

Expected performance of the upgrade ATLAS experiment for HL-LHC

Peilian LIU On behalf of ATLAS Collaboration Lawrence Berkeley National Laboratory

CIPANP 2018, May 29 – June 3, Palm Spring, CA

Outline

- Physics programs and challenges at HL-LHC
- The upgrades of ATLAS detector for HL-LHC
- Expected performance
 - Trigger and reconstruction of physics objects
 - Physics sensitivity

Summary

Roadmap to High Luminosity LHC

- The high-luminosity LHC (HL-LHC) is intended to provide 300 fb⁻¹ of data each year during an operating period of roughly 10 years.
 - An instantaneous luminosity of $\mathcal{L} \sim 7.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - An average of 200 inelastic proton-proton interactions per bunch crossing (pile-up, $<\mu>=200$)

Physics programs at HL-LHC

- Precision measurements of Higgs boson couplings
 - As many Higgs production and decay channels as possible
 - Providing constraints on potential non-Standard Model
- Exploration of Higgs potential by study of Higgs-boson pair production
 - Higgs trilinear self-coupling, λ_{HHH} , related to the form of the Higgs potential
 - A direct test of the spontaneous symmetry breaking in SM
 - Promising channels: $HH \rightarrow b\overline{b} + b\overline{b}$, $b\overline{b} + \gamma\gamma$, $b\overline{b} + \tau^+\tau^-$
 - High efficiency *b*-tagging is critical
 - Sensitivity to **new particles or rare decays** involving new physics
 - Taking the BSM predicted Z' boson (mass~TeV) in the TopColour mode which primarily decays to $t\bar{t}$ as an illustration
 - A $t\bar{t}$ resonance search is a benchmark to evaluate BSM physics prospects at HL-LHC
 - > Dense tracking environment inside the high $p_{\rm T}$ jets
 - Highly boosted top quarks due to the high mass of Z'

HL-LHC environment

- High pile-up density at HL-LHC
 - Current detector could not stand such harsh radiation environment
- Challenging for track-to-vertex association
- Detector need to be upgraded
 - High-granularity robust against the high occupancy
 - Radiation-hard withstanding the high particle fluence
 - **Extended coverage** of tracking with improved performance
- Essential to mitigate effects from pile-up
 - Good objects reconstruction (leptons, jets, $E_{\rm T}^{\rm miss}$, b-tagging)

The Trigger and DAQ Upgrade

- High instantaneous luminosity means higher data rates
- New designed trigger/DAQ system
 - To cope with high rates while keeping low trigger thresholds
 - The baseline architecture: a single-level hardware trigger + event filter
 - 1 MHz trigger rate instead of 100 kHz
 - A big challenge for the detector readout
 - 10 kHz output data rate instead of 1 kHz
- New readout electronics for all systems
 - To cope with the increased occupancies and data rates

The Upgrades of ATLAS Detector for HL-LHC

- **D** To maintain or improve ATLAS performance
- To cope with the increased occupancies and data rates

TDRs for the ATLAS phase-II upgrades

• 6 Technical Design Reports

I Technical Proposal

HGTD TP _- Under review TDR is planned for early 2019

ATLAS Inner Tracker (ITk)

The Pixel detector : 5 layers with inclined sensors in barrel

- Inclined sensors reduce the amount of silicon needed due to the large angular coverage
- End-cap rings (replacing traditional disks) are individually placed to optimize the coverage

The Strip detector : 4 barrel layers and 6 end-cap disks on each side

Double modules with a small stereo angle to provide 2D measurements

Phase-II Tracking Performance (1)

Tracking efficiency

 Fraction of high quality tracks matched to a truth primary particle

Fake or mis-reconstructed tracks

- Secondary tracks
- Mis-measured low-p_T tracks due to the limited σ_{p_T} in the forward region

- Tracking efficiency and fake rates are stable over the full range of pile-up for all intervals of η
- Good performance even at high pile-up

Phase-II Tracking Performance (2)

b-tagging Performance

- Multivariate techniques based on
 - Impact parameters of associated tracks
 - Properties of reconstructed secondary vertex
- *b*-tagging algorithms have been fully re-optimized for the new layout
 - Better rejection capability of ITk even at high pile-up levels
 - The extended coverage of ITk enables the b-tagging in the forward region.

- *b*-tagging is sensitive to the contamination of pile-up tracks
 - It considers tracks with large impact parameters
 - Essential to mitigate effects from pile-up

Muon Spectrometer

- Phase-II (2024 2026, mainly about trigger for Muon spectrometer)
 - New inner RPC stations
 - Monitored Drift Tubes information to be added at the hardware trigger
 - Investigating the addition of a high-η tagger

High-Granularity Timing Detector

- Precise assignment of tracks to Hard-Scatter (HS) vertex → to mitigate the pileup effects
 - Space separation of vertices in the beam direction (z)
 - > High pile-up density at HL-LHC
 - > σ_{z_0} is not good in the forward region
 - Time separation of vertices

HGTD

- Designed to distinguish between collisions occurring very close in space but well separated in time
- > Located just outside of ITk covering the forward region $2.4 < |\eta| < 4.0$
- Consisting of 4 silicon layers
 - 10% occupancy in $1.3 \times 1.3 \text{ mm}^2$ pixels
- Expected timing resolution of 30 ps will greatly improve the track-to-vertex association in the forward region
 - Compared to 180 ps RMS spread of collisions

Pile-up Jets Suppression

- **Pile-up jet tagging** with the discriminant $R_{p_{T}} = \frac{\sum_{k} p_{T}^{trk_{k}}(PV_{0})}{p_{T}^{jet}}$
 - Defined as the scalar sum of the $p_{\rm T}$ of all tracks within a jet associated with the HS vertex, divided by the jet $p_{\rm T}$
 - Small value of $R_{p_{\rm T}}$ for pile-up jets

- Significant improvement of pile-up jet rejection in the forward region
 - Extended coverage of ITk
 - Track-based pile-up suppression
 - HGTD
 - Timing information

The Expected Sensitivity to $HH \rightarrow 4b$

- The effects of upgraded ATLAS detector are taken into account by
 - applying energy smearing, object efficiencies and fake rates to truth level quantities
 - following parameterizations based on detector performance studies with full simulation and HL-LHC conditions
- $HH \rightarrow 4b$ High sensitivity to *b*-jet trigger threshold \rightarrow Trigger system upgrade is critical
 - Substantial degradation with increased minimum jet p_T requirement
 - 100 GeV \rightarrow 65 GeV (w/o \rightarrow w/ upgrade) ~ × 2 sensitivity

The Expected Sensitivity to $Z' \rightarrow t\bar{t}$

- Single lepton + jets channel $(t\bar{t} \rightarrow WbWb \rightarrow l\nu bqq'b)$
- Stable tracking efficiency inside jets with increasing p_T
 - Top quarks tend to produce *b*-jets with $p_{\rm T} > 600 {\rm GeV}$
 - Robust against the high-density tracking environment
- If no signals observed, expect to exclude this resonance for $m_{Z'} < 4$ TeV after HL-LHC (ATL-PHYS-PUB-2017-002)
 - Topcolour model of spin-1 Z' assuming $\Gamma = 1.2\%$
 - LO×1.3 to account for NLO effects
 - The most recent ATLAS search using 36.1 fb⁻¹ of data taken at $\sqrt{s} = 13$ TeV excludes $m_{Z'} < 3.2$ TeV (Talk by Siyuan Sun)

Conclusions

- Challenging to maintain or improve the performance in very dense environment with pileup up to 200
- Significant upgrades planned for the ATLAS detector for HL-LHC
 - All-silicon ITk with extended coverage to improve the tracking performance
 - HGTD to mitigate pile-up effects
 - Trigger system upgrade to keep lower trigger threshold
- The performance of the physics objects reconstruction is expected to be better than the current detector.

Backup

Phase-II Tracking Performance

- Track parameter resolutions directly determine the b-tagging capability and lepton or jet reconstruction
- **>** Better resolution of transverse momentum $(p_{\rm T})$
 - > Higher precision of strip tracker compared to TRT
 - Reduced material
- Expected comparable resolution of transverse impact parameter (d₀)
 - > Larger radius of ITk
 - Analog clustering would help
- > Better resolution of longitudinal impact parameter (z_0)
 - > Decreased pixel pitch in the z direction

Jet reconstruction

- Pileup is one of the main challenges for jets
 - Soft particles from nearby pileups are likely to contaminate the jets from HS.
 - This is especially true for boosted objects the products of which are very collimated.
- Typical boosted signature with jet radius R = 1.0 for $Z' \rightarrow t\bar{t}$
 - Grooming algorithms significantly reduce the sensitivity to pileup (reduced jet area) <u>https://cds.cern.ch/record/1459530</u>
 - After grooming and applying pileup corrections, the leading jet mass resolution is significantly improved and the pileup dependency is removed.

Missing Transverse Energy

- An important variable in searches for exotic signatures.
 - In SM, $E_{\rm T}^{\rm miss}$ arises from neutrinos.
 - There are also prospects for such particles in BSM theories.
- $E_{\rm T}^{\rm miss}$ is computed as the vector momentum sum of high $p_{\rm T}$ physics objects, plus the soft-term from low $p_{\rm T}$ particles associated to the HS vertex.
- Better E^{miss} resolution in the high pile-up conditions
 - ✓ Benefitting from the strong pile-up jet
 rejection of ITk in the forward region
 - The gain in the soft term using tracks in the forward region is small

Performance of electron reconstruction

Similar performance with Run2 is expected

- Likelihood based electron identification, combing calorimeter and track variables
- It improves about a factor of 2-5 in rejection of jets.
- This would also be carried out for ITk.

- Charge mis-identification is caused predominantly by Bremsstrahlung .
 - The EM cluster corresponding to the initial matched to the wrong-charge from the conversion leptons
 - The electron track may fail the tracking recovery for Bremsstrahlung, leading to a **poorly measured short track**.
 - Reduced material of ITk significantly decreases the mis-identification probability.

23

Performance of photon reconstruction

- Photon conversion \rightarrow affects the reconstruction efficiency and the energy calibration
 - Much-reduced material budget of the ITk significantly decreases the probability of photon conversion.
 - A conversion track-finding algorithm has been developed for the ITk based on the Run 1 and Run 2 experience
 - The conversion reconstruction efficiency is slightly lower in high pile-up condition

- The energy resolution of photons under $< \mu > = 200$ is worse than $< \mu > = 0$ (studied in very central region)
 - Pileup-only contribution = $\sqrt{\sigma_{\mu=200}^2 \sigma_{\mu=0}^2}$
 - The pileup noise dominates the energy resolution for photons with energy up to 130 GeV, and has an increasing impact for lower E_r

Two-level hardware-based TDAQ Upgrade

- A two Level hardware-based trigger system
 - The L0 trigger accepts inputs from the Calorimeter and Muon trigger systems.
 - Hardware-based track reconstruction is implemented in the L1 trigger system
 - The track segments are matched with calorimeter and muon features in the Global Trigger, after which the Central Trigger Processor forms the L1 decision.

- The L1 trigger provides the necessary rejection using precision pattern recognition and by building topological triggers that match data across detector systems.
- The readout capacity is increased from 100kHz to 1 MHz and the output data are increased from 1 kHz to 10 kHz

Higgs Signal Strength at HL-LHC

- Assuming a SM Higgs boson
 - A mass of 125 GeV
- Not including improved analyses techniques
 - Run 1 analysis strategy with expected performance at $<\mu>=140$
 - New estimations are going on.
- Statistical uncertainty reduced relative to 300 fb⁻¹ data which would be accumulated before Phase-II
 - 4-5% for main channels, 10-20% on rare modes
 - Theoretical uncertainty (hashed area) not negligible for several channels→ expected to be improved

ATLAS Simulation Preliminary

√s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹

Material Budget of ITk

- A reduction of multiple scattering of all particles → improves the tracking efficiency and resolution
- Reduced conversion probability of photons
- Less energy of particles lost before the calorimeters

HGTD

□ The technology chosen for the HGTD sensors is Low Gain Avalanche Detectors (LGAD)

- n-on-p silicon detectors containing a extra highly-doped p-layer below the n-p junction to create a high field which causes internal gain
- an initial current is created from the drift of the electrons and holes in the silicon
- □ When the electrons reach the amplification region, new electron/hole pairs are created and the holes drift towards the p⁺ region and generate a large current

An LGAD thickness of 50 microns has been adopted.

