�ij =
sij �m2

i �m2

j

2sij
, �i,j

ij =
sij +m2

i,j �m2

j,i

2sij
, (21)

sB` ⌘ (pB � p`)
2 = m2

B +m2

D +m2

` � q2 � sD` , (22)

Li
2

(z) ⌘ �
Z z

0

dt
ln(1� t)

t
. (23)

The functions E(z) and P (z) in Eq. (18) are given by

E(z) = zED + (1� z)E` , (24)

P (z) =

(

[zED + (1� z)E`]
2 � z2m2

D

� (1� z)2 m2

` � 2z(1� z)
mDm`
p

1� �2

D`

)

1
2

, (25)

and �BD is obtained from Eq. (15) by replacing ` by D
and using ED =

�

m2

B +m2

D � q2
�

/2mB .
Using the independence of soft-photon emission terms

on the spins of the external legs [31], we checked that
Eqs. (17)–(19) are in agreement with the corresponding
terms from the decay process involving scalar particles
evaluated in Ref. [28].
For ultraviolet divergences we use the MS scheme

denoting the renormalization scale as µ, while for the
charged-particle self-energies we adopt the on-shell renor-
malization scheme. We regularize the IR divergences
with a spurious photon mass.
For the derivation of Eq. (20) we utilize the analytical

result for the three-point one-loop scalar integral given in
Ref. [35]. We cross-checked the resulting analytic formula
for H with the numerical evaluations using LoopTools
[36] and Package-X [37]. The first line of Eq. (20) arises
from soft virtual photons, while the second line involves
remaining terms from the full virtual momentum depen-
dence neglecting the potential modifications of the mo-
mentum dependence of the form factors.
We refrain from applying the soft-photon approxima-

tion to the case of the electron mode, because me ⌧
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FIG. 2. (a) The long-distance QED corrections to the
branching ratios of B0 ! D+`�⌫` and (b) B� ! D0`�⌫`,
where ` = µ, ⌧ , as a function of E

max

. The dotted lines show
the corrections to B0 ! D+`�⌫` without the Coulomb con-
tributions, for the purpose of illustration.

E
max

leads to an additional large (Sudakov) logarithm
and large finite terms O(E

max

/me) which break the un-
derlying assumption of the approximation, see Ref. [38].
We hope to revisit this issue in a future work.
To simulate modifications of the kinematic variables

induced by final-state photon radiations, the PHOTOS
Monte-Carlo generator [39–41] is commonly used in ex-
perimental analyses. To our knowledge, our results are
not fully covered by PHOTOS for B ! D`⌫`, e.g., we
include interferences between di↵erent soft emission am-
plitudes, and virtual corrections including the Coulomb
terms.

NUMERICAL RESULT: E
max

DEPENDENCE

In Fig. 2 we show the results for the long-distance
QED corrections to B(B0 ! D+`�⌫`) (left panel) and
B(B� ! D0`�⌫`) (right panel), where ` = µ, ⌧ , as a
function of E

max

. Note that the typical value of E
max

in current experiments is 20 ⇠ 30 MeV. For this figure


