Hadron Production Measurements for Long-Baseline Neutrino Experiments with NA61/SHINE

S···INE

Yoshikazu Nagai

(for the NA61/SHINE collaboration)

University of Colorado Boulder

May 29 - June 3, CIPANP 2018, Palm Springs, CA

Contents

Introduction: Hadron production & the NA61/SHINE experiment

Results and Plans: Measurements for the T2K flux prediction

Results and Plans: Measurements for the Fermilab neutrino program

Prospect: NA61 beyond 2020

Introduction:

Hadron production & the NA61/SHINE experiment

ANNOT THEM THE

Hadron production

Pions, Kaons, protons, and other hadrons are produced in:

• Primary interactions in the target (p + C, p + Be)

Secondary interactions in the target (hadrons + C/Be)

T2K target

Hadron production

Pions, Kaons, protons, and other hadrons are produced in:

- Primary interactions in the target (p + C, p + Be)
- Secondary interactions in the target (hadrons + C/Be)
- Primary interactions with horn or beamline materials (p + X)
- Secondary interactions with horn or beamline materials (hadrons + X)

T2K horn

Importance of hadron production measurements

• Hadron production is the leading source of uncertainty on the neutrino flux prediction

- Near-detectors can not fully constrain the flux at the far site (near-to-far flux ratio)
- Neutrino cross-section measurements and near-detector physics rely on precise neutrino flux prediction (absolute flux)
- Requirements for the future long-baseline neutrino experiments (Hyper-K, DUNE)
 - Total systematic uncertainty: below 4% for oscillation measurements
 - Current T2K (v_e CCQE): ~6% total uncertainty, including ~3% uncertainty on " ϕ x σ "
 - Similar situation will be expected for the Hyper-K and DUNE experiments

6

What kind of measurements to constrain flux?

• Thin target: a few % of nuclear interaction length(λ)

- Measure total inelastic and production cross-sections
- Measure differential cross-sections ($\frac{d^2\sigma}{dp\,d\theta}$) of produced hadrons

p, $\pi^{+/-}$, $K^{+/-}$ beams on nuclear targets (C, Be, AI, etc..) to study primary

and secondary interactions

- Replica target (thick target):
 - Measure hadron production yields exiting target
 - Measure beam survival probability to estimate production cross-section

 $P_{\rm survival} = e^{-Ln\sigma_{\rm prod}}$ (L: length of target, n: number of carbon atoms per unit volume)

proton beams on replica targets

T2K replica graphite target (1.9 λ)

NA61/SHINE can satisfy hadron production needs for long-baseline neutrino experiments ! 7

Thin graphite target

The NA61/SHINE Experiment

"The SPS Heavy Ion and Neutrino Experiment"

- hadron beams
 - primary protons at 400 GeV/c
 - secondary hadrons (*p*, *π*, *K*) at 13 350 GeV/c
- lon beams
 - primary (Ar, Xe, Pb) at 13 150 AGeV/c
 - secondary Be at 13 150 AGeV/c (from Pb fragmentation)

Broad physics program

- <u>Heavy ion</u>
 - Search for the critical point
 - Study the onset of QCD deconfinement
- Cosmic ray
 - Hadron production measurements to improve air-shower model predictions
 - Study (anti-)deuteron production mechanism for the AMS and GAPS experiments
- <u>Neutrino</u>
 - Hadron production measurements to improve neutrino beam flux predictions

NA61/SHINE experimental facility

- Large acceptance spectrometer for charged particles
 - TPCs as main tracking detector, time-of-flight detectors placed downstream
 - 2 dipole magnets with 1.5 T maximum field (9 Tm bending power)
- Recent facility upgrades
 - Forward TPCs to fill the forward acceptance gap
 - New DAQ readout with DRS4 chips replacing FASTBUS, CAMAC, and custom electronics 9

NA61/SHINE acceptance after facility upgrade

Acceptance

- Huge improvement on the forward acceptance
 - Particularly important to understand forward proton and pion productions for NuMI and LBNF beamlines

Previous and ongoing measurements for T2K

- Thin target: p@ 31 GeV/c on 2cm graphite target
 - 2007: 0.7M triggered events
 - total cross-section and $\pi^{+/-}$ spectra measurements (Phys.Rev. C84 (2011) 034604)
 - *K*⁺ spectra measurement (Phys.Rev. C85 (2012) 035210)
 - $K^{0}s$ and Λ^{0} spectra measurements (Phys.Rev. C89 (2014) 025205)
 - 2009: 5.2M triggered events.
 - total cross-section and $\pi^{+/-}$, p, $K^{0}s$, and Λ^{0} spectra measurements (Eur.Phys.J. C76 (2016) 84)
- <u>Replica target</u>: p@ 31 GeV/c on 90cm replica graphite target
 - 2007: 0.2M triggered events (pilot run)
 - methodology, $\pi^{+/-}$ yield measurement (Nucl.Instrum.Meth. A701 (2013) 99-114)
 - 2009: 4.0M triggered events
 - π^{+/-} yield measurement (Eur.Phys.J. C76 (2016) 617)
 - 2010: 10.0M triggered events
 - $\pi^{+/-}$, p, and $K^{+/-}$ yield measurements (Paper under preparation, preliminary results:
 - 2010: 1.2M triggered events (high magnetic field)
 - p beam survival probability measurement (Analysis ongoing)

https://edms.cern.ch/document/1828979/1

T2K flux uncertainty with NA61/SHINE measurements

- Thin target measurements improved T2K flux uncertainty down to 10%
- 2009 replica target measurements will improve uncertainty down to < 5% (for v from $\pi^{+/-}$)
 - --> Further improvement with 2010 replica target measurements !!

2010 replica target results

p[GeV/c] Statistical error reduced by ~factor of 2 compared to 2009 results

Results (2015) and Plans:

Measurements for the Fermilab neutrino program

A long-baseline neutrino oscillation experiment, situated 14.6 mrad off the NuMI beam axis

NOvA Far Detector (Ash-River, MN)

MINOS Far Detector (Soudan, MI

Wisconsin

Milwaukee

Fermilab

Chicago

Ongoing measurements for Fermilab *v* **beams**

 \odot 2015 - 2017: $\pi^{+/-}$, p, K⁺ beams on various thin nuclear targets (Be, C, Al)

• 2015: total inelastic and production cross-section measurements (submitted to PRD, arXiv:1805.04546)

2017

- 2016: spectra measurements of $\pi^{+/-}$, $K^{+/-}$, p, K^{0}_{S} , and Λ^{0} (analysis ongoing)
- 2017: data taken last summer (calibration ongoing)

dataset	events	dataset	events	dataset	events	
p+C 31 GeV/c	0.4M *	p+C 60 GeV/c	3.1M	π++C 30 GeV/c	2.2M	 very rich dataset is being analyzed
π++C 31 GeV/c	1.2M *	p+Be 60 GeV/c	2.2M	π++Al 60 GeV/c	3.3M	
π ⁺ +AI 31 GeV/c	0.8M *	p+AI 60 GeV/c	3.5M	π +C 60 GeV/c	3 611 **	
π++C 60 GeV/c	0.8M *	π ⁺ +C 60 GeV/c	3.0M		2 2 1 4 **	
π ⁺ +Al 60 GeV/c	0.7M *	π ⁺ +Be 60 GeV/c	2.7M	p+C 90 Gev/C	5.5/01	
K++C 60 GeV/c	0.7M *	p+C 120 GeV/c	4.6M	p+C 120 GeV/c	2.6M **	
K++AI 60 GeV/c	0.5M *	p+Be 120 GeV/c	2.5M	p+Be 120 GeV/c	4.0M **	

2016

2015

- * no magnetic field
- ** with forward TPCs and forward ToFs

Total cross-section measurements (2015)

- Measurements for 6 different interactions
- Precision of measurements: 2~3%, while current NuMI beam for MINERvA assumes an uncertainty of 5% for pions and 10-30% for kaons
 - Greatly reduce the uncertainty, especially for kaon interactions

Preprint available: <u>https://arxiv.org/abs/1805.04546</u> Submitted to Phys. Rev. D

Spectra measurements (2016)

Spectra measurements for Fermilab neutrino beam tunings are ongoing

2018 data taking plans

Replica target: p@ 120 GeV/c on 1.2m NuMI replica target (graphite fins)

- 4 weeks in July 2018 (beam time allocated)
- Thin target: K+beam@ 60 GeV/c on thin nuclear targets
 - 1 week in fall 2018 (beam time allocated)

The last year of currently approved NA61/SHINE physics program —> Program extension "Addendum to the NA61/SHINE proposal" has been submitted to the SPSC in March 2018

Prospect:

NA61 beyond 2020

July 26-28, 2017

UNIVERSITÉ

DE GENÈVE

https://indico.cern.ch/event/629968/

Future Physics Opportunities with the NA61/SHINE

Spectrometer

SHINE

NA61

NA61 beyond 2020

Addendum to the NA61/SHINE Proposal SPSC-P-330

Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS Early Post-LS2 Measurements and Future Plans

By the NA61/SHINE Collaboration and the CERN team http://na61.web.cern.ch/

S...INE

https://cds.cern.ch/record/2309890

- Significant facility upgrades are planned
 - DAQ upgrade: ~1kHz TPC readout
 - new ToF walls with mRPC
 - SCIFI-based beam position detector
 - Large-acceptance silicon pixel detector (ALPIDE)
 - Construction of low momentum beamline (under discussion with CERN beam group)
- Potential neutrino measurements in 2021-2024
 - Hadron production below 18 GeV/c for accelerator-based and atmospheric neutrino experiments
 - Replica target of DUNE and HyperK (if prototypes are ready) with dedicated tracking detectors
 - new nuclear target measurements: target materials (e.g. Super-sialon ceramic) and support materials (Al, Fe, Ti, water, etc..)

Summary

- Precision hadron production measurements are essential to reduce the leading systematic uncertainty on the neutrino flux prediction
 - NA61/SHINE thin and replica target measurements have improved and will further improve the flux prediction in T2K
- NA61/SHINE measurements for the Fermilab neutrino programs are ongoing
 NA61/SHINE is proposing program extension after LS2
 - Significant facility upgrades allow us to pursue important measurements
 - If you need dedicated hadron production data, this is a great opportunity to measure it !

Thank you for your attention!

http://shine.web.cern.ch

NA61/SHINE Collaboration

- Azerbaijan
 - National Nuclear Research Center, Baku
- Bulgaria
 - University of Sofia, Sofia
- Croatia
 - IRB, Zagreb
- France
 - LPNHE, Paris
- Germany
 - KIT, Karlsruhe
 - Fachhochschule Frankfurt, Frankfurt
 - University of Frankfurt, Frankfurt
- Greece
 - University of Athens, Athens
- Hungary
 - Wigner RCP, Budapest

- Japan
 - KEK Tsukuba, Tsukuba
- Norway
 - University of Bergen, Bergen
- Poland
 - UJK, KielceNCBJ, Warsaw
 - University of Warsaw, Warsaw
 - WUT, Warsaw
 - Jagiellonian University, Kraków
 - IFJ PAN, Kraków
 AGH, Kraków
 - University of Silesia, Katowice
 - University of Wrocław, Wrocław
- Russia
 - INR Moscow, Moscow
 - JINR Dubna, Dubna
 - SPBU, St.Petersburg
 - MEPhl, Moscow
- ${\sim}150$ physicists from ${\sim}30$ institutes

- Serbia
 - University of Belgrade, Belgrade
- Switzerland
 - ETH Zürich, Zürich
 - University of Bern, Bern
 - University of Geneva, Geneva

USA

- University of Colorado Boulder, Boulder
- LANL, Los AlamosUniversity of Pittsburgh, Pittsburgh
- University of Pittsbui
 FNAL. Batavia
- FINAL, Batavia
 University of Hawaii, Manoa

We welcome new collaborators !!

dapest

Backup

NA61/SHINE detector performance

momentum resolution

• typical resolution: $\frac{\sigma(p)}{p^2} \approx 10^{-4} \, ({\rm GeV/c})^{-1}$

timing resolution

- ToF-L/R: $\sigma(\text{ToF-L/R}) < 90 \, \text{ps}$
- ToF-F: $\sigma(\text{ToF-F}) \approx 120 \, \text{ps}$

dE/dx resolution

• typical resolution:

$$\frac{\sigma(dE/dx)}{dE/dx} \approx 0.04$$

