A Particle Physicist’s Perspective on EDGES

Sam McDermott

with Asher Berlin, Dan Hooper, & Gordan Krnjaic
1803.02804, PRL
EDGES

Experiment to Detect the Global Epoch of reionization Signature

EDGES

Experiment to Detect the Global Epoch of reionization Signature

Detects the absorption strength of the spin flip transition of neutral H in the 1s state

EDGES

Experiment to Detect the Global Epoch of reionization Signature

Detects the absorption strength of the spin flip transition of neutral H in the 1s state

\[T_{21} \sim \frac{(T_s - T_{CMB,0})}{(1+z)} \]
EDGES

Experiment to Detect the Global Epoch of reionization Signature

Detects the absorption strength of the spin flip transition of neutral H in the 1s state

\[T_{21} \sim (T_s - T_{CMB,0})/(1+z) \]

\[T_{21,SM} > -200 \text{ mK} \]

EDGES

Cohen et al, 1609.02312
EDGES

Cohen et al, 1609.02312

(Putative) EDGES Signal
(Putative) EDGES Signal

\[\sigma(v=1\, \text{km/s}) \, [\sigma_{\text{np}}] \]

\[10^4 \]
\[10^5 \]
\[10^6 \]
\[10^7 \]
\[10^8 \]
\[10^9 \]

\[m_\chi \, (\text{GeV}) \]

Barkana
Nature 555
(2018)
Millicharge Scattering

\[\frac{d\sigma_{Xf}}{d\Omega} = \frac{\alpha_{EM}^2 \epsilon^2}{4\mu_X^2 v_{\text{rel}}^4 \sin^4\left(\frac{\theta}{2}\right)} \rightarrow \]

\[\rightarrow \sigma_t \approx \frac{2\pi \alpha_{EM}^2 \epsilon^2}{\mu_X^2 v_{\text{rel}}^4} \left[60 + \ln \left(\frac{x_e \epsilon^2}{10^{-12}} \right) \right] \]
(Putative) EDGES Signal
(Putative) EDGES Signal

Millicharged Dark Matter Fraction $f_{DM} = 1$

see also:
Muñoz & Loeb 1802.10094 (forthcoming in Nature)

Barkana et al., 1803.03091

Liu & Slatyer, 1803.09739
(Putative) EDGES Signal

see also:
Muñoz & Loeb
1802.10094 (forthcoming in Nature)
Barkana et al.,
1803.03091
Liu & Slatyer,
1803.09739
Outline

1. Astrophysical & Cosmological Implications
2. Future Directions
Early Univ. Production

\[A' \bar{\chi} \gamma X \]

\[\chi \bar{\chi} f \]

\[X \leftrightarrow Y \]

\[f \]

\[X \leftrightarrow f \]

\[X \leftrightarrow \bar{f} \]
Early Univ. Production

Annihilation: $\sigma v = \pi \alpha^2 \epsilon^2 / m x^2$

Diagram of particle interactions with arrows indicating $\epsilon \epsilon$, e, and X.
Annihilation: $\sigma v = \pi \alpha^2 \varepsilon^2/m_x^2$

Thermalized: $n_x \sigma v(T=m_x) \sim H(T=m_x) \Rightarrow \varepsilon > 10^{-7}(m_x/\text{GeV})^{1/2}$
Annihilation: $\sigma v = \pi \alpha^2 \epsilon^2 / m_X^2$

Thermalized: $n_X \sigma v(T=m_X) \sim H(T=m_X) \Rightarrow \epsilon > 10^{-7} (m_X/\text{GeV})^{1/2}$

Relic abundance: $\sigma v \approx \sigma_{\text{th}} (\epsilon/10^{-3})^2 / (m_X/\text{GeV})^2$
Early Univ. Production

Annihilation: $\sigma v = \pi \alpha^2 \epsilon^2 / m_X^2$

Thermalized: $n_X \sigma v(T=m_X) \sim H(T=m_X) \Rightarrow \epsilon > 10^{-7} (m_X/\text{GeV})^{1/2}$

Relic abundance: $\Omega_{\text{DM}} h^2 \approx 0.1 (m_X/\text{GeV})^2 / (\epsilon/10^{-3})^2$
Relic Density

Millicharged Dark Matter Fraction $f_{DM} = 1$

Relic Density

ϵ 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11} 10^{-12}

$m_X [\text{GeV}]$

EDGES

Equilibrated

0.001 0.01 0.1 1 10
Baryons should not scatter efficiently with dark matter at the time of CMB: $\Gamma_{Xp} < H_{\text{rec}}$
Baryons should not scatter efficiently with dark matter at the time of CMB:

$$\Gamma_{Xp} < H_{\text{rec}}$$
Rate of change of baryon temperature:

\[
\frac{\langle \frac{d}{dt} \delta T \rangle}{T} = \frac{4}{\sqrt{2\pi}} \frac{\rho_X \sigma_0 \mu_{Xp}^2}{3m_X m_B v_{\text{rel}}} \cdot \frac{1}{T} \approx \frac{4}{3\sqrt{2\pi}} \frac{\rho_X \sigma_0 \mu_{Xp}}{m_X + m_p} \left(\frac{\mu_{Xp}}{T^3} \right)^{1/2} \sim \frac{\epsilon^2}{(m_X + m_p) \sqrt{\mu_{Xp}}}.
\]

Dubovsky et al., hep-ph/0311189
& 1310.2376
McDermott, Yu, & Zurek 1011.2907
Rate of change of baryon temperature:

\[
\frac{\langle \frac{d}{dt} \delta T \rangle}{T} = \frac{4}{\sqrt{2\pi}} \frac{\rho_x \sigma_0 \mu_x^2}{3 m_X m_b v_{\text{rel}}} \cdot \frac{1}{T}
\]

\[
\approx \frac{4}{3} \frac{\rho_x \sigma_0 \mu_x}{m_X + m_p} \left(\frac{\mu_x}{T^3} \right)^{1/2} \approx \frac{\epsilon^2}{(m_X + m_p) \sqrt{\mu_x}}
\]

(warning — new work indicates this is too conservative)
CMB Bound

Millicharged Dark Matter Fraction $f_{DM} = 1$

Relic Density

EDGES

CMB, KD

Equilibrated

$m_x [\text{GeV}]$
$N_\nu > N_{\nu, SM}$ at time of SM nucleosynthesis injects entropy, screws up agreement w/ observation
$N_\nu > N_{\nu,SM}$ at time of SM nucleosynthesis injects entropy, screws up agreement w/ observation.
Cyburt et al, 1505.01076

Boehm et al, 1303.6270

$N_{\nu}>N_{\nu, SM}$ at time of SM nucleosynthesis injects entropy, screws up agreement w/ observation

Generically rules out $m_X \leq 10$ MeV
BBN

Millicharged Dark Matter Fraction $f_{DM} = 1$

ϵ vs m_X [GeV]

Relic Density

ΔN_{eff}

EDGES

CMB, KD

Equilibrated
Crash Course: SN1987A

Core collapse supernova in the LMC detected simultaneously in Jan 1987 with three instruments (Baksan, IMB, and Kamiokande II)

~ 99% of the difference in grav. binding energy radiated away in the form of neutrinos over ~ 10 seconds

(see my talk tomorrow for more details!)
Cooling phase is consistent with analytic expectation

...but wouldn’t be if a new “energy sink” competed with Standard Model processes

Limited amount of luminosity may be diverted to novel particles \iff bounds on new coupling with SM

(see my talk tomorrow for more details!)
Bounds (schematic)

\[
\epsilon_{pr}(m') \quad N_0 \text{ Trapping} \quad \epsilon_{tr}(m')
\]

Efficiently Produced

\[
\epsilon
\]

\[
L_\nu
\]

Efficiently Trapped

Thermal Emission
Bounds (schematic)

\[
\epsilon_{pr}(m') \quad \text{Efficiently Produced}
\]

\[
\epsilon_{tr}(m') \quad \text{Efficiently Trapped}
\]

\[
\text{Luminosity [arb. units]}
\]

\[
L_\nu\]

\[
\epsilon
\]

\[
n_0 \text{ Trapping}
\]

\[
\text{Thermal Emission}
\]

\[
\text{ruled out}
\]

1611.03864
EDGES Constraints

Millicharged Dark Matter Fraction $f_{DM} = 1$

ϵ vs. m_χ [GeV]

- Relic Density
- ΔN_{eff}
- EDGES
- CMB, KD
- SN1987A
- Equilibrated
Perhaps only a subdominant component of dark matter has a millicharge (the rest is cold, collisionless, etc)
Caveats?

Perhaps only a subdominant component of dark matter has a millicharge (the rest is cold, collisionless, etc)
Caveats?

Perhaps only a subdominant component of dark matter has a millicharge (the rest is cold, collisionless, etc)

\[f_{DM} = \frac{\Omega_{\text{millicharge}}}{\Omega_{\text{DM}}} \]
Caveats?

Perhaps only a subdominant component of dark matter has a millicharge (the rest is cold, collisionless, etc)

\[f_{\text{DM}} = \frac{\Omega_{\text{millicharge}}}{\Omega_{\text{DM}}} \]

- Preferred region, relic density curve, CMB bounds change
- BBN and SN don’t
Caveats?

Perhaps only a subdominant component of dark matter has a millicharge (the rest is cold, collisionless, etc)

\[f_{DM} \sim \Omega_{\text{millicharge}} / \Omega_{DM}^{3/4} \]

(Munoz and Loeb, 1802.10094)

- Preferred region, relic density curve, CMB bounds change
- BBN and SN don’t
Caveats?

Perhaps only a subdominant component of dark matter has a millicharge (the rest is cold, collisionless, etc)

$$f_{DM} = \frac{\Omega_{\text{millicharge}}}{\Omega_{\text{DM}}} \sim f^{1/2}$$

- Preferred region, relic density curve, CMB bounds change
- BBN and SN don’t
Caveats?

Perhaps only a subdominant component of dark matter has a millicharge (the rest is cold, collisionless, etc)

\[f_{DM} = \frac{\Omega_{\text{millicharge}}}{\Omega_{DM}} \sim f^{1/2} \]

- Preferred region, relic density curve, CMB bounds change
- BBN and SN don’t

http://www.solstation.com/x-objects/darkhalo.htm
EDGES Constraints

Millicharged Dark Matter Fraction $f_{DM} = 0.1$

- Relic Density
- ΔN_{eff}
- EDGES
- CMB, KD
- SN1987A
- Equilibrated
EDGES Constraints

Millicharged Dark Matter Fraction $f_{DM} = 0.1$

10% of $\Omega_{DM} \sim 50\%$ of Ω_b
10% of $\Omega_{DM} \sim 50\%$ of Ω_b

This is too large to be absorbed in the baryon budget at time of CMB...
Can some values of f_{DM} be accommodated?

10% of $\Omega_{DM} \sim 50\%$ of Ω_b

This is too large to be absorbed in the baryon budget at time of CMB… Can some values of f_{DM} be accommodated?
Ω_b: BBN vs. CMB

Cyburt et al, 1505.01076
Ω_b: BBN vs. CMB

If this is the true number of baryons
This can "secretly" include millicharged particles if this is the true number of baryons.
\(\Omega_b: \text{BBN vs. CMB} \)

Cyburt et al, 1505.01076

- If this is the true number of baryons, this can "secretly" include millicharged particles.

Approximately: \(10\% \Omega_b = 2\% \Omega_{DM} \)
Ω_b: BBN vs. CMB

$\sim 10\%$ $\Omega_b = \sim 2\%$ Ω_{DM}

If this is the true number of baryons, this can "secretly" include millicharged particles. No CMB bound below $f_{DM} \sim 2\%$.
\(\Omega_b: \text{BBN vs. CMB} \)

Cyburt et al, 1505.01076

\[
\rho_b = \frac{\Omega_b}{\Omega_{DM}} = \frac{2\%}{\sim 2\%} = 10\%
\]

If this is the true number of baryons, this can "secretly" include millicharged particles.

No CMB bound below \(f_{DM} \sim 2\% \)

1805.11616, de Putter et al.: “we derive a new upper limit on the fraction of tightly coupled dark matter...<0.6%”
EDGES Constraints

Millicharged Dark Matter Fraction $f_{DM} = 0.01$

ϵ vs $m_x [\text{GeV}]$

ΔN_{eff}

SN1987A

Equilibrated
EDGES Constraints

Millicharged Dark Matter Fraction $f_{DM} = 0.001$

ϵ

ΔN_{eff}

SN1987A

Equilibrated

$m_{\chi} \text{[GeV]}$
Outline

1. Astrophysical & Cosmological Signatures
2. Future Directions
EDGES, $f_{DM} = 1\%$

Millicharged Dark Matter Fraction $f_{DM} = 0.01$

ϵ vs $m_x [\text{GeV}]$

ΔN_{eff} and SN1987A regions on the graph.
EDGES, $f_{DM}=1\%$

What do we need to do to make this region work?
Implications of $f_{DM}=1\%$

1. Relic density via QED alone is problematic — how else to deplete thermal abundance?
Couple to New Force

Many possibilities, but some guidelines:
Couple to New Force

Many possibilities, but some guidelines:

• Shouldn’t couple to electrons
Couple to New Force

Many possibilities, but some guidelines:

- Shouldn’t couple to electrons
- Shouldn’t inject too much energy during cosmic dark ages
Couple to New Force

Many possibilities, but some guidelines:

• Shouldn’t couple to electrons
• Shouldn’t inject too much energy during cosmic dark ages
 • neutrinos
 • p-wave suppression
Couple to $L_{\mu}-L_{\tau}$

Scalar Millicharge χ with $L_{\mu} - L_{\tau}$, $g_{\chi} = 1$, $m_{V} = 3m_{\chi}$

$y = (g_{\chi}g_{\mu-\tau})^2(m_{\chi}/m_{V})^4$

$\chi\chi^* \rightarrow \bar{\nu}\nu, \mu^+\mu^-$

$(p -$ wave)
Implications of $f_{DM} = 1\%$

1. Relic density via QED alone is problematic — how else to deplete thermal abundance?

2. Thermal population introduced to SN1987A — how does this affect the eqn of state?
Muon creation in supernova matter facilitates neutrino-driven explosions

R. Bollig,¹ ² H.-T. Janka,¹ A. Lohs,³ G. Martínez-Pinedo,³ ⁴ C.J. Horowitz,⁵ and T. Melson¹
Muon creation in supernova matter facilitates neutrino-driven explosions

R. Bollig,¹,² H.-T. Janka,¹ A. Lohs,³ G. Martínez-Pinedo,³,⁴ C.J. Horowitz,⁵ and T. Melson¹

Inclusion of muons significantly effects explodability (Bollig et al. 2017)

Kotake et al 1801.02703
Implications of $f_{\text{DM}}=1\%$

1. Relic density via QED alone is problematic — how else to deplete thermal abundance?

2. Thermal population introduced to SN1987A — how does this affect the eqn of state?

3. Primordial millicharged particles are evacuated from the disk — is any DD possible?
Reopening the window on charged dark matter

Leonid Chuzhoy
Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis, Chicago, IL 60637, USA; chuzhoy@oddjob.uchicago.edu

Edward W. Kolb
Department of Astronomy and Astrophysics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, The University of Chicago, 5640 S. Ellis, Chicago, IL 60637, USA

ABSTRACT: We reexamine the limits on charged dark matter particles. We show that if their mass and charge fall in the range $100(q_X/e)^2 \lesssim m_X \lesssim 10^8(q_X/e)$ TeV, then magnetic fields prevent particles in the halo from entering the galactic disk, while those initially trapped inside are accelerated through the Fermi mechanism and ejected within about 0.1 – 1 Gyrs. Consequently, previous constraints on charged dark matter based on terrestrial non-observation are invalid within that range. ...
EDGES Constraints

Millicharged Dark Matter Fraction $f_{DM} = 0.01$

ϵ vs. m_x [GeV]

EDGES

ΔN_{eff}

SN1987A

B field

Equilibrated
DD for 1% of Ω_{DM}

- Such particles are evacuated from the disk…
DD for 1% of Ω_{DM}

- Such particles are evacuated from the disk...
- ...but supernovae are hot!
DD for 1% of Ω_{DM}

• Such particles are evacuated from the disk…

• …but supernovae are hot!

• Do more appear? What is their phase space? What do they look like at DD experiments?

 • Boosted DM (Agashe et al., 1405.7370)

 • Marques-Tavares et al., in prep
Implications of $f_{\text{DM}} = 1\%$

1. Relic density via QED alone is problematic — how else to deplete thermal abundance?

2. Thermal population introduced to SN1987A — how does this affect the eqn of state?

3. Primordial millicharged particles are evacuated from the disk — is any DD possible?

4. We’ve “already seen” DM in the CMB power spectrum — CMB S4 or BBN improvement?
Different rates, different moments of the Boltzmann equation:

\[\Gamma \simeq n\langle \sigma v \rangle, \]
\[\langle \delta \dot{p} \rangle \simeq \mu n\langle \sigma v^2 \rangle, \]
\[m\langle \delta \dot{T} \rangle \simeq \mu^2 n\langle \sigma v^3 \rangle \]
Changing T (2nd moment of Boltzmann eq):

$$\frac{\langle \frac{d}{dt} \delta T \rangle}{T} = \frac{4}{\sqrt{2\pi}} \frac{\rho X \sigma_0 \mu^2_{Xp}}{3 m_X m_b \nu_{\text{rel}}} \cdot \frac{1}{T_b} \approx \frac{4}{3 \sqrt{2\pi}} \frac{\rho X \sigma_0 \mu_{Xp}}{m_X + m_p} \left(\frac{m_p}{T_p^3} \right)^{1/2}$$

Changing p (1st moment of Boltzmann eq):

$$\frac{\langle \frac{d}{dt} |\delta \vec{p}| \rangle}{\langle |\vec{p}| \rangle} = \frac{2}{3 \sqrt{2\pi}} \frac{\rho X \sigma_0}{m_X + m_p} \left(\frac{m_p}{T_p} \right)^{3/2}$$
Changing T (2nd moment of Boltzmann eq):

Changing p (1st moment of Boltzmann eq):

\[
\begin{align*}
\text{cross section } \sigma_p \text{ [cm}^2]\end{align*}
\]

\[
\begin{align*}
\text{particle mass } m_\chi \text{ [GeV]\end{align*}
\]

V. Gluscevic, private comm.

- Scaling from momentum exchange
- Scaling from heat exchange
- Scaling $(m_p + m_\chi)$
Millicharged particles don’t look exactly like SM fermions — increased precision at high multipoles may be able to distinguish real baryons from DM in the damping tail.
Conclusions

• EDGES has possibly detected evidence of dark matter scattering off baryons during the epoch of structure formation

• If it did, it’s not “minimal” — a rich structure of auxiliary interactions and signals awaits

• We’ll learn (a lot) more (fairly) soon
Conclusions

• EDGES has possibly detected evidence of dark matter scattering off baryons during the epoch of structure formation

• If it did, it’s not “minimal” — a rich structure of auxiliary interactions and signals awaits

• We’ll learn (a lot) more (fairly) soon

What we find could surprise us!