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New physics

• There are many well-motivated extensions to the 

Standard Model that predict new resonances decaying 

to boson pairs (W/Z/H/ɣ), with different sets of 

properties.

• Rich phenomenology, from e.g. Composite Higgs to 

Extra Dimensions.

Motivation for diboson final states

Inês Ochoa, CIPANP2018

What are we looking for?

• A solution to the naturalness problem:

• New physics at the TeV energy scale, reachable at the LHC.

• New resonances can generally be expected to couple to massive bosons: W/Z and Higgs.

• Presenting results with minimal model dependence is of particular importance.

• Can translate experimental limits into results for different models.
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Theoretical Frameworks

Inês Ochoa, CIPANP2018

• Results are interpreted using different benchmark models, assuming narrow width approximation:

• Spin-0: extended Higgs sector (e.g. 2HDM), gluon-gluon and vector boson fusion.

• Spin-1: heavy vector triplets - HVT (W', Z')

• Spin-2: Kaluza-Klein graviton from bulk Randall-Sundrum model

Heavy Vector Triplets:

• Simplified model with additional SU(2) 

vector triplet.

• Small set of parameters: couplings to 

fermions, bosons and resonance 

mass.

• Production via Drell-Yan or vector 

boson fusion

“bulk" KK gravitons:

• Extension of KK graviton in RS1 

framework with SM particles extending 

into the “bulk”.

• Couplings to light fermions suppressed.

• Gluon-gluon fusion dominant production 

channel.

JHEP09(2014)060

 
PhysRevD.76.036006

https://link.springer.com/article/10.1007/JHEP09(2014)060
https://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1103%2FPhysRevD%252E76%252E036006&v=95ee538b
https://arxiv.org/pdf/hep-ph/0701186.pdf
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• In this talk: recent ATLAS searches, with focus on hadronic decay channels.

• W/Z/H+ɣ→qqɣ: arXiv:1805.01908

• WZ/WW/ZZ→qqqq: Phys. Lett. B 777 (2017) 91

• VH→qqbb: Phys. Lett. B 774 (2017) 494

• Y→XH→qqbb: Phys. Lett. B 779 (2018) 24

ATLAS searches in diboson final states

Inês Ochoa, CIPANP2018

NEW RESULT

Largest branching ratios. 
Best performance at high 

masses where SM 
backgrounds are smaller.

Common search strategy:

• Scanning of invariant mass distributions of 

diboson systems for evidence of a narrow 

resonant excess.

• Large range of resonance masses covered: from 

200 GeV to 6.8 TeV: boost of decay products will 

depend on the mass.

• Two general methods for background estimation.
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https://arxiv.org/abs/1805.01908
http://arxiv.org/abs/arXiv:1708.04445
https://arxiv.org/abs/1707.06958
https://arxiv.org/abs/1709.06783
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• Jet trimming of large-R jets to reduce 

contributions from underlying event and pile-up.

• W/Z tagging via a combination of pT-dependent 

cuts on the calibrated, jet mass and D2β=1 variable 

for identifying jets with two-prong substructures.

• Higgs tagging via jet mass cuts and b-tagging of 

associated track-jets.

 

Rcut = 0.2
fcut = 5%

Reconstructing W/Z/H hadronic decays

Inês Ochoa, CIPANP2018
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1 Introduction11

The identification of jets containing b-hadrons, called b-tagging, is an important ingredient of many12

physics analyses with the ATLAS detector [1]. Possible applications range from high precision measure-13

ments in the top quark sector to searches for new phenomena, where b-tagging algorithms are used to14

suppress background processes containing mainly light flavour jets.15

The heavy flavour tagging algorithms used in ATLAS are either based on the presence of soft leptons16

(electrons or muons) as decay products of c- and b-hadrons or on their relatively long lifetime τ, which17

is of the order of 1.5 ps for hadrons containing a b-quark. b-hadrons that have a transverse momentum18

of 70 GeV will have therefore an average flight lengths ⟨Lxy⟩ = βγcτ of 6.4 mm in the transverse plane19

before they decay. Such a decay gives rise to a secondary vertex (see Figure 1). The impact parameter,20

which is the distance of closest approach between a track and the primary vertex, tends to be relatively21

large for tracks stemming from a displaced vertex, while tracks coming from the primary vertex have22

impact parameters compatible with the tracking resolution.23

The ATLAS lifetime based b-tagging algorithms are subdivided in two categories. The impact parameter24

based b-tagging algorithms such as IP2D or IP3D [2] use the transverse and longitudinal impact pa-25

rameter significance d0/σd0 and z0/σz0 of all tracks associated to a jet, while the vertex based b-tagging26

algorithm such as SV0, SV1 or JetFitter [3,4] utilize the properties of reconstructed secondary vertices to27

distinguish between b- and light flavour jets. The vertex based b-tagging algorithms have a much higher28

separation power than the impact parameter ones, but their ability to identify b-jets is limited by the sec-29

ondary vertex finding efficiency. More sophisticated b-tagging algorithms such as JetFitterCombNN or30

MV1 use multivariate techniques such as artifical neural networks (ANN) to combine information from31

the track impact parameters and the secondary vertex to achieve an even higher separation power by also32

taking the correlations of the various input quantities into account.33

primary vertex

xy
decay length L

secondary vertex

jet axis

track
impact
parameter

Figure 1: Schematic view of a b-hadron decay inside a jet resulting in a secondary vertex with three

charged particle tracks. The vertex is significantly displaced with respect to the primary vertex, thus the

decay length is macroscopic and well measurable. The track impact parameter, which is the distance of

closest approach between the extrapolation of the track and the primary vertex, is shown in addition.

ATL-PHYS-PUB-2015-035 EPJC 76(3), 1-47

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2015-033/
https://cds.cern.ch/record/2042155
https://arxiv.org/pdf/1510.05821.pdf
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W/H/Z+ɣ searches (I)

Inês Ochoa, CIPANP2018
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 Spin(X)=0γZ→X→gg
• Strategy: one large-R jet and one photon: event 

triggered by photon candidates with pT > 140 GeV.

• Event categorization to improve signal sensitivity.

• E.g. Zɣ, defined by (double) b-tagging, D2 and jet mass 

of large-R jet. Additional cut on ntracks associated with 

jet for rejection of gluon-initiated jets.

Zɣ

NEW RESULT
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W/H/Z+ɣ searches (II)

Inês Ochoa, CIPANP2018

• Main backgrounds: SM ɣ + jet production, smaller contributions from ɣ + top, ɣ + V.

• Background model:

• Unbinned fits of the mJɣ distribution performed in each category, in range 800 GeV up to 7 

TeV.

B(m
J�

;p) = (1� x)p1
x

p2+p3 log x

Wɣ Hɣ

NEW RESULT

x = mJ�/
p
s
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W/H/Z+ɣ searches (III)

Inês Ochoa, CIPANP2018

• Largest uncertainties are statistical, followed by 
spurious signal uncertainties (Vɣ). For Hɣ, large 

impact also from b-tagging efficiencies.

• Results: no significant deviations found. Cross-
section x branching ratio limits derived combining 

signal regions, for Zɣ (different spin and 
production hypotheses), Wɣ and Hɣ production.

Zɣ

First limits on the  
production of Hɣ 

resonances.

NEW RESULT
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• Two large-R jets, W/Z tagging @ 50% efficiency 

and cut on ntracks associated with jets.

• Multijet processes dominate background.

• Binned maximum-likelihood fit to observed mJJ 

spectrum assuming a smoothly falling 

distribution:

VV→qqqq search (I)
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• Results: data compatible with SM backgrounds.

• Approximately 20% of events included in all three regions. 

• Limits @ 95% C.L.: 

• MV’ exclusion in 1.2-3.1 (1.2-3.5) TeV for HVT model A (B).

• GKK exclusion in range 1.3 - 1.6 TeV in bulk RS model with k/MPl = 1.

• Upper limits set on σ × B of 9.7 fb at m(Scalar) = 2 TeV and 3.5 fb at m(Scalar) = 3 TeV.

Model A: comparable BRs to 
fermions and bosons.

Model B: couplings to fermions 
suppressed.

VV→qqqq search (II)
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• Two large-R jets required in the event: higher 

mass jet is assigned as Higgs candidate, the 

other as W/Z.

• Multijet QCD processes are the main 

background (>90%). Data-driven estimation: 

template from region with 0-tags, 

normalization and corrections from high-

mass sidebands of the Higgs candidate.

VH→qqbb search (I)
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VH→qqbb search (II)

• Largest experimental uncertainties from jet 

mass resolution, jet energy scale and b-tagging 

efficiencies.

• Results: largest excess at a mass of ~3 TeV 

with a local (global) significance of 3.3 (2.1) σ.

• Cross-section limits derived for W’ and Z’ 

production. Exclusions for HVT Model B 

(suppressed couplings to fermions): 

• mw’ < 2.5 TeV and mZ' < 2.6 TeV

• WH cross-section limits and signal regions 

shown in backup slides. Note: WH/ZH overlap 

by ~60%.
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Other hadronic searches: Y→XH→qqbb
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• A search for heavy resonances decaying into a 

Higgs boson and a new particle (X). 

• Two-dimensional phase space of Y resonance 

mass values between 1 and 4 TeV, and X 

masses from 50 to 1000 GeV. 

• Similar strategy to VH search.

2-tag
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Moving forward…

Inês Ochoa, CIPANP2018

• Results shown correspond to 2015+2016 data, with an integrated luminosity of 36.1 fb-1.

• 2017 data will more than double the integrated luminosity and more collisions are currently 
taking place, with the expected Run II luminosity to reach 140 fb-1.

• By continually improving reconstruction and analyses techniques we can get the most out 
of the data we have:

• New techniques: developments in b-tagging and jet reconstruction (e.g. combining tracker 
and calorimeter information).

• Statistical combinations of analyses targeting different decay modes, providing stronger 
constraints on particular models.

Z'→ZHW’→WZ



�15Inês Ochoa, CIPANP2018

• Diboson final states are a powerful tool to look for new physics. 

• Latest ATLAS Run II results shown today, using 36.1 fb-1 of 2015+2016 data.

• Motivated by multiple models to probe the TeV scale.

• Taking advantage of advanced analysis techniques to maximize search sensitivity.

• There are new searches on the pipeline, more data to analyze and more data rolling in…

Summary

A high mass event from the 
all-hadronic VV analysis:

mVV = 1.8 TeV

Run Number: 311287
Event Number: 518319772
Date: 2016-10-23 07:05:27 CEST

A high mass event from the 
all-hadronic VV analysis:

m4j = 1.0 TeV

Stay tuned for more LHC data!



�16

Backup

Inês Ochoa, CIPANP2018
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Jet trimming

Inês Ochoa, CIPANP2018
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• The D2β=1 variable is useful in 

identifying jets with two-prong 
substructures.

• Defined from n-point energy 

correlation functions:

Jet substructure
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• The jet mass resolution is further improved by combining calorimeter and tracking 

information:

• ⍵calo and ⍵track are inversely proportional to the square of the resolution of each mass term 

and are optimized to minimize the combined jet mass resolution.

• Resolution is improved especially at high jet pT, 

       due to the coarser angular resolution of the 

       calorimeter.
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W/Z hadronic decays (III)

• For Higgs boson reconstruction in the bb decay channel, 

the mass resolution can also be improved by correcting 
for semi-leptonic decays of the b-hadrons.

“Combined” jet mass

Inês Ochoa, CIPANP2018

“Combined" jet mass

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-035/
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• Crucial for reconstructing Higgs to bb-bar decays but also for rejecting top backgrounds.

• A b-hadron decay in the detector provides a measurable displaced secondary vertex.

• A multivariate tagging algorithm combines information from vertexing and impact parameter 

tagging algorithms to a set of tracks associated to a jet/track-jet, in order to identify jets 

containing b-hadrons.

b-tagging

Inês Ochoa, CIPANP2018
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1 Introduction11

The identification of jets containing b-hadrons, called b-tagging, is an important ingredient of many12

physics analyses with the ATLAS detector [1]. Possible applications range from high precision measure-13

ments in the top quark sector to searches for new phenomena, where b-tagging algorithms are used to14

suppress background processes containing mainly light flavour jets.15

The heavy flavour tagging algorithms used in ATLAS are either based on the presence of soft leptons16

(electrons or muons) as decay products of c- and b-hadrons or on their relatively long lifetime τ, which17

is of the order of 1.5 ps for hadrons containing a b-quark. b-hadrons that have a transverse momentum18

of 70 GeV will have therefore an average flight lengths ⟨Lxy⟩ = βγcτ of 6.4 mm in the transverse plane19

before they decay. Such a decay gives rise to a secondary vertex (see Figure 1). The impact parameter,20

which is the distance of closest approach between a track and the primary vertex, tends to be relatively21

large for tracks stemming from a displaced vertex, while tracks coming from the primary vertex have22

impact parameters compatible with the tracking resolution.23

The ATLAS lifetime based b-tagging algorithms are subdivided in two categories. The impact parameter24

based b-tagging algorithms such as IP2D or IP3D [2] use the transverse and longitudinal impact pa-25

rameter significance d0/σd0 and z0/σz0 of all tracks associated to a jet, while the vertex based b-tagging26

algorithm such as SV0, SV1 or JetFitter [3,4] utilize the properties of reconstructed secondary vertices to27

distinguish between b- and light flavour jets. The vertex based b-tagging algorithms have a much higher28

separation power than the impact parameter ones, but their ability to identify b-jets is limited by the sec-29

ondary vertex finding efficiency. More sophisticated b-tagging algorithms such as JetFitterCombNN or30

MV1 use multivariate techniques such as artifical neural networks (ANN) to combine information from31

the track impact parameters and the secondary vertex to achieve an even higher separation power by also32

taking the correlations of the various input quantities into account.33

primary vertex

xy
decay length L

secondary vertex

jet axis

track
impact
parameter

Figure 1: Schematic view of a b-hadron decay inside a jet resulting in a secondary vertex with three

charged particle tracks. The vertex is significantly displaced with respect to the primary vertex, thus the

decay length is macroscopic and well measurable. The track impact parameter, which is the distance of

closest approach between the extrapolation of the track and the primary vertex, is shown in addition.
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• Event selection
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Vɣ searches
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• Systematic uncertainties on signal
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Vɣ searches

Impact on normalization and e�ciency [%]

Luminosity 2.1

Jet energy scale 2–6

Photon identification and isolation 0.5–1.5

Flavor tagging 10–20

ntrk associated with the jet 6

Jet mass resolution 3–6

scale and resolution < 1

Pileup modeling 1–2

Impact on signal peak position [%]

Jet energy and mass scale 1–3

Photon energy scale < 0.5
Impact on signal peak resolution [%]

Jet energy resolution 5 (mX < 2.5 TeV)–15 (mX > 2.5 TeV)

Photon energy resolution 1–3

Impact on acceptance [%]

PDF 2–12

Parton shower 2

• Event yields
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Y→XH→qqbb search
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