

Search for LNV and limits on Heavy Neutral Leptons by the CERN Kaon experiments

Cristina Biino * - INFN Torino

CIPANP – 13th Conference on the Intersections of Particle and Nuclear Physics Palm Springs, *CA*, 28 May – June 3, 2018

[•] On behalf of the NA48/2 & NA62 Collaborations

Outline

- Heavy Neutral Leptons (HNL) searches Theoretical motivations
- Kaon physics at CERN: the NA48 & NA62 experiments
- Search for HNL in $K^+ \rightarrow \ell^+ N$ ($\ell=e,\mu$) decays @ NA62 (2007 & 2015 data)

Phys.Lett. B772 (2017) 712-718

Phys.Lett. B778 (2018) 137-145

Search for LNV and HNL decays in $K^{\pm} \rightarrow \pi \mu \mu$ decays @ NFA48/2

Phys.Lett. B769 (2017) 67-76

Conclusions

Also at this conference: more NA62 results by Bob Velghe on $K^+ \rightarrow \pi^+ \nu \nu$ preliminary observation at CERN New

Heavy Neutral Leptons

- Observation of neutrino oscillations → Neutrino masses need to be accomodated in the SM
- Heavy Neutrinos (HN): the neutrino minimal SM (vMSM) \rightarrow adding to the SM 3 right-handed sterile neutrinos N_i

Asaka-Shaposhnikov - PLB 620 (2005) 17

N₁ is the lightest: m₁ ~ O(10 KeV/c²) → Dark Matter candidate
 N₂ and N₃ : mass ~ O(MeV/c² to GeV/c²) introduce extra CPV-phases to account for Baryon Asymmetry of the Universe (BAU) and produce standard neutrino masses through See-Saw mechanism with a Yukawa coupling of ~10⁻⁸

The model explains simultaneously:

- Neutrino oscillations and smallness of neutrino masses
- Cosmic Dark Matter (DM) candidate
- BAU: leptogenesis due to Majorana mass term

of Matter (Fermions) spin 4: I II II mass + 2 INFV tharge + 3/2 U = 1 1 II 1 III 1 II 1

C. Biino – CIPANP 2018

The branching fraction involving the HNL mass state

 $\textit{B}(\textit{K}^{\scriptscriptstyle +} \rightarrow \ell^{\scriptscriptstyle +}\textit{N}) = \textit{B}(\textit{K}^{\scriptscriptstyle +} \rightarrow \ell^{\scriptscriptstyle +}\!\nu_{\ell}) \ge \rho_{\ell}(\textit{m}_{N}) \ge |\textit{U}_{\ell 4}|^{2}$

where $|U_{\ell4}|$ are elements of the extended neutrino mixing matrix between the SM flavour and HNL mass state:

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{vmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \end{vmatrix} \bullet \begin{pmatrix} \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \end{pmatrix}$$

Kaon Physics

3

Active-sterile neutrino N_i mixing with SM particles is described by the U-matrix

HNL-Theoretical Motivations

Heavy Neutral Leptons

• HNL can be produced in the decay of beauty, charm and strange hadrons and by photons originated in the interaction of protons of a target.

NA 62

- HNL coupling to SM particles are very suppressed \rightarrow production rates of 10⁻¹⁰ or less.
- Since charm and beauty cross sections increase with the energy, a high intensity, high energy proton beam is required to improve over the current results.
- HNL are expected to be long-lived.

The decays of HNL to SM particles can be detected by experiments with long decay volumes followed by a spectrometer with particle id capability.

In this talk I present searches for HNL at the CERN SPS with the Kaon experiments NA48/2 and NA62.

HNL searches with Kaons

- If $m_N < (m_K m_\ell)$ the HNL can be observed in kaon decays.
- **PRODUCTION:** search for peaks in $\mathbf{m}_N^2 = \mathbf{m}_{miss}^2 = (\mathbf{p}_K \mathbf{p}_\ell)^2$ BR(K⁺ $\rightarrow \ell^+ \mathbf{N}$) = BR(K⁺ $\rightarrow \ell^+ \mathbf{v}_\ell$) x $\rho_\ell(\mathbf{m}_N)$ x $|\mathbf{U}_{\ell 4}|^2$ BP(K⁺ $\rightarrow \ell^+ \mathbf{N}$)

$$U_{\ell 4}|^{2} = \frac{BR(K^{*} \neq \ell N)}{BR(K^{*} \rightarrow \ell^{+} v_{\ell}) \times \rho_{\ell}(m_{N})}$$

DECAY: HNL decay only into *SM particles* $\Gamma(N \rightarrow SM part) \sim |U_{\ell 4}|^2 x m_N^3$

• If $m_N < 500 \text{ MeV/c}^2$ the main decays are:

$$N \rightarrow \pi^0 \nu$$
, $N \rightarrow \pi^{\pm} \ell^{\mp} (\ell = e, \mu)$, $N \rightarrow \nu \nu \nu$

- Assuming $|U_{\ell 4}|^2 < 10^{-4}$
- mean free path of $K^+ \rightarrow \mu^+ N$ and $K^+ \rightarrow e^+ N > 10$ Km in NA62
- analysis possible in dump mode

NA62

Complementary searches in NA48/2 (2003 data), NA62- R_{K} (2007 data) and NA62 (2015 data)

• Model dependent (HNL decay modes and lifetime)	bendent of HNL decay modes
• Sensitive to short-lived (unstable) HNL	itive to long-lived (or stable) HNLs
• Sensitive to the Majorana/Dirac nature of HNL	ing peaks in the missing mass
($ \Delta L =2$ transitions)	= $\sqrt{(p_{K}-p_{\ell+})^2}$ spectrum ($\ell^+ = e^+, \mu^+$)
• Search done on a sample of 3-track vertex events	ch done on samples of minimum bias trigger
(LNC & LNV): K [±] $\rightarrow \mu^{\pm}$ N and N $\rightarrow \mu\pi$	s: K ⁺ $\rightarrow \mu^+ N$ (2007); K ⁺ $\rightarrow e^+ N, \mu^+ N$ (2015)

5

NA48 and NA62 experiments at CERN

NA62 🗗

NA48/2 & NA62-R_K layout

Liquid Krypton em calorimeter (LKr)

 $\sigma_{_{\!E}}\!/\text{E}$ = (3.2/VE \oplus 9.0/E \oplus 0.42)% (E in GeV/)

 $\sigma_x = \sigma_y = 4.2/E^{\frac{1}{2}} \oplus 0.6 \text{ mm}$ (E in GeV/)

> Magnetic spectrometer (4 DCHs + dipole magnet) $\sigma_p/p = (1.0 \oplus 0.044 \text{ p})\%$ (p in GeV/c) NA48/2 $\sigma_p/p = (0.48 \oplus 0.009 \text{ p})\%$ (p in GeV/c) NA62-R_K

- > Charged scintillator Hodoscope $\sigma_t = 150 \text{ ps}$
- Muon counter

- Simultaneous, unseparated, focused charged hadron beam; K~ 6%
 Kaon decays in the vacuum tank: 22%
 Flux ratio: K⁺/K⁻ ~ 1.8
 Similar acceptance for K⁺ and K⁻ decays
 p_K = (60 ± 3.0) GeV/c (NA48/2)
- $p_{K} = (74 \pm 1.4) \text{ GeV/c}$ (NA62-R_K)

Decay region, in vacuum: 114 m

The NA62 layout (*)

(*) NA62 talk by Bob Velghe on $K^+ \rightarrow \pi^+ \nu \nu$ preliminary observation at CERN

Primary beam: CERN SPS protons

- 3×10¹² ppp, 3.4 s effective spill
- 750 MHz @GTK
- 400 GeV/c (x3 NA48/2)

Secondary beam:

- unseparated positive beam $\pi/K/p$
- K⁺ ~ 6%, p_K = 75 GeV/c (Δp/p ~ 1.1%)
- K⁺ decays/year = 4.5×10¹² (×45 NA48/2)
- integrated average rate
- average K decay rate \approx 10 MHz

Goal: measurement of BR($K^+ \rightarrow \pi^+ \vee \overline{\nu}$) @ 10% accuracy

Decay region

- → Fiducial decay region 60 m
- → Vacumm 10⁻⁶ mbar
- → K⁺ decay rate ~5MHz

Main detectors:

- Tracking: beam Si pixel tracker (GTK); Straw chambers in vacuum for decay products
- **PID:** beam Cherenkov for K⁺ (KTAG); RICH + MUVs for $\pi/\mu/e$
- Hermetic veto: calorimeters for γ/μ

8

The NA62 experiment at CERN Kaon facility

Heavy Neutral Leptons search @ NA62 (from 2007 and 2015 data samples)

Phys.Lett. B772 (2017) 712-71

Phys.Lett. B778 (2018) 137-14

The NA62 single muon sample

Only K⁺ beam data (43% of NA62-2007 sample) → higher muon halo rejection

Event selection

- One well reconstructed μ^+ track
- No extra clusters in LKr with E > 2 GeV
- Five-dimensional (z_{vertex} , ϑ , p, CDA, ϕ) kinematic suppression of muon halo

Data driven study of:

- Halo background
- Spectrometer resolution tails
- Trigger and µ-ID efficiencies

HNL detailed MC simulation for:

- Acceptance vs HNL mass: A(m_{N4})
- m_{miss} peak resolution vs HNL mass: $\sigma(m_{N4})$
- MC samples generated at 1 MeV/c² mass intervals

Kaon decays in the fiducial volume

• $N_{K} \sim 6 \times 10^{7}$ (from reconstructed $K^{+} \rightarrow \mu^{+}\nu$) (downscaling D=150 for the 1-track μ trigger) $K^+ \rightarrow \mu^+ N$: Search for peaks in $m_{miss} = \sqrt{(p_K - p_\mu)^2}$

Signal region : $m_{miss}(\mu^+)$ in range [300 – 375] MeV/c²

10 Kaon Physics

HNL search at NA62

HNL: search for $K^+ \rightarrow \mu^+ N_4$

Uncertainty on expected background:

- Muon halo background 5÷20%
- Statistical uncertainty on muon halo background dominates for HNL masses > 300 MeV/c²
- Kaon decays <1% (mainly $K_{\mu3}$)

Upper Limit on $K^+ \rightarrow \mu^+ N_4$ signal events

- 1 MeV/c² mass steps
- Mass window size : $\pm(\sigma_{HN} = 12 \text{ MeV/c}^2 0.03 \times m_{HN})$
- Rolke-Lopez method to get UL(N_{sig})

HNL: NA62 results - (2007 data sample)

12 Kaon Physics

HNL search at NA62

NA62 - Search for HNL production

- **NA62**
- In 2015 NA62 collected 5 days of Min Bias data at 1% of nominal beam intensity
- No beam tracker: p_K given by beam average
- Analysis of data shows: ~24M K⁺ $\rightarrow \mu^+ \nu_{\mu}$ (1767 K⁺ $\rightarrow e^+ \nu_e$) decays with a background level 100 times lower wrt NA62-2007 \rightarrow Can set world most stringent limits on heavy neutrino production

Event selection for

 $\mathrm{K^{+}} \rightarrow \mathrm{e^{+}N}~$ and $\mathrm{K^{+}} \rightarrow \mathrm{\mu^{+}N}$

- one positive charged track
 positrons and muons
 identified by the E/p ratio + 500
 MUV info and RICH up to 40 GeV
 one single electron clusters 400
 in the LKr calorimeter
 no photons in the photon- 300
- veto detector

HNL detailed MC for:

- Acceptance vs HNL mass: A(m_{N4})
- m_{miss} peak resolution vs HNL mass: $\sigma(m_{N4})$

Kaon Physics

Search for peaks in $m_{miss} = \sqrt{(p_{K}-p_{\ell+})^2}$

Signal region : m_{miss} in range [170 – 448] and [250-373] MeV/c²

HNL search at NA62

NA62 - Search for HNL production

250

200

150

100

50

0

events

rs of

Number

Upper limit on signal events

- 1 MeV/c^2 mass scan steps
- search window size for each mass hypothesis: $\pm 1.5 \sigma(m_N)$
- Rolke-Lopez method to get UL(N_{sig})

For each \mathbf{m}_{N} hypothesis:

- numbers of expected (N_{exp}) and observed (N_{obs}) events, together with the uncertainty on N_{exp} (δN_{exp}) , as shown by the blue band)
- obtained expected and observed upper limits at 90% CL on the numbers of $K^+ \rightarrow \ell^+ N$ events

 $B_{SES}(K^+ \rightarrow \ell^+ N) = 1/[N_K \times A(K^+ \rightarrow \ell^+ N)]$

 $|U_{\ell 4}|^2_{SES} = B_{SES} (K^+ \rightarrow \ell^+ N) / [B(K^+ \rightarrow \ell^+ v) \times \rho_\ell (m_N)]$

No HNL signal observed above 3σ significance

14 Kaon Physics

Current results on HNL searches: $|U_{\ell_4}|^2$ **NA62**

 $| \mathbf{U}_{\ell 4} |^2 = \mathbf{BR}(\mathbf{K}^+ \rightarrow \ell^+ \mathbf{N}) / [\mathbf{BR}(\mathbf{K}^+ \rightarrow \ell^+ \mathbf{v}) \times \rho_\ell (\mathbf{m}_N)]$

 $K^+ \rightarrow \mu^+ N$ NA62 (2007) dataAbout 60 billion K⁺ decaysImproved limits in $300 \le m_N \le 375 \text{ MeV/c}^2$

Phys.Lett. B772 (2017) 712-718

 $K^+ \rightarrow e^+N$ NA62 (2015) dataAbout 300 billion K⁺ decaysNew limits $O(10^{-6\div-7})$ in $170 \le m_N \le 448 \text{ MeV/c}^2$

Phys.Lett. B778 (2018) 137-145

 $K^+ \rightarrow \mu^+ N$ NA62 (2015) dataAbout 100 billion K⁺ decaysNew limits $O(10^{-6\div-7})$ in 250 $\leq m_N \leq 373$ MeV/c²

Phys.Lett. B778 (2018) 137-145

Prospects → NA62-2016 data: K⁺ → e⁺N analysis quite advanced, improvements due to higher beam intensity, commissioned beam tracker → higher sensitivity → $|U_{e4}|^2$ limit expected to decrease by 1-2 order of magnitude.

15 Kaon Physics

HNL search at NA62

* Search for LNV and resonances in $K^{\pm} \rightarrow \pi \mu \mu$ decays @ NA48/2

Two different samples:

- same-sign muons sample LNV decay
- opposite sign muons sample LNC decay

Phys.Lett. B769 (2017) 67-76

LNV: NA48/2 same-sign muon sample

Search for $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm} \rightarrow |\Delta L|=2$ transitions mediated by Majorana neutrino exchange

Blind analysis:

- Selection based on MC simulation of $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ and $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$
- Additional $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ MC sample for background estimation
- Control region $M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) < 480 \text{ MeV/c}^2$ <u>Event selection:</u>
 - One well reconstructed 3-track vertex
 - 2 same-sign muons, 1odd sign pion
 - Total P_t consistent with zero
 - Signal region $|M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) M_k| < 5 \text{ MeV/c}^2$

Kaon decays in the fiducial volume $N_{K} \sim 2 \times 10^{11}$ (from reconstructed $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$)

• Events in Signal Region observed after $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ selection:

Expected background (from MC):

Kaon Physics

Rolke-Lopez method to get UL(N_{signal})

world best limit

 $N_{obs} = 1$ $N_{exp} = 1.160 \pm 0.865$

NAG.

BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$) < 8.6 × 10⁻¹¹ @ 90% CL

LNV in NA48/2

LNC: NA48/2 opposite-sign µ sample

HN resonance search in LNV sample

HN resonance search in LNC sample

Opposite-sign μ sample: search for $K^{\pm} \rightarrow \mu^{\pm} N_{a} (N_{a} \rightarrow \pi^{\pm} \mu^{\mp})$

Summary & Future

Phys.Lett.B 769 (2017) 67-76

NA48/2 and NA62 are Kaon experiments at CERN with a broad physics program that includes studies of the neutrino sector.

- NA48/2: HNL Production + Decay
- → Search for LNV $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decay :
 - BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$) < 8.6 × 10⁻¹¹ @ 90% CL (World Best Limit)
 - Factor 10 improvement wrt previous best limit (1.1 × 10⁻⁹ @ 90% CL)
- → Search for $K^{\pm} \rightarrow \mu^{\pm}N_4$ ($N_4 \rightarrow \pi^{\pm}\mu^{\mp}$) (LNC Heavy neutrino)
 - Limits on BR products of the order of **10**⁻⁹ for HNL lifetimes < 100 ps
- → Search for $K^{\pm} \rightarrow \mu^{\pm} N_4$ ($N_4 \rightarrow \pi^{\mp} \mu^{\pm}$) (LNV Majorana neutrino)
 - Limits on BR products of the order of **10**⁻¹⁰ for HNL lifetimes < 100 ps

♦ NA62-2007: HNL Production in K⁺ → μ^+N_4 decays Phys.Lett. B772 (2017) 712-718

- → Limits on BR(K⁺ → μ^+N_4) ~ 10⁻⁵
- → Limits on $|U_{\mu4}|^2 \sim 10^{-5}$ for $m_{HN} > 300 \text{ MeV/c}^2$
- ♦ NA62-2015: HNL Production in K⁺ → l^+N_4 ($l=e,\mu$) Phys.Lett. B778 (2018) 137-145
- \rightarrow Limits on $|U_{\ell 4}|^2 \sim 10^{-7 \div -6}$ for m_{HN} [170÷448] and [250÷ 373] MeV/c² respectively

NA62 perspectives: 2016-2018 data set: K⁺→ℓ⁺N event yield expected to be larger with improved mass resolution and much lower bkg

 \rightarrow also improved results from K⁺ $\rightarrow \pi \ell \ell$ expected in the coming years

Kaon Physics

Heavy Neutrino search at NA62

NA62 data sample

MUV

2015 data

RICH

CHOD

LKr

- 12000 SPS spills (collected over 5 days)
- Beam intensity typically 1% of the nominal

Strav

- Low-level trigger scheme based on minimum-bias signals in CHOD and MUV
- High-level trigger based on KTAG signals
- GTK under commissioning (not used)

The NA62 detector (*see next talk)

Primary beam: CERN SPS protons

- 3×10¹² ppp,
- 400 GeV/c (x3 NA48/2)

Secondary beam:

- unseparated positive beam $\pi/K/p$
- K⁺ ~ 6%, p_K = 75 GeV/c (Δp/p ~ 1.1%)
- K⁺ decays/year = 4.5×10¹² (×45 NA48/2)
- integrated average rate = 750 MHz
- average K decay rate \approx 10 MHz

Goal: measurement of BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) @ 10% accuracy

- → O(20) SM events/year
- → 2014: detector commissioning
- → 2015: Trigger and high intensity beam line commissioning, detector quality studies
- → 2016: High level trigger and full beam tracker commissioning, physics analysis (ongoing)
- → Data samples
- 2015: Low intensity beam, minimum bias trigger
- 2016-2018: Stable conditions up to 40% of nominal intensity

The NA62 experin

The NA62 single muon sample

Only K⁺ beam data (43% of NA62-2007 sample) → higher muon halo rejection

Event selection

- One well reconstructed μ^+ track
- No extra clusters in LKr with E > 2 GeV
- Five-dimensional (z_{vertex} , ϑ , p, CDA, ϕ) kinematic suppression of muon halo

Data driven study of:

- Halo background
- Spectrometer resolution tails
- Trigger and µ-ID efficiencies

HNL detailed MC simulation for:

- Acceptance vs HN mass: A(m_{N4})
- m_{miss} peak resolution vs HN mass: $\sigma(m_{N4})$
- 1 MeV/c² mass intervals

Kaon decays in the fiducial volume

• $N_{K} \sim 6 \times 10^{7}$ (from reconstructed $K^{+} \rightarrow \mu^{+}\nu$) (downscaling D=150 for the 1-track μ trigger) Search for peaks in $m_{miss} = \sqrt{(p_K - p_\mu)^2}$

Signal region : $m_{miss}(\mu^+)$ in range [300 – 375] MeV/c²

25 Kaon Physics

HNL search at NA62

Limits on HNL Branching Fraction

• The limits on \mathbf{n}_{UL} are converted into limits on the branching fractions

 $B(K^+ \to e^+N)$ and $B(K^+ \to \mu^+N)$ via $B(K^+ \to \ell^+N) = \frac{n_{UL}^\ell}{N_K^\ell \bullet A_N^\ell(m_N)}$ which depends on the HNL acceptance $A_N^\ell(m_N)$

C. Biino – CIPANP 2018

NA62 A

HNL search at NA62

HN: results comparison

Comparison to existing peak search measurements

NA62 - Search for HNL production

NA62

Limit setting procedure

- Set limits on the number of HNL decays **n**_{UL} using **Rolke-Lopez** method [4]
- The limit is computed based on number of observed n_{obs} events, the number of expected events n_{exp}, and the uncertainty on n_{exp}
- Limit computed in steps of 1MeV/c² across the HNL mass range
- n_{obs} determined by counting events in a "search window" of 1.5σ_m at each HNL mass step
- n_{exp} estimated by fitting data events outside of the search window

Kaon Physics

Limits on number of HNL decays

- Limits on the number of $K^+ \rightarrow e^+ N$ are set at the level of O(30) events
- Limits on the number of $K^+ \rightarrow \mu^+ N$ are set at the level of O(20) events

HNL search at NA48/2

Search for resonances: Acceptance

Fig. 2. Acceptances as functions of the assumed resonance mass and lifetime of: (a) the $K_{\pi\mu\mu}^{\text{LNV}}$ selection for $K^{\pm} \rightarrow \mu^{\pm}N_4$, $N_4 \rightarrow \pi^{\mp}\mu^{\pm}$ decays; (b) the $K_{\pi\mu\mu}^{\text{LNC}}$ selection for $K^{\pm} \rightarrow \mu^{\pm}N_4$, $N_4 \rightarrow \pi^{\pm}\mu^{\mp}$ decays; (c) the $K_{\pi\mu\mu}^{\text{LNC}}$ selection for $K^{\pm} \rightarrow \pi^{\pm}X$, $X \rightarrow \mu^{+}\mu^{-}$ decays. For resonance lifetimes $\tau > 1$ ns the acceptances scale as $1/\tau$ due to the required three-track vertex topology of the selected events. In the LNV selection, the tighter $M_{\pi\mu\mu}$ cut leads to a 5% smaller acceptance. The mass dependence in case (c) differs from the others due to the p > 15 GeV/c pion momentum cut, not applied to muons (Sec. 2).

LNV in NA48/2

Search for $K^{\pm} \rightarrow \pi^{\pm}X$ (X $\rightarrow \mu^{+}\mu^{-}$) decay

NA62 \Lambda

HNL search at NA48/2

NA48/2 Constraints on $|U_{\mu4}|^2$

From UL on BR to UL on $|U_{\mu4}|^2$:

• NA48/2 limits on $|U_{\mu4}|^2$ only applies to short lived HN (τ < 100 ps)

C. Biino – CIPANP 2018

HNL search at NA48/2

Limits on $|U_{\mu4}|^2$

NA62 in dump mode

A dump with suitable length stops all beam-induced backgrounds but neutrinos and muons:

NA62: Muon halo & neutrino halo

- Muons produce inelastic interactions and combinatorial background
 - In beam mode about ${\sim}5~\rm MHz$ of μ^+ and 150 kHz μ^- present due to early decays in flight of K and π in the beam
 - In dump mode the muon halo is reduced by 2 orders of magnitudes (2016 data)
- Neutrinos produce inelastic interactions in the material surrounding the Fiducial Volume
 - $\bullet~$ In dump mode about ${\sim}10~$ GHz of active neutrinos are expected at nominal condition

NA62 in dump mode - prospects

Assume to detect all 2-track final states, including open channels, and zero background.

Zero background for charged particle final states has been proven at $\sim 4\times 10^{15}$ POT and fully reconstructed final states

The current NA62 run will be exploited to evaluate background rejection up to $\sim 10^{16}-10^{17}~\text{POT's}$

- optimise the detector design for future beam-dump mode: improvements in the setup are under study
- potentially achieve first results on the dark sector searches
- Possible running in dump-mode after LS2 to collect 10¹⁸ PoT (80 days @ full intensity) to search for hidden particles from charm/ beauty decays