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What happened before BBN?

2

The (mostly) successful prediction of the primordial abundances of 
light elements is one of cosmology’s crowning achievements.  

•The elements produced during Big Bang Nucleosynthesis are our first 
direct window on the Universe.

•They tell us that the Universe was radiation dominated during BBN.

But we have good reasons to think that the Universe was not 
radiation dominated before BBN.
•Primordial density fluctuations point to inflation.

•During inflation, the Universe was scalar dominated.

•Other scalar fields may dominate the Universe after the 
inflaton decays. 

•The string moduli problem: scalars with gravitational 
couplings come to dominate the Universe before BBN.

Acharya, Kumar, Bobkov, Kane, Shao, Watson 2008
Acharya, Kumar, Kane,Watson 2009

Giblin, Kane, Nesbit, Watson, Zhao 2017    
Summary: Kane, Sinha, Watson 1502.07746

Carlos, Casas, Quevedo, Roulet 1993
Banks, Kaplan, Nelson 1994
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What do we know about inflation?

3

Observational probes of inflation are mostly limited to large scales.
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But surprises could be lurking on smaller scales.
•inflaton interactions: particle production or coupling to gauge fields

•multi-stage and multi-field inflation with bends in inflaton trajectory

•any theory with a potential that gets flatter: running mass inflation

•hybrid models that use a “waterfall” field to end inflation

Silk & Turner 1987;  Adams+1997;  Achucarro+ 2012

Stewart 1997; Covi+1999; Covi & Lyth 1999

Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011

Lyth 2011; Gong & Sasaki 2011; Bugaev & Klimai 2011;  Guth & Sfakianakis 2012

Observational probes of inflation are mostly limited to large scales.
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Cosmic Timeline
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Now
T = 2.3� 10�4 eV

t = 13.8 Gyr

�

Matter-   Equality�
T = 3.2� 10�4 eV

t = 9.5 Gyr

Matter
Domination

�mat � a�3

CMB
T = 0.25 eV

t = 380, 000 yr

Matter-Radiation Equality

t = 57, 000 yr
T = 0.74 eV

�rad � a�4

Radiation
Domination

0.07 MeV �< T �< 3 MeV
0.08 sec �< t �< 4 min

Inflation

Big Bang Nucleosynthesis

�� = const
a � eHta � t1/2 a � t2/3
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UCMH Formation
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If a region has an initial density                  , then all the dark 
matter in that region collapses at early times (            ) and 
forms an Ultra-Compact Minihalo. Ricotti & Gould 2009 

� > 1.001�̄

1.002�̄
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z �> 1000
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UCMHs Probe Power Spectrum

6

An upper bound on the UCMH number density leads to an 
upper bound on the primordial power spectrum.

Josan & Green 2010; Bringmann, Scott, Akrami 2012 
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UCMHs Probe Power Spectrum

6

An upper bound on the UCMH number density leads to an 
upper bound on the primordial power spectrum.

Josan & Green 2010; Bringmann, Scott, Akrami 2012 

⇢ / r�9/4

These bounds assume that UCMHs have a 
radial-infall density profile.
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Simulations of UCMHs

7

1. Modify GadgetV2 to include smooth radiation component.
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Sten Delos, ALE, Bailey, Alvarez 
PRD 2018,1712.05421

See also Gosenca+ 2017 
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3. Make an UCMH!

Sten Delos, ALE, Bailey, Alvarez 
PRD 2018,1712.05421

See also Gosenca+ 2017 
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UCMH Density Profiles: Spike

8

10�6 10�5 10�4 10�3 10�2

r (kpc)

104

105

106

⇢r
3
/
2

(M
�

kp
c�

3
/
2
)

⇢̄| z=
10
00

⇢̄| z=
40
0

⇢̄| z=
20
0

⇢̄| z=
10
0

⇢̄| z=
50

⇢r3/2 ⇡ 1.3⇥ 106 M� kpc�3/2

� 1
/
k
sp

ik
e

�� �
z
=
1
0
0
0

r v
ir
| z

=
5
0

r v
ir
| z

=
1
0
0

r v
ir
| z

=
2
0
0

r v
ir
| z

=
4
0
0 z=400

z=200
z=100
z=50

10�6 10�5 10�4 10�3 10�2

106
107
108
109
1010
1011
1012
1013
1014
1015

⇢
(M

�
kp

c�
3
)

⇢̄|z=1000

⇢̄|z=400

⇢̄|z=200

⇢̄|z=100

⇢̄|z=50

⇢ /
r �

9/4

•Nine simulated UCMHs

•All have similar density profiles: 

•Stable with redshift, unless there’s a merger....

⇢ =
⇢s

(r/rs)1.5(1 + r/rs)1.5
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UCMH Density Profiles: Plateau

9

We also formed UCMHs using a plateau feature

z = 8⇥ 106 z = 100 z = 100z = 494
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UCMH Density Profiles: Plateau

9

We also formed UCMHs using a plateau feature

z = 8⇥ 106 z = 100 z = 100z = 494

and these UCMHs have NFW proflies!
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UCMHs: Summary and Outlook

10

•UCMHs that form from spikes in the primordial power spectrum have 
Moore profiles (                 ), while plateaus in the primordial power 
spectrum generate UCMHs with NFW profiles (              ).

⇢ / r�1.5

⇢ / r�1

•The dark matter annihilation rate 
within the UCMHs is reduced by a 
factor of 200, which reduces 
upper bound on UCMH 
abundance by 3000.

•But we have so many more halos 
to consider...

STAY TUNED

z = 100Sten Delos, ALE, Bailey, Alvarez 
coming soon 
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Cosmic Timeline
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Evolution of the pre-BBN Universe
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V (�)

�

The Universe was once dominated by a scalar field

•the inflaton 

•string moduli

Eventually, the scalar/particle decays into radiation, reheating the 
Universe.

For            ,  oscillating scalar field    matter. V � �2 �
•over many oscillations, average pressure is zero.

•scalar field energy density evolves as

•or we could form oscillons, which are effectively massive particles
�� � a�3

TRH �> 3 MeV Ichikawa, Kawasaki, Takahashi 2005; 2007
de Bernardis, Pagano, Melchiorri 2008

Fast-rolling scalar:  ⇢� = P� =) ⇢� / a�6

Other massive particles could come to dominate the Universe:
•axinos or gravitinos

•hidden sector particles e.g.  Dror, Kuflik, Melcher, Watson 2018
 Berlin, Hooper, Krnjaic 2016
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Probing Dark Matter Production
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Kination: Universe dominated by a fast rolling scalar field 
•faster expansion rate at a given temperature implies earlier freeze-out

•larger annihilation cross section needed to match observed DM abundance

•already on the verge of being ruled out by HESS and Fermi observations

Thermal DM production during an early matter-dominated era 
(EMDE) requires much smaller annihilation cross sections!

What hope do we have of probing these scenarios?
Giudice, Kolb, Riotto 2001; Gelmini, Gondolo 2006; Gelmini, Gondolo, Soldatenko, Yaguna 2006, ALE 2015

Kayla Redmond & ALE 2017
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Structure Growth during an EMDE
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RMS Density Fluctuation 
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•Enhanced perturbation 
growth affects subhorizon 
scales: 

•Define          to be mass 
within this comoving 
radius.
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Free-streaming
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Free-streaming will exponentially suppress power on 

scales smaller than the free-streaming horizon: �fsh(t) =
� t

tRH

�v�
a

dt

Structures grown during reheating only survive if                     
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The Microhalo Abundance
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mass function to calculate the fraction of dark matter contained in 
halos of mass M.

ALE 2015
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Estimating the Boost Factor

19
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An EMDE could make an “isolated” 
bino a viable DM candidate with a 
detectable annihilation signature in 

dwarf galaxies.
ALE, Sinha, Watson 2016
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Two source of uncertainty:
1. free-streaming cut-off
2. do the first-generation

microhalos survive?
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The DM temperature

20

momentum transfer rate  

expansion rate 

� / T 6

•fully coupled:

 

•fully decoupled:
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Isaac Waldstein, 
ALE, Cosmin Ilie 

2017 

To determine the free-streaming cut-off, we need the DM temperature.

T� ⌘ 2

3

*
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2m�
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But what are the 
implications for 
free-streaming? 
It depends.... 
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EMDE Microhalo Simulations
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Sheridan Green, ALE+ coming soon
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Boost Factor from Simulations
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Perturbations during Kination
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Summary: Mind the Gap after Inflation

•There is a gap in the cosmological record between inflation and the onset 
of Big Bang nucleosynthesis: 

•Dark matter microhalos offer hope of probing the gap.

•Both kination and an early matter-dominated era (EMDE) enhance the 
growth of sub-horizon density perturbations.

•The microhalos that form after an EMDE significantly boost the dark 
matter annihilation rate.

•We can use gamma-ray observations to probe the evolution of the early 
Universe, but first we have to determine the size of the smallest 
microhalos and if they survive to the present day.

Radiation
domination

Matter
domination

In
fla
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n

D
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k 
En
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gy

Big Bang Nucleosynthesis (BBN) Today

25

1015 GeV & T & 10�3 GeV
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Bonus Slides
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Don’t Mess with BBN
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Reheat Temperature = Temperature at Radiation Domination

C. Light element abundances

We now investigate how the big bang nucleosynthesis is
affected by the nonthermal neutrino distributions and/or
the neutrino oscillations. We calculate the light element (D,
4He, and 7Li) abundances as functions of TR, again with
and without the neutrino oscillations. The cosmological
effects of incomplete neutrino thermalization are most
strikingly seen in 4He abundance since electron-type neu-
trinos play a special role in determining the rate of neutron-
proton conversion during BBN. This has been already
known from the previous papers, Refs. [21,22], in which
the oscillations are neglected, but we find that the neutrino
oscillations prominently matter in regard to the TR depen-
dence of 4He abundance.

We show how Yp varies with respect to TR in Fig. 4. This
is calculated by plugging the solutions of the evolution
equations derived in Sec. II into the Kawano BBN code
[45] (with updated reaction rates compiled by Angulo et al.
[46]). Required modifications are the temperature depen-
dence of the neutron-proton conversion rates, !n!p and
!p!n, and the evolution equation for the photon tempera-
ture. The calculation of !n$p (see e.g. Ref. [47]) involves
the integration of the electron neutrino distribution func-
tion f!e

which does not necessarily take the Fermi distri-
bution form in our case. For the photon temperature
evolution, the contributions from " and neutrinos are
supplemented in the same way as Eq. (23).

There are two effects caused by incomplete thermaliza-
tion of neutrinos competing to make up the dependence of
Yp on TR as shown in Fig. 4: slowing down of the expan-
sion rate and decreasing in !n$p. The former is just a result
of the decrease in the neutrino energy density (of all

species). The latter is due to the deficit in f!e
. They com-

pete in a sense that they work in opposite ways to deter-
mine the epoch of neutron-to-proton ratio freeze-out: the
former makes it later and the latter makes it earlier. Then,
the competition fixes the n-p ratio at the beginning of
nucleosynthesis and eventually determines Yp. Roughly
speaking, for larger TR, the former dominates to decrease
Yp but, for smaller TR, the latter dominates and increases
Yp. This is clearly seen in the case without the oscillations
but not for the case including the oscillations because the
incompleteness in the !e thermalization is made severer by
the mixing [see panels (c) and (d) in Fig. 1] and this effect
dominates already at high TR.

Before going forward, it may be worthwhile to look
slightly more into the explanation of the TR dependence
of Yp. First, let us forget about modifying !n$p or tem-
perature evolution and just calculate 4He abundance using
thermally distributed neutrinos with N!’s indicated in
Fig. 3 for each value of TR. This corresponds to including
the effect of slowing down the expansion rate due to the
incomplete thermalization but neglecting the electron neu-
trino deficiency. Accordingly, lowering TR only acts to
delay the n-p ratio freeze-out and decrease Yp (shown by
the thinner curves in Fig. 4). In an actual low reheating
temperature scenario, a lack of !e reduces !n$p. This
counterbalances the effect of slowing down expansion
and boosts Yp in total at lower TR. To see this is really
the case, we plot !n!p for some values of TR in Fig. 5. We
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FIG. 4 (color online). The 4He abundance (mass fraction) Yp
as a function of the reheating temperature TR (shown on the
bottom abscissa) or the decay width ! (shown on the top
abscissa). The cases with and without the oscillations are drawn,
respectively, by the solid and dashed curves. Thinner curves are
calculated with Fermi distributed neutrinos with N! of Fig. 3
(namely, only the change in the expansion rate due to the
incomplete thermalization is taken into account). The horizontal
line represents ‘‘standard’’ Yp calculated by BBN with neutrinos
obeying the Fermi distribution and N! ! 3:04. The baryon-to-
photon ratio is fixed at # ! 5" 10#10.
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FIG. 3 (color online). The effective neutrino number N! as a
function of the reheating temperature TR (shown on the bottom
abscissa) or the decay width ! (shown on the top abscissa). The
cases with and without the oscillations are drawn, respectively,
by the solid and dashed lines. The horizontal line denotes N! !
3:04 with which N! for high TR should coincide (see the text).
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Lowering the reheat temperature results in fewer neutrinos.
•slower expansion rate during BBN

•neutrino shortage gives earlier neutron 
freeze-out; more helium

•earlier matter-radiation equality affects CMB

TRH �> 3 MeV
Ichikawa, Kawasaki, Takahashi 2005; 2007

de Bernardis, Pagano, Melchiorri 2008
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DM Production during an EMDE
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Giudice, Kolb, Riotto 2001; Gelmini, Gondolo 2006; Gelmini, Gondolo, Soldatenko, Yaguna 2006, ALE 2015

� DMSM

Thermal DM production during an early matter-dominated era 
(EMDE) requires much smaller annihilation cross sections!

What hope do we have of probing these scenarios?

TRH = 300GeV
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The Radiation Perturbation
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During radiation domination, 
the radiation density 

perturbation oscillates.
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The Radiation Perturbation
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The Radiation Perturbation
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�0 � Tr(k)�0Impact of Scalar Domination:

Tr � 1.5 2 �< k/kRH �< 4
Tr = 10/9 k/kRH �< 0.1

What impact does 
this have on the 

dark matter 
perturbations?

kRH = 35 (TRH/3 MeV) kpc�1

k/kRH �> 20Tr �< 10�3
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The Thermal Matter Perturbation

31

 1

 10

 100

 1000

 10000

 100000

 1e+06

100 101 102 103 104 105 106 107 108

δ χ
 / 
Φ

0

scale factor (a)

 1

 10

 100

 1000

 10000

 100000

 1e+06

100 101 102 103 104 105 106 107 108

δ χ
 / 
Φ

0

scale factor (a)

freeze-out

horizon
entry

scalar domination

radiation 
domination

scalar domination

radiation 
domination

freeze-out

horizon
entry

�� = �eq =
1

4

✓
3

2
+

m�

T

◆
��Before freeze-out:

TRH = 60GeV
m� = 18TeV

k/kRH = 74 k/kRH = 370

After freeze-out: linear growth

After reheating: logarithmic growth, same as nonthermal case

|�eq|
|�eq|



CIPANP:  May 30, 2018Adrienne Erickcek

The Dark Matter Perturbation
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The Evolution of the Bound Fraction
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Independent of Reheat Temperature
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The Annihilation Rate
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Estimating the Boost Factor
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Dark matter annihilation rate: � =
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2m2
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Assume microhalo NFW profile with c = 2 at formation redshift.
Anderhalden & Diemand 2013

Ishiyama 2014•early forming microhalos: 

•dense cores:

•assume that microhalo centers survive outside of inner kpc: reduces 
number of microhalos by 1%.

•assume that microhalos are stripped to            : reduces            by <20%r = rs J
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