Overview of the DUNE Experiment

Jianming Bian
For the DUNE Collaboration
University of California, Irvine
05-31-2018

CIPANP18, Palm Springs, California
• New beam at Fermilab (1.07 MW@80 GeV protons, upgradeable to 2.14 MW), 1300 km baseline
• On-Axis 40 kton Liquid Argon Time Projection Chamber (LArTPC) Far Detector at Sanford Underground Research Facility, South Dakota, 1.5 km underground
• Highly-capable near detector at Fermilab
• ν_e appearance and ν_μ disappearance \Rightarrow Measure MH, CPV and mixing angles
• Large detector, deep underground \Rightarrow Nucleon decay, supernova burst neutrinos, atmospheric neutrinos, etc
DUNE Collaboration

1000+ collaborators from 175 institutions in 30 nations
Long Baseline Neutrino Facility (LBNF)

- 60-120 GeV protons from Fermilab Main Injector
- Wide energy spectrum covers the 1st and 2nd oscillation maxima
- Initial upward pitch, 101 mrad pitch to get to S. Dakota
- Near Detector Hall at edge of Fermilab site
- Initially 1.07 MW @ 80GeV, upgradeable to 2.14 MW
- Reference design similar to NuMI, optimized to improve sensitivity to oscillation measurements
Sanford Underground Research Facility (SURF), Lead, S. Dakota

- In the Homestake gold mine
- Home of Ray Davis’s solar neutrino experiment
- 4 caverns for detector and one utility hall for DUNE
- Begin excavation for the first two caverns in FY2017
- Blast vibration study has been done

DUNE facility, 4850 ft (4300 mwe)
SURF groundbreaking

Ceremony held 21st July, 2017 at the 4850 ft (4300 mwe) level
Far Detectors: Liquid Argon Time Projection Chamber (LArTPC)

- High resolution 3D track reconstruction
 - Charged particle tracks ionize argon atoms
 - Ionized electrons drift to anode wires (~ms) for XY-coordinate
 - Electron drift time projected for Z-coordinate
- Argon scintillation light (~ns) detected by photon detectors, providing t_0
Far Detector: Single-Phase LArTPC

- Anode wires immersed in LAr
- Anode and Cathode Plane Assemblies (APA, CPA) suspended from ceiling
- Drift distance: 3.6 m, wire pitch: 5 mm
- Induction wires $\pm 37.7^\circ$ to collection wires, wrapped around APA
- Photon detectors: light guides+SiPMs, embedded in APAs
Far Detector: Dual-Phase LArTPC

- Electrons extracted from LAr to gaseous volume
- Signal amplified by Large Electron Multiplier (LEM) in gas phase
- Charge collected and recorded on 2-D segmented anode
- Drift distance: 12 m (vertical)
- Better Signal/Noise
- Photon detectors: PMT below cathode

S. Murphy, https://indico.cern.ch/event/649662/
ProtoDUNE at CERN

- Two prototype TPCs under construction at CERN
 - One single phase and one dual phase
 - 770 t LAr mass each
 - Exposed to H2 (DP) and H4 (SP) testbeams at CERN

- Strategic Goals
 - Prototyping production and installation procedures
 - Validating the design from basic detector performance
 - Accumulating large test-beam data for detector response understanding/calibration
 - Demonstrating long-term operational stability
ProtoDUNE measurements

- Momentum-dependent beam composition contains $e, K^\pm, \mu, p, \pi^\pm$
- π^\pm / p
 - Validate simulation, reconstruction, particle ID
 - π^+ / π^- differences
 - π^0 production
 - Interaction cross sections
- e
 - e/γ separation
 - EM shower reconstruction
- μ
 - Michel electron reconstruction
 - dE/dx calibration and validation
 - μ^- capture on Ar

Simulation of neutrino-induced particle rates in the DUNE far detector.

ProtoDUNE design/program motivated by far detector physics.
Both ProtoDUNE cryostats and their beamlines are located near to each other in the EHN1 building at CERN
ProtoDUNE status

Components are being constructed and shipped to CERN

Construction is taking place in EHN1 at CERN
ProtoDUNE status

Detector installation under way

On track for 2018 data taking
Near Detector

- Constrain systematic error for FD oscillation measurements
- High-precision cross-section/short-baseline measurements
- Hall location
 - 574 m from LBNF target
 - ~60 m underground
- Designs being investigated
 - Liquid argon TPC (LArTPC)
 - High pressure gas TPC (HPgTPC)
 - Scintillator tracker (3DST)
 - Straw tube tracker (STT)

Final decision hasn’t been made yet
DUNE Plan and Strategy

- 2017: Far site construction begins
- 2018: Start to operate full-scale ProtoDUNE-SP/DP at CERN
- 2019: DUNE Technical Design Report (TDR) ready for funding agencies:
 - 2019: Main Cavern Excavation
 - 2020: Far Detector fabrication facilities ready
 - 2022: Start to install FD modules
 - 2026: Beam on with two FD modules
\(\nu_e \) appearance

\[
P(\nu_\mu \rightarrow \nu_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2 (A - 1)\Delta}{(A - 1)^2}
\]

\[
+ 2\alpha \sin \theta_{13} \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta \sin (A - 1)\Delta}{A} \frac{\cos \Delta}{(A - 1)}
\]

\[
- 2\alpha \sin \theta_{13} \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta \sin (A - 1)\Delta}{A} \frac{\sin \Delta}{(A - 1)}
\]

\[
\alpha = \frac{\Delta m^2_{21}}{\Delta m^2_{31}} \quad \Delta = \frac{\Delta m^2_{31} L}{4E} \quad A = +G_f N_e \frac{L}{\sqrt{2\Delta}}
\]

- DUNE measures \(\nu_e \) appearance probability and \(\nu_\mu \) disappearance probability with \(\nu_u \) and anti-\(\nu_u \) beam.
- \(\nu_e \) appearance: mass hierarchy, \(\delta_{CP} \) and octant of \(\theta_{23} \)
- \(\nu_\mu \) disappearance: high precision \(|\Delta m^2_{32}|\) and \(\sin^2 2\theta_{23}\), constrain octant
Neutrino Oscillation at DUNE

- Measure Mass Hierarchy, CP violation and mixing angles with neutrino and anti-neutrino beam
- 1300km baseline: large matter effect to solve MH
- Wide band beam covers 1st and 2nd oscillation maxima
Neutrino Oscillation at DUNE

- Measure Mass Hierarchy, CP violation and mixing angles with neutrino and anti-neutrino beam
- 1300km baseline: large matter effect to solve MH
- Wide band beam covers 1st and 2nd oscillation maxima
From previous neutrino experiments:

- $\sin^2 2\theta_{12}$, $\sin^2 2\theta_{13}$ and $\sin^2 2\theta_{23}$ have been measured.
- Δm^2_{21} and $|\Delta m^2_{32}|$ have been measured.
- Best fit for δ_{CP} close to $3\pi/2$ and can exclude some regions.

Octant of θ_{23} is unclear, affects mass-hierarchy determination and δ_{CP} sensitivity.
DUNE/LBNF Staging Assumption

Year 1 (2026): 20-kt FD with 1.07 MW (80-GeV) beam and initial ND constraints
Year 2 (2027): 30-kt FD
Year 4 (2029): 40-kt FD and improved ND constraints
Year 7 (2032): upgrade to 2.14 MW (80-GeV) beam

<table>
<thead>
<tr>
<th>Exposure Years</th>
<th>Number of FD modules</th>
<th>Total FD target mass (kt)</th>
<th>LBNF beam power (MW)</th>
<th>Exposure (kt MW yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>20</td>
<td>1.07</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>30</td>
<td>1.07</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>40</td>
<td>1.07</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>40</td>
<td>2.14</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>40</td>
<td>2.14</td>
<td>556</td>
</tr>
</tbody>
</table>

Staging scenario assumes equal ν and $\bar{\nu}$ running time
Mass Hierarchy Sensitivity

MH sensitivity vs. years

\[\sqrt{\chi^2} \]

Years

\[\theta_{23} \text{ NuFit 2016 (90\% C.L. range)} \]

\[\sin^2 \theta_{13} = 0.085 \pm 0.003 \]

\[\sin^2 \theta_{23} = 0.441 \pm 0.042 \]

MH sensitivity @ year 10

\[\sigma = \sqrt{\chi^2} \]

\[\delta_{\text{CP}} / \pi \]

Bands corresponds to uncertainty in \(\theta_{23} \)

Expect 5\(\sigma \) within 10 years for all \(\delta_{\text{CP}} \)
CP Sensitivity

CP violation sensitivity vs. years

Bands correspond to uncertainty in θ_{23}

CP violation sensitivity @ year 10

CP violation defined as $\delta_{CP} \neq 0, \pi$
\(\delta_{CP} \) resolution sensitivity vs. years

- Bands correspond to uncertainty in \(\theta_{23} \)

Octant sensitivity

- Bands correspond to uncertainty in \(\delta_{CP} \)

\[
\sin^2 \theta_{13} = 0.085 \pm 0.003 \\
\sin^2 \theta_{23} = 0.441 \pm 0.042
\]
Supernova Neutrino Burst

- High-statistics observation of SNB neutrinos for astrophysics and neutrino physics
- Dominant process in LAr: $\nu_e + ^{40}\text{Ar} \rightarrow e + ^{40}\text{K}^*$, sensitive to neutronization
- Elastic scattering could provide directionality
- For \sim10 kpc, Expect \sim3,000 in 10 seconds

ES: ν-e Elastic Scattering

Expected number of SN neutrino interactions vs. distance

Number of SN neutrinos vs. time
Atmospheric neutrinos

- 14,000 ν_e and 20,000 ν_μ events expected in 350 kt yrs
- Atmospheric neutrinos provide their own sensitivity to neutrino oscillation physics
Proton decay

- Measurements of proton decay can test baryon number conservation
- GUTs predict proton decay modes and rates
- DUNE FD for proton decay: Large volume, deep underground, superior K reconstruction, sensitive to $p \rightarrow \nu K$
- Complementary to Hyper-K and JUNO

Fully reconstructed simulation of $p \rightarrow \bar{\nu} K^+$

Each pane is a 2D projection of the 3D reconstruction
\(n - \bar{n} \) oscillation

- BSM process that violates baryon number
- ‘Star’ event topology consists of charged and neutral pions
- Convolutional Neural networks being investigated to identify \(n - \bar{n} \) oscillation over dominant atmospheric neutrino background
Summary

• DUNE Collaboration has been established as an international scientific priority
• DUNE/LBNF project: detailed plan for the LArTPC FD and the neutrino beam, ND design under development
• Far site groundbreaking 7/21/2017, construction underway
• ProtoDUNEs at CERN start to take data this year
• Decisive measurements to CP violation, Mass Hierarchy and Octant of θ_{23}
• Also Nucleon decay, Astroparticle physics, BSM ...