Expected performance of the upgrade
ATLAS experiment for HL-LHC

Peilian LIU
On behalf of ATLAS Collaboration
Lawrence Berkeley National Laboratory

CIPANP 2018, May 29 – June 3, Palm Spring, CA
Outline

- Physics programs and challenges at HL-LHC
- The upgrades of ATLAS detector for HL-LHC
- Expected performance
 - Trigger and reconstruction of physics objects
 - Physics sensitivity
- Summary
The high-luminosity LHC (HL-LHC) is intended to provide 300 fb\(^{-1}\) of data each year during an operating period of roughly 10 years.

- An instantaneous luminosity of \(\mathcal{L} \sim 7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
- An average of 200 inelastic proton-proton interactions per bunch crossing (pile-up, \(< \mu > = 200\))
Physics programs at HL-LHC

• Precision measurements of Higgs boson couplings
 – As many Higgs production and decay channels as possible
 – Providing constraints on potential non-Standard Model

• Exploration of Higgs potential by study of Higgs-boson pair production
 – Higgs trilinear self-coupling, λ_{HHH}, related to the form of the Higgs potential
 – A direct test of the spontaneous symmetry breaking in SM
 – Promising channels: $HH \rightarrow b\bar{b} + b\bar{b}$, $b\bar{b} + \gamma\gamma$, $b\bar{b} + \tau^+\tau^-$
 ➢ High efficiency b-tagging is critical

• Sensitivity to new particles or rare decays involving new physics
 – Taking the BSM predicted Z' boson (mass \sim TeV) in the TopColour mode which primarily decays to $t\bar{t}$ as an illustration
 – A $t\bar{t}$ resonance search is a benchmark to evaluate BSM physics prospects at HL-LHC
 ➢ Dense tracking environment inside the high p_T jets
 • Highly boosted top quarks due to the high mass of Z'
HL-LHC environment

- **High pile-up density** at HL-LHC
 - Current detector could not stand such harsh radiation environment
- **Challenging for track-to-vertex association**
- Detector need to be upgraded
 - High-granularity robust against the high occupancy
 - Radiation-hard withstanding the high particle fluence
 - Extended coverage of tracking with improved performance
- **Essential to mitigate effects from pile-up**
 - Good objects reconstruction (leptons, jets, E_T^{miss}, b-tagging)
The Trigger and DAQ Upgrade

- High instantaneous luminosity means higher data rates

- New designed trigger/DAQ system
 - To cope with high rates while keeping low trigger thresholds
 - The baseline architecture: a single-level hardware trigger + event filter
 - 1 MHz trigger rate instead of 100 kHz
 - A big challenge for the detector readout
 - 10 kHz output data rate instead of 1 kHz

- New readout electronics for all systems
 - To cope with the increased occupancies and data rates
The Upgrades of ATLAS Detector for HL-LHC

- To maintain or improve ATLAS performance
- To cope with the increased occupancies and data rates

- All-silicon new Inner Tracker (ITk)
- New inner Muon barrel trigger chambers
- Calorimeters (only TDAQ)
- New readout electronics for all systems
- New High-Granularity Timing Detector
- Possible High-η muon tagger
TDRs for the ATLAS phase-II upgrades

- **6 Technical Design Reports**

 - **Tracker Strip TDR**
 - CERN-LHCC-2017-005

 - **Muon TDR**
 - CERN-LHCC-2017-017

 - **Tracker Pixel TDR**

 - **LAr TDR**

 - **Tile TDR**

 - **TDAQ TDR**

- **1 Technical Proposal**

 - **HGTD TP**
 - Under review

 TDR is planned for early 2019
ATLAS Inner Tracker (ITk)

- High-granularity
- Radiation-hard
- Extended coverage to η of 4 ($|\eta| < 2.5$ for Run 2)

- **200m2 of silicon** with 5G pixels and 80M strips

The Pixel detector: 5 layers with inclined sensors in barrel
- **Inclined sensors** reduce the amount of silicon needed due to the large angular coverage
- **End-cap rings** (replacing traditional disks) are individually placed to optimize the coverage

The Strip detector: 4 barrel layers and 6 end-cap disks on each side
- **Double modules with a small stereo angle** to provide 2D measurements
Phase-II Tracking Performance (1)

- **Tracking efficiency**
 - Fraction of high quality tracks matched to a truth primary particle

- **Fake or mis-reconstructed tracks**
 - Secondary tracks
 - Mis-measured low-p_T tracks due to the limited σ_{p_T} in the forward region

- Tracking efficiency and fake rates are stable over the full range of pile-up for all intervals of η
- Good performance even at high pile-up
Phase-II Tracking Performance (2)

- Better track parameter resolution
 - Smaller pixels

Better momentum resolution example
- Higher precision of strip tracker compared to TRT
- Reduced material

Better momentum resolution \rightarrow **better mass resolution**

- Comparable resolution of transverse impact parameter with Run 2
- Better resolution of longitudinal impact parameter (smaller pixel pitch in beam direction)

- **Track parameter resolutions** directly determine the b-tagging capability and lepton or jet reconstruction
b-tagging Performance

• **Multivariate techniques** based on
 – Impact parameters of associated tracks
 – Properties of reconstructed secondary vertex

• **b-tagging algorithms have been fully re-optimized** for the new layout
 - Better rejection capability of ITk even at high pile-up levels
 - The extended coverage of ITk enables the **b**-tagging in the forward region.

• **b**-tagging is sensitive to the contamination of pile-up tracks
 – It considers **tracks with large impact parameters**
 – Essential to mitigate effects from pile-up
Muon Spectrometer

- **Phase-II** (2024 – 2026, mainly about trigger for Muon spectrometer)
 - New inner RPC stations
 - Monitored Drift Tubes information to be added at the hardware trigger
 - Investigating the addition of a high-\(\eta\) tagger

- **Phase-I** (2019 - 2020)
 - New Small Wheel
 - Upgrades to the inner barrel Resistive Plate Chambers
 - NSW required to maintain low-\(p_T\) lepton triggers at high rates
 - reject \(~90\%\) of fake triggers

See Benoit’s talk about Muon phase-I upgrade
High-Granularity Timing Detector

- Precise assignment of tracks to Hard-Scatter (HS) vertex → to mitigate the pileup effects
 - **Space separation** of vertices in the beam direction (z)
 - High pile-up density at HL-LHC
 - σ_z is not good in the forward region
 - **Time separation of vertices**

HGT D

- Designed to distinguish between **collisions occurring very close in space but well separated in time**
- Located just outside of ITk covering the forward region $2.4 < |\eta| < 4.0$
- Consisting of 4 silicon layers
 - 10% occupancy in 1.3×1.3 mm2 pixels
- Expected **timing resolution of 30 ps** will greatly improve the track-to-vertex association in the forward region
 - Compared to 180 ps RMS spread of collisions
Pile-up Jets Suppression

- **Pile-up jet tagging** with the discriminant
 \[R_{p_T} = \frac{\sum_k p_T^{\text{trk}_k}(pV_0)}{p_T^{\text{jet}}} \]
 - Defined as the scalar sum of the \(p_T \) of all tracks within a jet associated with the HS vertex, divided by the jet \(p_T \)
 - Small value of \(R_{p_T} \) for pile-up jets

- Rejection vs efficiency as a scan over the \(R_{p_T} \) requirement

- Significant improvement of pile-up jet rejection in the forward region
 - Extended coverage of ITk
 - Track-based pile-up suppression
 - HGTD
 - Timing information
The Expected Sensitivity to $HH \rightarrow 4b$

- The effects of upgraded ATLAS detector are taken into account by
 - applying energy smearing, object efficiencies and fake rates to truth level quantities
 - following parameterizations based on detector performance studies with full simulation and HL-LHC conditions

- $HH \rightarrow 4b$ High sensitivity to b-jet trigger threshold → Trigger system upgrade is critical
 - Substantial degradation with increased minimum jet p_T requirement
 - $100 \text{ GeV} \rightarrow 65 \text{ GeV}$ (w/o → w/ upgrade) $\sim \times 2$ sensitivity

- More channels combined to get enough statistics
 - $b\bar{b} + \gamma\gamma$
 - $b\bar{b} + \tau^+\tau^-$

ATLAS

$6\tau = 14 \text{ TeV}, L = 3000 \text{ fb}^{-1}$

$HH \rightarrow 4b$
No sys. uncertainty

$95\% \text{ C.L. exclusion limit on } \sigma_{SM}$

Minimum offline jet p_T [GeV]

λ_{HH}

$6\tau = 14 \text{ TeV}, L = 3000 \text{ fb}^{-1}$

$HH \rightarrow 4b$
No sys. uncertainty

$68\% \text{ C.L. interval for } \lambda_{\text{HH}}$
$95\% \text{ C.L. interval for } \lambda_{\text{HH}}$

Minimum offline jet p_T Threshold [GeV]
The Expected Sensitivity to $Z' \rightarrow t\bar{t}$

- Single lepton + jets channel ($t\bar{t} \rightarrow WbWb \rightarrow lνbqq'b$)

- **Stable tracking efficiency inside jets with increasing** p_T
 - Top quarks tend to produce b-jets with $p_T > 600$ GeV
 - Robust against the high-density tracking environment

- If no signals observed, expect to exclude this resonance for $m_{Z'} < 4$ TeV after HL-LHC (ATL-PHYS-PUB-2017-002)
 - Topcolour model of spin-1 Z' assuming $\Gamma = 1.2\%$
 - $\text{LO} \times 1.3$ to account for NLO effects
 - The most recent ATLAS search using 36.1 fb$^{-1}$ of data taken at $\sqrt{s} = 13$ TeV excludes $m_{Z'} < 3.2$ TeV (Talk by Siyuan Sun)
Conclusions

• Challenging to maintain or improve the performance in very dense environment with pileup up to 200

• Significant upgrades planned for the ATLAS detector for HL-LHC
 – All-silicon ITk with extended coverage to improve the tracking performance
 – HGTD to mitigate pile-up effects
 – Trigger system upgrade to keep lower trigger threshold

• The performance of the physics objects reconstruction is expected to be better than the current detector.
Backup
Phase-II Tracking Performance

- **Track parameter resolutions** directly determine the b-tagging capability and lepton or jet reconstruction

- Better resolution of transverse momentum (p_T)
 - Higher precision of strip tracker compared to TRT
 - Reduced material

- Expected comparable resolution of transverse impact parameter (d_0)
 - Larger radius of ITk
 - Analog clustering would help

- Better resolution of longitudinal impact parameter (z_0)
 - Decreased pixel pitch in the z direction
Jet reconstruction

• Pileup is one of the main challenges for jets
 – Soft particles from nearby pileups are likely to contaminate the jets from HS.
 – This is especially true for boosted objects the products of which are very collimated.

• Typical boosted signature with jet radius $R = 1.0$ for $Z' \rightarrow t\bar{t}$
 – Grooming algorithms significantly reduce the sensitivity to pileup (reduced jet area)
 https://cds.cern.ch/record/1459530
 – After grooming and applying pileup corrections, the leading jet mass resolution is
 significantly improved and the pileup dependency is removed.
Missing Transverse Energy

• An important variable in searches for exotic signatures.
 – In SM, E_T^{miss} arises from neutrinos.
 – There are also prospects for such particles in BSM theories.

• E_T^{miss} is computed as the vector momentum sum of high p_T physics objects, plus the soft-term from low p_T particles associated to the HS vertex.

- Better E_T^{miss} resolution in the high pile-up conditions
 ✓ Benefitting from the strong pile-up jet rejection of ITk in the forward region
 ✓ The gain in the soft term using tracks in the forward region is small
Performance of electron reconstruction

- **Similar performance with Run2 is expected**
 - Likelihood based electron identification, combing calorimeter and track variables
 - It improves about a factor of 2-5 in rejection of jets.
 - This would also be carried out for ITk.

- **Charge mis-identification** is caused predominantly by Bremsstrahlung.
 - The EM cluster corresponding to the initial matched to the wrong-charge from the conversion leptons
 - The electron track may fail the tracking recovery for Bremsstrahlung, leading to a poorly measured short track.
 - Reduced material of ITk significantly decreases the mis-identification probability.
Performance of photon reconstruction

- Photon conversion \rightarrow affects the reconstruction efficiency and the energy calibration
 - Much-reduced material budget of the ITk significantly decreases the probability of photon conversion.
 - A conversion track-finding algorithm has been developed for the ITk based on the Run 1 and Run 2 experience
 - The conversion reconstruction efficiency is slightly lower in high pile-up condition

- The energy resolution of photons under $\langle \mu \rangle = 200$ is worse than $\langle \mu \rangle = 0$ (studied in very central region)
 - Pileup-only contribution $= \sqrt{\sigma_{\mu=200}^2 - \sigma_{\mu=0}^2}$
 - The pileup noise dominates the energy resolution for photons with energy up to 130 GeV, and has an increasing impact for lower E_r
Two-level hardware-based TDAQ Upgrade

- A two Level hardware-based trigger system
 - The L0 trigger accepts inputs from the Calorimeter and Muon trigger systems.
 - Hardware-based track reconstruction is implemented in the L1 trigger system
 - The track segments are matched with calorimeter and muon features in the Global Trigger, after which the Central Trigger Processor forms the L1 decision.

- The L1 trigger provides the necessary rejection using precision pattern recognition and by building topological triggers that match data across detector systems.
- The readout capacity is increased from 100kHz to 1 MHz and the output data are increased from 1 kHz to 10 kHz
Higgs Signal Strength at HL-LHC

• Assuming a SM Higgs boson
 – A mass of 125 GeV

• Not including improved analyses techniques
 – Run 1 analysis strategy with expected performance at $< \mu > = 140$
 – New estimations are going on.

• **Statistical uncertainty reduced** relative to 300 fb$^{-1}$ data which would be accumulated before Phase-II
 – 4-5% for main channels, 10-20% on rare modes
 – Theoretical uncertainty (hashed area) not negligible for several channels \rightarrow expected to be improved
Material Budget of ITk

- A reduction of multiple scattering of all particles improves the tracking efficiency and resolution
- Reduced conversion probability of photons
- Less energy of particles lost before the calorimeters
The technology chosen for the HGTD sensors is Low Gain Avalanche Detectors (LGAD)
- n-on-p silicon detectors containing an extra highly-doped p-layer below the n-p junction to create a high field which causes internal gain
- an initial current is created from the drift of the electrons and holes in the silicon
- When the electrons reach the amplification region, new electron/hole pairs are created and the holes drift towards the p$^+$ region and generate a large current

An LGAD thickness of 50 microns has been adopted.
pileup