Composite Higgs from mass-split models
Anna Hasenfratz¹, Claudio Rebbi², and Oliver Witzel¹
¹Department of Physics, University of Colorado Boulder
²Department of Physics and Center for Computational Science, Boston University

Motivation
- What is the nature of the Higgs boson?
- What is the origin of electro-weak symmetry breaking?
- Is there new physics below the Planck scale? How could it look like?

example

theory

Higgs is a light scalar with mass 125 GeV
- Standard Model is not UV complete
- No other resonances discovered so far
- Spectrum cannot be QCD-like

large separation of scales
e.g. strongly coupled conformal gauge theories
- → Higgs is a composite particle
- → Other resonances predicted in the few TeV range
- → Nonperturbative simulations using lattice field theory

Framework of composite Higgs models
- Start from Higgs-less Standard Model L_{SM}
- Add new strongly interacting gauge fermion system L_{SM} ∈ LD
- Add interactions between new sector and Standard Model L_{int}
- $L_{UV} \rightarrow L_{SM} + L_{SM} \rightarrow L_{SM} + \ldots$
- L_{SM} triggers EW symmetry breaking and a light Higgs emerges
- Give mass to SM gauge fields and fermions (4-fermion interaction, partial compositeness, . . .)
- Effective ansatz: theory in the UV required to explain mass of L_{SM} fermions

Mass-split models as candidates for L_{SM}
- Promising candidates are chirally broken in the IR but conformal in the UV [1]

UV
Λ_{UV}
fermion masses
Higgs dynamics
→ Conformal many flavor system in the UV
→ Allow some of the masses to decouple in the IR
→ Arrive at a chirally broken few-flavor system
e.g. SU(3) gauge theory with 12 or 10 flavors

IR
Λ_{IR}

→ Mass-split system are non-QCD-like:
- Chirally broken, but dimensional ratios show conformal hyperscaling, i.e. IRFP governs UV dynamics
- Physical quantities depend only on m_h/m_A
- Gauge coupling is irrelevant, takes the value of the IRFP
- For $m_H \rightarrow 0$, only m_{ψ} is relevant, effective setting the scale
- The Higgs boson can emerge as dilaton-like particle or pseudo Nambu-Goldstone boson (pNGB)

Dilaton-like Higgs
- Ideal two massless flavors in the IR
- Possibility a light 0^+ could emerge from conformal FP

Non-trivial vacuum alignment:
$F_{\psi} \equiv \langle \psi \psi \rangle / m_{\psi}^2 > 246$ GeV
- Ideal four massless flavors in the IR
- Mass emerges from its interactions
- Non-trivial vacuum alignment:
$F_{\psi} \equiv \langle \psi \psi \rangle / m_{\psi}^2 > 246$ GeV

pNGB Higgs
- Ideal two massless flavors in the IR
- No data points — possibly large systematic effects, low statistics, excited states, PV, etc.
- Identified promising parameters for numerical simulations
- First signs of hyperscaling, starting to push into the chiral regime

Summary
Mass-split models in the basin of attraction of an IRFP
- Exhibit a large scale separation
- Have a non-QCD-like spectrum
- Light 0^+ is dilaton-like scalar
- Ratios show hyperscaling independent of coupling or heavy flavor mass
- Feature composite Higgs scenarios with a dilaton-like or pNGB Higgs boson
- Are highly predictive: at most one free parameter (due to hyperscaling)

References

Acknowledgment
Computations for this work were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy, and on computers at the MGBHCC in part funded by the National Science Foundation as well as on the BlueGene/Q supercomputer at Lawrence Livermore National Laboratory. We thank NSF, Boston University, Fermilab, Jefferson Lab, LNLs, the NSF and the U.S. DOE for providing the facilities essential for the completion of this work.

Example: 4+8 mass-split model [2]
- Plaquette gauge action with negative adjoint term and nHFP smeared staggered fermions [3]
- $g = 1.8$ and 4.4, $\bar{m}_h/l = -0.25$, $L^2 \times T^2 = 24^2 \times 48$, simulations performed using FUEL [4]
- $\bar{m}_{\psi}/m_{\psi} = 0.03, 0.05, 0.10, 0.15, 0.25, 0.35, m_{\psi} = 0.05, 0.06, 0.07, 0.08, 0.10$
- Connected spectrum from wall-sources and point-sinks, O(500) configurations
- Connected spectrum from stochastic sources with time-slice dilution, O(1000) configurations

Light-light spectrum
- Dimensionless ratio — no scale setting
- Lowest scaling 0^+ is light, almost degenerate with the pion
- Ratios do not depend on heavy flavor mass \bar{m}_H nor on gauge coupling β
- System exhibits hyperscaling

The light-light sector is chirally broken
- Using the same lattice units, F_A shows hyperscaling and approaches a finite value
- M_A in lattice units shows linear behavior for small m_{ψ} (cf. QCD: $M_A/m_{\psi} = 4.7/86 \approx 0.05$)
- As in QCD like theories, $M_{\mu+}/M_A$ diverges for $m_{\psi} \rightarrow 0$

Hyperscaling in the light-light and heavy-heavy sector

Outlook: 4+6 mass-split model (Lattice Strong Dynamics collaboration)
- Tree-level improved Symanzik gauge action with stout-measured Wilson domain-wall fermions [5]
- Simulations performed with Grid-6 [6] or Irore [7] to utilize state-of-the-art supercomputers
- Domain-wall fermions feature continuum-like symmetries simplifying calculations
- Easier to calculate the Higgs potential, S-parameter, scattering processes, . . .
- Easier to investigate partial compositeness or four-fermion interactions
- Avoids issues of staggered fermions (e.g. rooting, symmetry breaking)
- Likely larger anomalous dimension if $N_F = 10$ is indeed conformal [8, 9, 10]