Overview of recent results from the ATLAS experiment

Prof. Brian Cole Columbia University on behalf of ATLAS

Overview of recent results from the ATLAS experiment

Prof. Brian Cole Columbia University on behalf of ATLAS

Event: 419161 stable beams heavy-ion collisions 2015-11-25 11:12:50 CEST

Overview of recent results from the ATLAS experiment

Prof. Brian Cole Columbia University on behalf of ATLAS

Pb+Pb, $\sqrt{s_{NN}} = 5.02$ TeV photon + multijet event $\Sigma E_T^{FCal} = 4.06$ TeV

Run: 286834 Event: 124877733 2015-11-28 01:15:42 CEST

Heavy ion "concordance model"

Initial gluon emissionHydrodynamicfrom saturated nucleiEvolutionRapidHadronizationThermalizationHadronization

- Initial particle production from strong gluon fields (saturated) in the incident nuclei.
- Created particles rapidly (τ < ~1 fm/c) thermalize into a strongly coupled QGP.
- QGP evolves hydrodynamically with an η /s ratio close to AdS/CFT lower bound (1/4 π).

Physics overview

How well do we understand "hydrodynamics"?
 – controlling uncertainties re: initial state
 – persistence in small systems?

How do QGP properties depend on scale?
 Use multi-scale probe of plasma
 ⇒hard processes/jets

How do QGP properties depend on scale?
 Use multi-scale probe of plasma
 >EM probes??

Constraining the initial state

- Probing the parton distributions in nuclei

- origin of "ridge" in small systems?

Using Data

- 2.76 and 5.02 TeV Pb+Pb collisions
- 2.76 and 5.02 TeV pp collisions
- 5.02 TeV p+Pb collisions
- 5.44 TeV Xe+Xe collisions (short run 2017)

• Procedure:

 Characterize A+A collision using an "extensive" quantity
 ⇒ Multiplicity, E_T, ...

ATLAS Pb+Pb ΣETFCal

• Procedure:

- Characterize A+A collision using an "extensive" quantity
 - ⇒Multiplicity, E_T, ...
- Divide distribution into percentiles.

ATLAS Pb+Pb ΣETFCal

• Procedure:

- Characterize A+A collision using an "extensive" quantity
- ⇒Multiplicity, E_T, ...
- Divide distribution into percentiles.
- Perform Glauber model convolution of p-p to "fit" Pb+Pb distribution

ATLAS Pb+Pb ΣETFCal

• Procedure:

- Characterize A+A collision using an "extensive" quantity
- ⇒Multiplicity, E_T, ...
- Divide distribution into percentiles.
- Perform Glauber model convolution of p-p to "fit" Pb+Pb distribution
- Extract
- ⇒# of colliding nucleons or "participants" (N_{part})
- \Rightarrow # of collisions (N_{coll})
- ⇒T_{AA} (nucleon luminosity)

ATLAS Pb+Pb ΣETFCal

14

Collective dynamics in nucleus-nucleus (Pb+Pb, Xe+Xe) collisions

Collective dynamics: overview

- Initial-state (transverse) anisotropies of QGP
- due to geometry + initial-state fluctuations
- Get imprinted on azimuthal angle (φ) distributions of produced particles

-by hydrodynamic evolution of the QGP

 Characterize by relative Fourier coefficients, v_n, and phase angles, ψ_n:

$$\Rightarrow rac{dN}{d\Delta\phi} = \left\langle rac{dN}{d\Delta\phi}
ight
angle \left(1 + 2\sum_n v_n \cos\left[n\left(\phi - \psi_n
ight)
ight]
ight)$$

Collective dynamics: how?

One method: 2-particle correlations

- Measure two-particle correlation function, C₂, as a function of $\Delta \phi$ and $\Delta \eta$ (η is pseudo-rapidity)

- Project to $\Delta \phi$ requiring $|\Delta \eta| > 2$ to excludes jet peak - Fourier decompose

Collective dynamics: how?

One method: 2-particle correlations

- Measure two-particle correlation function, C₂, as a function of $\Delta \phi$ and $\Delta \eta$ (η is pseudo-rapidity)

- Project to $\Delta \phi$ requiring $|\Delta \eta| > 2$ to exclude jet peak - Fourier decompose

Pb+Pb vn measurements

• p_T dependence of v_2 - v_6 for three centralities

• Xe+Xe & Pb+Pb v_ns very similar

Xe+Xe & Pb+Pb v_ns very similar ⇒both p_T and centrality dependence

21

• Xe+Xe & Pb+Pb v_ns very similar

 \Rightarrow both p_T and centrality dependence

Take ratios vs centrality

Compare ratios vs centrality to results of hydrodynamics
 ⇒good agreement

• Xe+Xe & Pb+Pb v_ns very similar

⇒both p_T and centrality dependence

Take ratios vs centrality

- Compare ratios vs centrality to results of hydrodynamics
- ⇒good agreement
- ⇒similar modeling of initial state but different results from hydrodynamic evolution

Small systems: pp and p+Pb

 pp and p+Pb collisions show similar azimuthal anisotropy as Pb+Pb
 e.g. 2-part. correlations

Small systems: pp and p+Pb

 pp and p+Pb collisions show similar azimuthal anisotropy as Pb+Pb
 e.g. 2-part. correlations
 >near-side "ridge" observed in highmultiplicity events

Small systems: template fits

 Assume 2-particle correlation is a super-position of "intrinsic" (hard?) correlation + sinusoidal harmonics
 – intrinsic measured in low-multiplicity (peripheral) events

 $Y^{ ext{templ}} = FY^{ ext{templ}}_{ ext{periph}} + G\left(1+2\sum v_{n,n}\cos\left[n\left(\Delta\phi
ight)
ight]
ight)$

pp

26

Small systems: template fits, results

- Observe non-zero v₂,
 v₃, v₄ in both pp, p+Pb
 - different multiplicity dependence
 - ⇒pp v_n's ~ constant
 - » vs N_{ch} and \sqrt{s}
 - \Rightarrow p+Pb v_n's rise with N_{ch}
- geometry different
 between pp and p+Pb
- Observe similar p_T dependence for v₂
- uncertainties on v₃, v₄
 too large to judge

v₂ p_T dependence

When re-scaled to match maximum v₂

- and mean p_T (for p+Pb \Leftrightarrow Pb+Pb)
 - \Rightarrow p_T dependence of v_n's ~ same for Pb+Pb, p+Pb, pp

 >2 particle correlations (e.g. 4) important for showing global azimuthal correlations in pp, p+Pb

$$v_n{4} = \sqrt[4]{-c_n{4}}$$

29

- >2 particle correlations (e.g. 4) important for showing global azimuthal correlations in pp, p+Pb
 - but problems with "non-flow" (hard) contamination

 \Rightarrow positive c₂{4}

- >2 particle correlations (e.g. 4) important for showing global azimuthal correlations in pp, p+Pb
 - but problems with "non-flow" (hard) contamination
 - \Rightarrow positive c₂{4}
- Recent progress using sub-event cumulants
- divide detector into 2, 3
 η intervals, restrict {4}

- >2 particle correlations (e.g. 4) important for showing global azimuthal correlations in pp, p+Pb
 - but problems with "non-flow" (hard) contamination \Rightarrow positive c₂{4}
- Recent progress using sub-event cumulants
- divide detector into 2, 3
 η intervals, restrict {4}
 - \Rightarrow N_{ch} independent c₂{4} and v₂

- >2 particle correlations (e.g. 4) important for showing global azimuthal correlations in pp, p+Pb
- but problems with "non-flow" (hard) contamination \Rightarrow positive c₂{4}
- Recent progress using sub-event cumulants
- divide detector into 2, 3
 η intervals, restrict {4}
- \Rightarrow N_{ch} independent $c_2\{4\}$ and v_2
- ⇒global correlations in pp!

- >2 particle correlations (e.g. 4) important for showing global azimuthal correlations in pp, p+Pb
- but problems with "non-flow" (hard) contamination
 - \Rightarrow positive c₂{4}
- Recent progress using sub-event cumulants
 - divide detector into 2, 3
 η intervals, restrict {4}
 - \Rightarrow N_{ch} independent c₂{4} and v₂
 - ⇒global correlations in pp!

Z-tagged pp 2-particle correlations

- Do we really understand the origin of the ridge?
- e.g. is there any correlation/connection with hard processes?
- ⇒study in pp collisions containing Z boson
- similar analysis as above but @ high luminosity
- ⇒correct for pileup background

• Result:

- \Rightarrow similar to minimum-bias pp but 8±6% larger v₂ values
- Likely a result of larger hadron <pT> in Z-tagged events

Hard scattering and Jet Quenching
Jet probes of the quark gluon plasma

 Use jets from hard scattering processes to directly probe the quark gluon plasma (QGP)

37

Key experimental question:

 How do parton showers in quark gluon plasma differ from those in vacuum?
 ⇒important: not all jets the same (q/g/c/b)

 Energy loss of hard-scattered quarks & gluons reduces the yield of high-p_T jets

Energy loss of hard-scattered quarks & gluons reduces the yield of high-p_T jets

- Compare to pp using "RAA"

• Energy loss of hard-scattered quarks & gluons reduces the yield of high-p_T jets $1 dN_A$

- Compare to pp using "RAA"

 $R_{AA} \equiv rac{1}{T_{AA}} rac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T}$

Energy loss of hard-scattered quarks & gluons reduces the yield of high-pT jets $rac{1}{T_{AA}}rac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T}$ R_{AA} =

- Compare to pp using "RAA"

41

Energy loss of hard-scattered quarks & gluons reduces the yield of high-pT jets $rac{1}{T_{AA}}rac{dN_{AA}/dp_T}{d\sigma_{_{m pp}}/dp_T}$ R_{AA} =

- Compare to pp using "RAA"

⇒observe substantial suppression out to ~ 900 GeV \Rightarrow pT dependence from interplay between ΔE , spectrum

Jet RAA: rapidity dependence

- With increasing rapidity, the jet spectrum becomes steeper @ high p_T
- Expect energy loss to yield greater suppression at larger y & higher p_T
- ⇒ can now observe this effect using high-statistics Pb+Pb and pp data

Jet RAA, theory comparisons

- Jet R_{AA} measurements are (now) providing stringent tests of jet quenching calculations
 - only the LBT model describes full p_T dependence

Pb+Pb Jet Fragmentation

$$egin{aligned} D(z) &= rac{1}{N_{jet}} rac{dN_{chg}}{dz} \ z &= ec{p}_{chg} \cdot ec{p}_{jet} / \left|ec{p}_{jet}
ight|^2 \end{aligned}$$

Measure D(z) in Pb+Pb – Take ratio w/ pp R_{D(z)} ⇒ Versus centrality, jet p_T

jet p₁

Pb+Pb Jet Fragmentation: 0-10%

- Observe complicated pattern of modification:
 - ⇒ Enhanced production of low-z fragments
 - ⇒ Enhanced production of high-z fragments
 - ⇒ Suppressed production at intermediate

Pb+Pb Jet Fragmentation: 0-10%

- Observe complicated pattern of modification:
 - Enhanced production of low-z fragments
 - Enhanced production of high-z fragments
 - \Rightarrow Suppressed production at intermediate z
- An analysis of 2.76 TeV data by BAC and Spousta:
 - Iarge-z behavior may result from change in quark/gluon fraction
 - ⇒ But not all the mid-z suppression and not the enhanced production @ low z.
 - » How do the modifications vary with jet p_T ?

Jet fragmentation vs jet pt

Compare results from different jet p_T intervals

- versus z or p_T
- \Rightarrow large-z enhancement depends on z
- \Rightarrow low-z enhancement depends on p_T, not z

Jet fragmentation: theory comparisons⁴⁹

Two of the most studied models of jet quenching:

- Strong/weak coupling hybrid and SCET
- cannot simultaneously describe both the low-z and high-z modifications to the fragmentation function

Dijet balance

- ATLAS has measured dijet balance in 2.76 TeV Pb+Pb unfolded for jet response
- not shown here for brevity
- Xe+Xe data sufficient for low-statistics measurement
- distributions of dijet x_J $\Rightarrow x_J \equiv p_{T_2}/p_{T_1}$
- not unfolded for jet response
- here for $100 < p_{\mathrm{T}1} < 126~\mathrm{GeV}$
- compared to 5.02 TeV pp
- ⇒ see shift of xJ distributions similar to first ATLAS result

Dijet balance

Photon-jet balance

Measure p_T distribution of jets opposite prompt photons

- inclusive, not just the leading jet
- <u>unfolded for jet response</u>
- here for photons having $~79.6 < p_{
 m T}^{\gamma} < 100~{
 m GeV}$
- balance expressed in terms of $~x_{{
 m J}\gamma}\equiv p_{
 m T}^{
 m jet}/p_{
 m T}^{\gamma}$
- ⇒observe centrality-dependent shift of jets to lower xJ

Photon-jet balance, theory comparisons⁵³

pp

Pb+Pb

0-10%

SCET and hybrid weak/strong coupling models do best
 but hybrid model does not describe lower-x_J part of spectrum
 in pp or Pb+Pb

Probing the initial state with electromagnetic processes

• Ultra-relativistic nuclei are sources of very strong coherent EM fields

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- ⇒Use to probe "initial state" of Pb+Pb collisions using γ+A collisions

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
 - Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
 - ⇒Use to probe "initial state" of Pb+Pb collisions using γ+A collisions

⇒e.g. γ+A→di-/multi-jets

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- ⇒Use to probe "initial state" of Pb+Pb collisions using γ+A collisions
- ⇒e.g. γ+A→di-/multi-jets
- » probe nuclear PDFs

Nucleus breaks up Multiple neutrons

- Preliminary measurement of γ+A→di-/multi-jets:
 - tagged w/ forward neutron (ZDC) and forward gap requirement
 - uncorrected for jet response
 - compared to Pythia
 - ⇒agreement → proof of principle

kinematic coverage in (x, Q²) 60

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- Calibrate using (e.g.) $\gamma + \gamma \rightarrow \mu^+ \mu^-$

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- Calibrate using (e.g.) $\gamma + \gamma \rightarrow \mu^+ \mu^-$

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- Calibrate using (e.g.) $\gamma + \gamma \rightarrow \mu^+ \mu^-$
 - ⇒ good agreement with STARLIGHT model (nuclear photon flux + LO QED)

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- Calibrate using (e.g.) $\gamma + \gamma \rightarrow \mu^+ \mu^-$

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- Calibrate using (e.g.) $\gamma + \gamma \rightarrow \mu^+ \mu^-$
 - \Rightarrow muons are highly aligned (coherent γ)

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- Calibrate using (e.g.) $\gamma + \gamma \rightarrow \mu^+ \mu^-$
 - \Rightarrow muons are highly aligned (coherent γ)
 - \Rightarrow except when they aren't

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- Calibrate using (e.g.) $\gamma + \gamma \rightarrow \mu^+ \mu^-$
 - \Rightarrow muons are highly aligned (coherent γ)
 - \Rightarrow except when they aren't
 - » few % QED & incoherent

Non-UPC $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$

- The tight alignment of γγ→μ⁺μ⁻ pairs makes detection possible in non-UPC Pb+Pb collisions
- Background from heavy flavor decays subtracted
- other physics backgrounds (Drell-Yan, dissociative) ~ flat over the measured acoplanarity range.
- Plot acoplanarity (lpha) and asymmetry, $A\equiv \left|rac{p_{
 m T}^+-p_{
 m T}^-}{p_{
 m T}^++p_{
 m T}^-}
 ight|$

⇒observe a centrality-dependent acoplanarity broadening!

Non-UPC $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$

• Fit α distributions to Gaussians to quantify broadening

- estimate momentum scale for broadening:
- two different fit methods
- ⇒use simple Gaussian fits
- \Rightarrow convolute over $p_{T_{avg}} \equiv \frac{1}{2} \left(p_T^+ + p_T^- \right)$
- use >80% to determine $\langle \alpha^2 \rangle_0$
- Plot RMS k_T vs N_{part}
 - ⇒slow growth with N_{part}
 - » from ~30 MeV to ~70 MeV
 - ⇒Asymmetry resolution too poor to see such effects

$$M_{\text{N}} = 5.02 \text{ TeV}$$

$$M_{\text{Pb}+\text{Pb}, 0.49 \text{ nb}^{-1}}$$

$$M_{\text{Dackground}}$$

$$M_{\text{Dackground}}$$

$$M_{\text{Dackground}}$$

$$M_{\text{Dackground}}$$

$$M_{\text{Dackground}}$$

$$M_{\text{Dackground}}$$

$$M_{\text{Dackground}}$$

$$M_{\text{Dackground}}$$

 $\langle \alpha^2 \rangle = \langle \alpha^2 \rangle_0 + \frac{1}{\pi^2} \frac{1}{l_1}$

70

Summary

- Measurements of collectivity in A+A collisions
 - e.g. using new Xe+Xe data to help disentangle initial state modeling from hydrodynamics
- Measurements of collectivity (?) in small systems
 - 2 particle correlations
 - 4 particle correlations
- HBT measurements of production geometry
- Z-tagged pp collisions
- all empirical evidence points to presence of collective/ strong-coupling dynamics in small systems (even pp!)

Jet quenching

- single jet suppression
- jet fragmentation
- dijet balance: Pb+Pb and Xe+Xe
- photon-jet balance

Summary

- Jet quenching (cont.)
 - single jet suppression
 - jet fragmentation
 - dijet balance: Pb+Pb and Xe+Xe
 - photon-jet balance
 - ⇒just a subset of available measurements probing our understanding of jet quenching physics
 - high-statistics data from LHC now allowing us to study the quark gluon plasma with probe energies varying by ~ x100

Initial state

- using γ+A→di-/multi-jets (e.g.) to probe nuclear PDFs
- \Rightarrow just the start of a long program
- calibrating photon fluxes using di-leptons

• Surprise:

 \Rightarrow Non-UPC $\gamma\gamma \rightarrow \mu^+\mu^-$ processe provide EM probe of plasma?

Identical particle correlations probe the spatial geometry of particle production:

$$C(\mathbf{p}_1,\mathbf{p}_2) \equiv \frac{\frac{dN_{12}}{d^3p_1d^3p_2}}{\frac{dN_1}{d^3p_1}\frac{dN_2}{d^3p_2}} \quad C_{\mathbf{k}}(\mathbf{q}) = \int d^3r \, S_{\mathbf{k}}(\mathbf{r}) \left|\psi_{\mathbf{q}}(\mathbf{r})\right|^2$$

Identical particle correlations probe the spatial geometry of particle production:

$$(\mathbf{p}_1,\mathbf{p}_2) \equiv \frac{\frac{dN_{12}}{d^3p_1d^3p_2}}{\frac{dN_1}{d^3p_1}\frac{dN_2}{d^3p_2}} \quad C_{\mathbf{k}}(\mathbf{q}) = \int d^3r \, S_{\mathbf{k}}(\mathbf{r}) \left|\psi_{\mathbf{q}}(\mathbf{r})\right|^2$$

Use Bertsch-Pratt decomposition (q_{out}, q_{side}, q_{long}) – in pair longitudinal co-moving frame

C

Identical particle correlations probe the spatial geometry of particle production:

$$C(\mathbf{p}_1,\mathbf{p}_2) \equiv \frac{\frac{dN_{12}}{d^3p_1d^3p_2}}{\frac{dN_1}{d^3p_1}\frac{dN_2}{d^3p_2}} \quad C_{\mathbf{k}}(\mathbf{q}) = \int d^3r \, S_{\mathbf{k}}(\mathbf{r}) \left|\psi_{\mathbf{q}}(\mathbf{r})\right|^2$$

Use Bertsch-Pratt decomposition (q_{out}, q_{side}, q_{long}) – in pair longitudinal co-moving frame

$$egin{aligned} \mathcal{C}_{ ext{full}}(\mathbf{q}) &= \left[(1-\lambda) + \lambda \mathcal{K}(q_{ ext{inv}}) \mathcal{C}_{ ext{BE}}(\mathbf{q})
ight] \Omega(\mathbf{q}) \ \mathcal{C}_{ ext{BE}}(\mathbf{q}) &= 1 + \exp\left(- \left\| R \mathbf{q}
ight\|
ight) \ \mathcal{R} &= \left(egin{aligned} R_{ ext{out}} & R_{ ext{os}} & R_{ ext{ol}} \ R_{ ext{os}} & R_{ ext{ol}} \ R_{ ext{os}} & R_{ ext{ol}} \ R_{ ext{ol}} & 0 \ R_{ ext{ol}} & 0 \ R_{ ext{ol}} \end{array}
ight) \end{aligned}$$

Identical particle correlations probe the spatial geometry of particle production:

$$C(\mathbf{p}_1,\mathbf{p}_2) \equiv \frac{\frac{dN_{12}}{d^3p_1d^3p_2}}{\frac{dN_1}{d^3p_1}\frac{dN_2}{d^3p_2}} \quad C_{\mathbf{k}}(\mathbf{q}) = \int d^3r \, S_{\mathbf{k}}(\mathbf{r}) \left|\psi_{\mathbf{q}}(\mathbf{r})\right|^2$$

Use Bertsch-Pratt decomposition (q_{out}, q_{side}, q_{long}) – in pair longitudinal co-moving frame

long

$$egin{aligned} \mathcal{C}_{ ext{full}}(\mathbf{q}) &= \left[(1-\lambda) + \lambda \mathcal{K}(q_{ ext{inv}}) \mathcal{C}_{ ext{BE}}(\mathbf{q})
ight] \Omega(\mathbf{q}) \ \mathcal{C}_{ ext{BE}}(\mathbf{q}) &= 1 + \exp\left(- \left\| R \mathbf{q}
ight\|
ight) \ \mathcal{R} &= \left(egin{aligned} R_{ ext{out}} & R_{ ext{os}} & R_{ ext{ol}} \ R_{ ext{os}} & R_{ ext{ol}} \ R_{ ext{os}} & R_{ ext{ol}} \ R_{ ext{ol}} & 0 \ R_{ ext{ol}} & 0 \ R_{ ext{ol}} \end{array}
ight) \end{aligned}$$

77

out

side

Identical particle correlations probe the spatial geometry of particle production:

$$C(\mathbf{p}_1,\mathbf{p}_2) \equiv \frac{\frac{dN_{12}}{d^3p_1d^3p_2}}{\frac{dN_1}{d^3p_1}\frac{dN_2}{d^3p_2}} \quad C_{\mathbf{k}}(\mathbf{q}) = \int d^3r \, S_{\mathbf{k}}(\mathbf{r}) \left|\psi_{\mathbf{q}}(\mathbf{r})\right|^2$$

Use Bertsch-Pratt decomposition (q_{out}, q_{side}, q_{long}) – in pair longitudinal co-moving frame

long

side

out

$$egin{aligned} \mathcal{C}_{ ext{full}}(\mathbf{q}) &= \left[(1-\lambda) + \lambda \mathcal{K}(q_{ ext{inv}}) \mathcal{C}_{ ext{BE}}(\mathbf{q})
ight] \Omega(\mathbf{q}) \ \mathcal{C}_{ ext{BE}}(\mathbf{q}) &= \mathbf{1} + \exp\left(- \left\| R \mathbf{q}
ight\|
ight) \ \mathcal{R} &= \left(egin{aligned} R_{ ext{out}} & R_{ ext{os}} & R_{ ext{ol}} \ R_{ ext{os}} & R_{ ext{ol}} & 0 \ R_{ ext{ol}} & 0 & R_{ ext{long}} \end{array}
ight) \end{aligned}$$

p+Pb 2-pion HBT analysis

• Observe dependence of radii on pair k_{T}

⇒ characteristic of collectivity/hydrodynamics

From recent talk by S. Bysiak at 2018 Workshop on Particle Correlations and Femtoscopy

⇒ hydrodynamics qualitatively describes trends in data

Δφ dependent HBT measurement: p+Pb

Perform HBT measurements as a function of pair angle relative to the elliptic event plane

- Measure event plane angle, ψ_2 , and flow vector magnitude, q_2 , using calorimeters, $\Delta \phi \equiv \phi_k - \psi_2$
- In highest 1% of multiplicity dist.
- C_2 corrected for ψ_2 resolution
- observe pattern of radii modulation similar to that seen in A+A collisions

⇒ (qualitatively) consistent with collectivity

Calibrating Pb+Pb hard-scattering rates

Use vector bosons e.g. Z → μ⁺μ⁻ – easily measured even in Pb+Pb collisions ⇒Z R_{AA} equal to unity within uncertainties

p+Pb 2-pion HBT: hydro comparisons

Out-long cross-term:

Can be non-zero in p+Pb collisions
 ⇒ due to rapidity asymmetry
 Observed in ATLAS data

⇒ well described by hydro

82

Measured using semi-leptonic decay muons

separated from π/K decays via muon spectrometer/inner detector momentum balance, template fitting procedure
 pp cross-section compared to FONLL calculation
 ⇒ good agreement

Measured using semi-leptonic decay muons

- separated from π/K decays via muon spectrometer/inner detector momentum balance, template fitting procedure
 pp cross-section compared to FONLL calculation
 ⇒ good agreement
 - \Rightarrow ratio of b/c cross-sections (FONNL) varies with p_T

Measured using semi-leptonic decay muons

separated from π/K decays via muon spectrometer/inner detector momentum balance, template fitting procedure
 Pb+Pb spectra divided by T_{AA} (nucleon luminosity)
 ⇒ suppressed compared to pp

85

Measured using semi-leptonic decay muons

separated from π/K decays via muon spectrometer/inner detector momentum balance, template fitting procedure
 R_{AA} vs p_T for (subset) of measured centrality bins
 ⇒ in spite of different b/c energy loss & p_T-dependent b/c ratio?

- Heavy flavor muon R_{AA} compared to hadron, D meson
- beware different kinematics for D, μ
- ⇒ less µ suppression → less b suppression

Theory comparisons

- ⇒ TAMU (diffusion + energy loss) describes data well, centrality dependence too weak
- ⇒ DABMod (energy loss) doesn't reproduce p_T dependence

Heavy flavor vn

Measure semi-leptonic muon yield vs angle with respect to ψ_n

- using event plane and scalar product methods
- \Rightarrow v₂, v₃, v₄ (not stat. significant)
- ⇒ data well described by DABmod not by TAMU

88

Pileup background

Use mixed events to obtain distribution of # background tracks
 as a function of Z-event (direct) Ntrk
 and v ≡ ⟨Ntrk^{bkgd}⟩

⇒N_{trk} response matrices

Pileup background

Use mixed events to obtain distribution of # background tracks
 as a function of Z-event (direct) Ntrk
 and v ≡ ⟨Ntrk^{bkgd}⟩

⇒Unfold N_{trk} distributions

- Pileup can add multiple tracks from same collision
- background not flat in $\Delta\phi$
- Pileup has different η distribution than Z events
- due to v-dependent effect of $\Delta z \sin \theta$ cut applied to tracks
- Need to measure two-particle correlations for both correlated and uncorrelated pileup & subtract

- Pileup can add multiple tracks from same collision
- background not flat in $\Delta\phi$
- Pileup has different η distribution than Z events
- due to v-dependent effect of $\Delta z \sin \theta$ cut applied to tracks
- Need to measure two-particle correlations for both correlated and uncorrelated pileup & subtract

Apply template fit method using 20 < N_{trk} < 30 (after correction) as peripheral reference
- only v₂ term included in the ridge contribution
⇒ as in inclusive pp collisions @ 5 and 13 TeV, the two-particle correlation function well described by scaled peripheral + cos(2φ) term

Comparison of v₂ obtained from template analysis before and after pileup correction

- Corrected: versus corrected multiplicity

- Uncorrected: versus direct multiplicity
- \Rightarrow essentially no multiplicity dependence to either
- \Rightarrow subtraction reduces v₂ by 20%

Two-particle correlation results

Main physics result:

- v₂ versus corrected N_{trk} compared to previous minimum-bias pp results @ 5 and 13 TeV
 ⇒reminder: no √s dependence observed

 ⇒ Z-tagged p_T-integrated v₂ 8±6% higher than in minimum-bias pp collisions
 ⇒ No multiplicity dependence seen

- Ultra-relativistic nuclei are sources of very strong coherent EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- ⇒Use to probe "initial state" of Pb+Pb collisions using γ+A collisions
- ⇒e.g. γ+A→di-/multi-jets » probe nuclear PDFs

Charged hadron suppression, Pb+Pb

97

Energy loss of hard-scattered quarks & gluons reduces the yield of high-p_T hadrons

- Measure in Pb+Pb and pp, divide accounting for geometry $\rightarrow R_{AA}$ \Rightarrow observe complicated p_T dependence
 - » collective flow @ low p_T, jet quenching @ high p_T

Charged hadron suppression, Pb+Pb & Xe+Xe⁹⁸

• Xe+Xe collisions produce smaller (transversely) QGP – and produce fewer particles (less ΣE_T)

• If Pb+Pb, Xe+Xe are matched at the same centrality:

- observe more suppression in Pb+Pb than in Xe+Xe
- » not surprising

Charged hadron suppression, Pb+Pb & Xe+Xe⁹⁹

• Xe+Xe collisions produce smaller (transversely) QGP – and produce fewer particles (less ΣE_T)

• If Pb+Pb, Xe+Xe are matched at the same N_{part} (~ ΣE_T):

- observe more suppression in Xe+Xe in central collisions
- » likely due to isotropic (Xe+Xe) vs anisotropic (Pb+Pb) geometry
- » needs theoretical analysis/confirmation

pp ridge: soft or (semi)hard?

But, what about alternatives:

- glasma, CGC/BEC, MPI+string interactions, ...

More generally, can ask the question:

- Is there any "coupling" between ridge phenomenon and hard or semi-hard processes
 - ⇒ Study using pp events with Z production
 - \Rightarrow Large-Q² process, but without back-to-back jets
- Even if ridge reflects collectivity, does requiring a hard process change the geometry of the initial state?

p+Pb 2-pion HBT: hydro comparisons

• Out-long cross-term:

− Can be non-zero in p+Pb collisions
⇒ due to rapidity asymmetry
• Observed in ATLAS data

⇒ well described by hydro

101

Photon-jet balance, high γ pτ

Measure p_T distribution of jets opposite prompt photons

- inclusive, not just the leading jet
- unfolded for jet response
- here for photons having $100 < p_{
 m T}^{\gamma} < 168~{
 m GeV}$
- balance expressed in terms of $~x_{
 m J}{}_{\gamma}\equiv p_{
 m T}^{
 m jet}/p_{
 m T}^{\gamma}$
- ⇒observe similar centrality-dependent shift of jets to lower xJ

102

• Ultra-relativistic nuclei are sources of very strong EM fields

- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- Can also probe *fundamental* physics in γ+γ collisions

• Ultra-relativistic nuclei are sources of very strong EM fields

Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV

Can also probe *fundamental* physics in γ+γ collisions

 \Rightarrow e.g. $\gamma+\gamma \rightarrow \gamma+\gamma$, AKA light-by-light

104

- Ultra-relativistic nuclei are sources of very strong EM fields
- Equivalently, sources of photons
 w/ high flux extending to >~ 50 GeV
- ⇒Can also probe *fundamental* physics in γ+γ collisions

- \Rightarrow e.g. γ + γ \rightarrow γ + γ , AKA light-by-light
- ATLAS performed first measurement of direct L-by-L
 ⇒ <u>Nature Physics 13 (2017) 852</u>:

Multi-particle correlations: pp, p+Pb

- >2 particle correlations (e.g. 4) important for showing global azimuthal correlations in pp, p+Pb
- but problems with "non-flow" (hard) contamination \Rightarrow positive c₂{4}
- Recent progress using sub-event cumulants
- *a al* J. Jia ()
- \Rightarrow N_{ch} independent c₂{4} and v₂
- » modulo residual non-flow ($N_{ch} < 50$)

106

 $v_n{4} = \sqrt[4]{-c_n{4}}$

Pb+Pb vn measurements

107

• p_T dependence of v₂ - v₆ for same three centralities
• Centrality evolution:

Pb+Pb vn measurements

p_T dependence of v₂ - v₆ for same three centralities
Centrality evolution:

- 0-5% (central): dominated by initial state fluctuations

 \Rightarrow v₂ comparable to other v_ns
Pb+Pb vn measurements

- p_T dependence of v₂ v₆ for same three centralities
 Centrality evolution:
- 0-5% (central): dominated by initial state fluctuations
- \Rightarrow v₂ comparable to other v_ns
- 25-30% (mid-central): dominated by geometry
- \Rightarrow v₂ larger than other v_ns

Pb+Pb vn measurements

- p_T dependence of v₂ v₆ for same three centralities
 Centrality evolution:
- 0-5% (central): dominated by initial state fluctuations
- \Rightarrow v₂ comparable to other v_ns
- 25-30% (mid-central): dominated by geometry
- \Rightarrow v₂ larger than other v_ns
- 60-65% (peripheral): viscous effects and "non-flow"
- \Rightarrow smaller v_ns @ low p_T, "problems" at high p_T

11(

v₂ p_T dependence

When re-scaled to match maximum v₂

and mean p_T (for p+Pb ↔ Pb+Pb)
⇒p_T dependence of v_n's ~ same for Pb+Pb, p+Pb, pp

Except for pp with p_T > 5 GeV

⇒where away-side peak broadens in increase N_{ch}