Initial Dark Matter Results from the SuperCDMS Single-Charge Sensitive Detectors

Francisco Ponce Stanford University For the SuperCDMS Collaboration CIPANP May 2018

Queen's UniversitySanta Clara University

California Inst. of Tech.

Northwestern

CNRS-LPN*

PNNL

SNOLAB

U. California, Berkeley U. Colorado Denver

Stanford University

 \mathbf{x}

Durham University

FNAL

SLAC

SLAC

TRIUMF

U. British Columbia

NIST

NIST* OUTH DAKOT

SCHOOL OF MINES & TECHNOLOGY

South Dakota SM&T UBC

U. Florida

U.Toronto

* Associate members

U. Montréal

U. Minnesota

SOUTH DAKOTA

Texas A&M University

11

..... EST 1854

U. Evansville

U. South Dakota

Missing Matter

$a_{c} = \frac{v^{2}}{r} \qquad a_{g} = \frac{GM}{r^{2}}$ $v = \sqrt{\frac{GM}{r}} = r\sqrt{G\rho(r)}$

CMB Anisotropy

Insufficient mass in the universe!

Dark Matter Candidates

SuperCDMS is focused on keV to GeV mass range

SuperCDMS Detector Technology: HV (CDMSlite)

Soudan CDMSlite Run 2 result (arXiv 1509.02448)

SuperCDMS High Voltage Detector

Amplification of e^{-h⁺} signals

TES Phonon Sensor Laser Response

APL (arXiv 1710.09335)

First observation of e^{-h⁺} pairs in Si crystal with a phonon sensor

TES Calibration and Modeling

Laser may be used to calibrate detectors without an NTL gain by comparing to the calibration with a NTL gain. A model with trapping at 1% and impact ionization at 2% (green curve) is consistent with events between peaks.

Calibration laser shows minute trapping and impact ionization effects

System Stability During Acquisition

Temperature Calibration

0.40.40.30.20.20.10.20.10.20.10.20.10.20.10.20.10.2 DM Search Data

Reconstructed amplitude scales linearly with resistance from a RuOx thermometer used to measure the DR temperature.

Detector neutralization performed at 70 hours due to increased levels of surface leakage. An increase in the bulk leakage rate was observed afterwards.

Temperature varied and bulk leakage rate was constant

Data Selection

Periods of high low-frequency background, high surface leakage, and poor system stability were removed as part of the live time cuts. Events with excessive noise in the pre-trigger, start times far from the trigger window or bad time domain chi-square were rejected as part of the reconstruction quality cuts.

Science exposure of 0.49 gram-days

DM Search Data

Laser spectrum is used to calculate the reconstruction quality cut efficiency

Optimal interval method is applied to sections of data within 2σ of quantized laser peaks.

Limit search region to expected DM signal regions

Dark Photon Dark Matter Search

Dark photon limit is consistent with other measurements

Electron Recoil Dark Matter Search

Improved heavy mediator ERDM limits to 0.5 MeV

Electron Recoil Dark Matter Search

Improved light mediator ERDM limits to 0.5 MeV

Conclusion

- Single e⁻h⁺ pair resolution with NTL gain
- Achieved comparable sensitivity to that reported by DAMIC for Dark Photons
- Improved constraints on inelastic ERDM for both heavy and light mediators down to 0.5 MeV

Backup Slides

Dark Matter Models

$$\langle n_{eh}(E_{\gamma}) \rangle = \begin{cases} 0 & E_{\gamma} < E_{gap} \\ 1 & E_{gap} < E_{\gamma} < \epsilon_{eh} \\ E_{\gamma}/\epsilon_{eh} & \epsilon_{eh} < E_{\gamma} \end{cases}$$

 E_{gap} : Si indirect band gap (1.12 eV) ϵ_{eh} : Average energy per e⁻h⁺ pair (3.8 eV)

Dark Photons

$$R = V_{Det} \frac{\rho_{DM}}{m_V} \varepsilon_{eff}^2(m_V, \sigma) \sigma_1(m_V)$$

$$\rho_{DM}/m_V$$
: DM number density
 ε_{eff} : Effective kinetic mixing angle
 σ : Complex conductivity

Inelastic Electron Recoil Dark Matter Interaction

$$\frac{dR}{d(\ln(E_R))} = V_{Det} \frac{\rho_{DM}}{m_X} \frac{\rho_{Si}}{2m_{Si}} \bar{\sigma}_e \alpha \frac{m_e^2}{\mu_X^2} I_{Crystal}$$

- $\bar{\sigma}_e \alpha$: Effective DM-SM coupling
- $\mu_{\rm X}$: Reduced mass
- *I*_{Crystal} : Scattering integral

V_{Det} : Detector volume

Limitations on NTL Gain

- Bi-modal distribution caused by time shifting optimal filter
- Bulk leakage events have a flat distribution between 0-1 e⁻h⁺ pairs
- Surface leakage events have quantized energy
- Full break down at 180 V

Avoid surface leakage by using ±140 V

Relative Detector Calibration

QET A appears to have losses requiring a 13% correction to get surface events to land on lines of equal energy with the laser

Model Assumptions

Fano Factor

Example of an excluded dark photon signal

$$R = V_{Det} \frac{\rho_{DM}}{m_V} \varepsilon_{eff}^2(m_V, \sigma) \sigma_1(m_V)$$
2016 Essig 10.1007/JHEP05(2016)046

Photoelectric Cross Section

Reductions in photoelectric cross section to account for experimental parameters