γ+Jet Measurements in Heavy-Ion Collisions

Saskia Mioduszewski Texas A&M University

Jet Suppression in Heavy Ions for almost 20 years

Early measurements at RHIC focused on high p_T hadrons as the leading particles coming from jets

We have come a long way.... Suppression measured for fully reconstructed Jets at the LHC

We have come a long way.... Modification of the structure of Jets at the LHC

Why do we look at so many different observables? What is the end game in the jet business?

From the 80's TV show

From the 80's TV show

We ain't in the coke business, we're in the cash business!

From Heavy-Ion Physicists

We ain't in the jet business, we're in the QGP business!

Goal is to extract Properties of QGP

- But this is the hard part!
- To learn more about the nature of the medium, we want to understand how a hard probe interacts with it
- So far, single-hadron suppression measurements have led to estimates of the gluon density and \hat{q} (JET Collaboration)
- But we are interested in the particles that emerge from such interactions, not just measure the fraction of the ones that survive without much effect
- Is the interaction between a hard parton and the quasi-particle medium perturbative? If Q² is large enough
- We know medium is strongly interacting medium
- Medium interaction is handled differently among theory calculations
- LHC has opened up many new possibilities of studying jet structure and the modification of it in the medium
- RHIC is still relevant for exploring the interaction of the "not as hard" partons with the medium – another knob to turn

γ -Jet Motivation

Photon does not interact strongly, so the trigger energy is more directly connected to the recoil parton energy

 $\gamma (E_{initial})$

Goal:

Measure Recoil Jet Energy vs. Initial Energy of Parton, as approximated by triggerphoton energy

Modified Jet

- At LHC, studied with fully reconstructed jets on the recoil side of trigger photon
- At RHIC, mostly studied with azimuthal correlations of charged particles with trigger photon

Comparison of Photon- to Hadron-Triggered "Jets"

Hadron triggers are surface biased, so recoil parton has (on average) more medium to traverse

Recoil parton of photon triggers mostly quark jets, recoil of high-p_T π^0 (at RHIC) are mostly gluon jets (D. de Florian et al., PRD 91, 014035 (2015); T. Kaufmann et al., PRD 92, 054015 (2015))— color factor would result in greater energy loss for π^0 -triggered jets

Fragmentation Functions via γ-h Correlations at RHIC

<z_>

Suppression of jet-like yields on recoil side of π^0 triggers vs. γ_{dir} triggers

Suppression measured via I_{AA} = ratio of per-trigger yields in central Au+Au to minimum-bias p+p collisions

Suppression consistent for hadron triggers and photon triggers within uncertainties Suppression appears to be less significant at low z_T , low p_T^{assoc}

No significant differences seen due to expected effects:

- difference in surface vs.
 volume emission and
- 2) color factor in energy loss

Model calculations in agreement with data

ZOWW: H. Zhang et al., PRL 103, 032302 (2009), X.-F. Chen et al., PRC 81, 064908 (2010) **Qin:** G.-Y. Qin et al., PRC 80, 054909 (2009).

More Recent Model Calculation

 Coupled Linear Boltzmann Transport Hydro model (W. Chen, Phys.Lett. B777 (2018) 86-90)

 Calculation rises at low z_T, if including transport of medium recoil partons

Model Comparison to PHENIX and STAR Data

Same calculation compared to PHENIX data (PHENIX, Phys. Rev. Lett. 111, 032301)

shows agreement only if including transport of medium recoil partons

Suppression of recoil-jet yields as a function of p_T^{assoc}

- If enhancement occurs at a fixed p_T, rather than z_T, should see a stronger effect when I_{AA} is viewed as a function of associated charged-particle p_T.
- Suppression is less significant at low p_T^{assoc}
- If enhancement occurs at low p_T, it must be for p_T < ~3 GeV/c

Recovery of Energy at Large Angles?

- Measurement: Require a (reconstructed) Jet Trigger and quantify yields of the associated charged hadrons on the recoil side
- Results from STAR Jet-hadron correlations (for two different ranges of jet energies) also indicate that the lost energy is recovered only for p_T^{assoc} < 2 GeV/c

STAR, Phys.Rev.Lett. 112, 122301 (2014)

Low-pT Enhancement at LHC at similar p_T

- Fragmentation function measured at ATLAS with photon-jet back-to-back pairs in Pb+Pb and p+p collisions
- Ratio of Yields as a function of charged-particle p_T within the recoil jet
- A modest suppression observed for charged particles with p_T ≈5-40 GeV/c
- Enhancement for p_T<3-4 GeV/c

Summary I

- Suppression of recoil-jet yields (I_{AA}) were measured by STAR via γ -triggered vs. π^0 -triggered charged-hadron correlations show similar level of suppression for $p_T^{trig}=12-20$ GeV/c, $p_T^{assoc}>1.2$ GeV/c.
 - Expected difference in π^0 triggered vs. γ -triggered suppression due to surface vs. volume emission and due to the color factor in energy loss is not seen at high z_{τ} , where we are only measuring the fraction of jet particles surviving without much medium interaction
 - Suppression is smaller at low z_T ($z_T < 0.2$, corresponding to $p_T^{assoc} < 2.4 \text{ GeV/c}$)
- I_{AA} measured by PHENIX γ-triggered charged-hadron correlations show suppression at high p_T (z_T), but enhancement at lower p_T (z_T) for p_T^{trig}=5-9 and 9-12 GeV/c
- Comparison with other measurements suggests that recovered energy appears at $p_T^{assoc} < 2$ GeV/c, independent of p_T^{trig} .

Summary II

- Enhancement in PHENIX at low \boldsymbol{z}_{T} is consistent with this observation
- Model comparison shows enhancement at low $z_T (p_T)$, if medium recoil partons are included in transport
- γ-triggered Jet Reconstruction at RHIC coming soon at STAR and with higher precision in the future at sPHENIX...
- Measurements and the theoretical calculations to extract medium properties are complicated and tedious. We need many different measurements (with different biases and kinematics) to test the theory in different aspects!

γ -Jet Measurement in STAR ongoing

STAR, Phys. Rev. C 96 (2017) 24905

Hadron-triggered Recoil Jets measured by STAR using mixed events to measure combinatorial jets

Backup

Biases (Selections) in "Jet" Measurements

Single Hadron at High p_T as proxy for jet (leading particle of jet)

High-p_T Hadron-Triggered Correlations for measuring jets High-p_T Photon-Triggered Correlations or Jets for measuring jet modification with unbiased trigger Trigger on High p_T Photon+Recoil Jet with p_T threshold cut for measuring modified fragmentation function of Jet

Biases in Jet-Like Correlation Measurements

High-p_T Photon-Triggered Correlations for measuring jet modification of unbiased trigger

At high z_T , not much energy loss, i.e. I_{AA} is just the fraction of recoil jets that made it out without energy loss.

Di-hadron correlations

High-pT hadrons on away side are surviving hadrons which don't show modification due to medium interaction

R_{AA} vs models – Extracting the "jet" Transport Coefficient

Several **pQCD** formalisms/approximations for parton energy loss exist Allows to determine medium properties, parton transport coefficient for a 10 GeV parton at the center of Au+Au collision

RHIC:
 LHC:
 Cold Nuclear

$$\hat{q} = 1.2 \pm 0.3 \ GeV^2/fm$$
 $\hat{q} = 1.9 \pm 0.7 \ GeV^2/fm$
 Matter:

 (T=370 MeV)
 (T=470 MeV)
 $\hat{q}_N \approx 0.02 \ GeV^2/fm$
 $\frac{\hat{q}}{T^3} = 4.6 \pm 1.2$
 $\frac{\hat{q}}{T^3} = 3.7 \pm 1.4$

Charged-Particle Yields Associated with π^0 Triggers (STAR)

 $p_T^{trig} = 12-20 \text{ GeV/c}, p_T^{assoc} \ge 1.2 \text{ GeV/c}$

On the away side, yields in central Au+Au suppressed relative to yields in p+p

On the near side, yields in central Au+Au consistent with yields in p+p

Hadron Trigger Energy vs. Jet Energy

STAR < 20 GeV/c \otimes p_-^{assoc} > 1.2 GeV/c 10 (a) Away-Side D Z -•-10 200 GeV (0-12%) 10-2|....|....|.... Near-Side b 10 -10 10^{-2} 02 0.3 0 5 .6 0.7 0.8 0 0 4 ZT

We can estimate the fraction of the parton energy carried by the π^0 trigger by summing the additional energy carried by the associated charged particles on the near side

Integrating z_{τ} times a function fit to the near-side $D(z_{\tau})$ distribution results in Int=0.17 \pm 0.04. This means that $1/(1+Int)=p_{\tau}^{trig}/(p_{\tau}^{trig}+\Sigma p_{\tau}^{assoc})=85\pm3\%$

Since the associated particles are charged particles only, we repeat analysis in PYTHIA, find agreement for charged-particle result, then extend it to include neutral energy: $p_{\tau}^{trig}/p_{\tau}^{jet}=80\pm5\%$

Away-side yields in p+p collisions as a function of "true" z_T

Recovery of Energy at Large Angles?

Compare away-side yields within $\pm 35^{\circ}$ vs. $\pm 80^{\circ}$

No significant effect seen, except in lowest z_T bin for π^0 triggers

PHENIX reported effect for $z_T < 0.4$, but $p_T^{trig} = 5-9$ GeV/c $\rightarrow p_T^{assoc} < 2$ GeV/c (PHENIX, Phys. Rev. Lett. 111, 032301 (2013))