NEUTRINO OSCILLATION RESULTS FROM THE T2K EXPERIMENT
THE TOKAI-TO-KAMIOKA EXPERIMENT

• First observation of electron-neutrino appearance in a muon-neutrino beam in 2013

• World-leading precision on θ_{23}, Δm_{32}^2 and most stringent constraint on leptonic CP violation.

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

\[
(L/E)^{-1}_{T2K} \approx \Delta m_{atm}^2
\]
NEUTRINO OSCILLATIONS AT T2K

\(\nu_\mu \) Disappearance

- Sensitivity to \(|\Delta m^2_{32}| \) and \(\theta_{23} \).
- Is \(\theta_{23} = 45^\circ \)? If not, what octant?
 - Maximal mixing might indicate underlying symmetry.
- Test CPT invariance: \(P(\nu_\mu \to \nu_\mu) \neq P(\bar{\nu}_\mu \to \bar{\nu}_\mu) \)?

\(\nu_e \) Appearance

- Sensitivity to \(\theta_{13}, \delta_{CP}, \theta_{23} \) octant and mass hierarchy through matter effect.
- If \(\delta_{CP} \) not 0 or \(\pi \), CP symmetry is violated in lepton sector.
- \(P(\nu_\mu \to \nu_e) \) enhanced if hierarchy is normal or \(\delta_{CP} \sim -\pi/2 \)
- \(P(\bar{\nu}_\mu \to \bar{\nu}_e) \) enhanced if hierarchy is inverted or \(\delta_{CP} \sim \pi/2 \)
- With the T2K flux, matter effect (\(\propto E \)) is smaller than \(\delta_{CP} \).
 - Complementarity with NOvA, which has similar \(L/E \) but larger \(L \) and \(E \).
Protons are extracted from the J-PARC 30 GeV Main Ring onto a graphite target via the superconducting primary beamline.

π^\pm focused by three magnetic horns and allowed to decay into μ^\pm and $\nu_\mu (\bar{\nu}_\mu)$

- Horn polarity determines charge of the focused π^\pm and helicity of neutrinos in the Earth frame.

Muon detectors downstream of beam dump monitor beamline stability.
T2K $\nu_\mu (\bar{\nu}_\mu)$ FLUX

- Very low $\nu_e (\bar{\nu}_e)$ contamination. Less than 1% near oscillation maximum.
 - Irreducible background to $\nu_e (\bar{\nu}_e)$ appearance.
- Wrong sign contamination more significant in antineutrino mode.
FAR DETECTOR $\nu_\mu (\bar{\nu}_\mu)$ FLUX UNCERTAINTIES

- Flux uncertainties dominated by hadron interaction in the target.
 - Constrained by external measurements at NA61/SHINE.
 - See Y. Nagai’s presentation Thursday afternoon.
 - Prior to T2K near detector constraint, absolute flux uncertainties are $\sim 10\%$.
 - Significant cancellation in near-to-far oscillation analysis extrapolation.
INGRID: on axis

- Plastic scintillator and iron neutrino detectors arranged in a grid perpendicular to beam axis.
- Beam stability monitoring with direction and rate measurements.

ND280: 2.5° off-axis

- Detectors in 0.2 T field generated by repurposed UA1/NOMAD magnet.
 - Identify μ^-/μ^+ from $\nu/\bar{\nu}$ interactions.
- Dedicated π^0 detector.
- Tracker composed of two plastic scintillator fine-grained detectors (FGDs) and three time projection chambers (TPCs).
- Plastic and water targets.
SUPER-KAMIOKANDE

- 50 kiloton water-Cherenkov detector.
- Optically separated outer detector for tagging entering/escaping particles.
- ~11000 20” photomultiplier tubes (PMTs) facing the inner detector giving a photocathode coverage of 40%.
- ~2000 8” PMTs in the outer detector.
- Measure momentum and direction of particles above Cherenkov threshold.
 - Excellent μ^\pm/e^\pm separation.
 - No charge selection.
SUPER-KAMIOKANDE SAMPLES

- Hadronic system typically below Cherenkov threshold.
- Signal samples use single-ring events.
- Infer neutrino energy from lepton p and θ_{beam}.

C. Vilela CIPANP 2018
SUPER-KAMIOKANDE SAMPLES

- New sample since summer 2016.
- π^+ below Cherenkov threshold.
 - Infer from μ^+ decay electron.
- Only neutrino mode e-like.
Five samples at Super-K, targeting:
- Charged-current quasi-elastic interactions.
- Charged-current resonant π production.

Backgrounds are neutral current π production.
- $\pi^0 \rightarrow \gamma\gamma$ misidentified as e
- $\pi^+ \rightarrow \mu^+$ misidentified as μ
SUPER-K EVENT RECONSTRUCTION

- New event reconstruction algorithm for Super-K.
- Previously used only for neutral current π^0 background rejection.
- Maximum-likelihood estimation using all the information in an event, including unhit PMTs.
- Likelihood ratios used to compare event hypotheses.
- Improved particle identification, ring-counting, momentum, vertex and direction resolutions.
- New μ / π^+ separation.
- Optimize fiducial volume and neutral current rejection criteria for new event reconstruction.
 - Neutral current rejection criteria chosen for optimal sensitivity to oscillation parameters by running simplified oscillation analysis.
FIDUCIAL VOLUME OPTIMIZATION

• In previous T2K results vertices were required to be > 2 m away from the nearest wall.

• For new event selection, fiducial volume defined as a function of:
 • wall: reduces background due to particles entering the detector;
 • towall: ensures adequate number of PMTs sample the ring, improving reconstruction quality.

• Both wall and towall are optimized in a fit to Super-K atmospheric neutrino data, taking into account statistical gains and systematic uncertainties.
FIDUCIAL VOLUME OPTIMIZATION

• Optimize figure of merit that enhances events that change significantly under oscillations:

\[FOM = \frac{(\partial N/\partial \theta)^2}{N + \sigma_{\text{syst}}^2}, \text{ with } \theta = \delta_{CP}, \theta_{23} \]

• Cut points are optimized for each of the five analysis samples separately.
IMPROVEMENTS FROM NEW SELECTION

<table>
<thead>
<tr>
<th>Sample</th>
<th>Candidates</th>
<th>Purity</th>
<th>Candidates</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν μ-like, ≤ 1 decay-e</td>
<td>261.6</td>
<td>79.7%</td>
<td>268.7</td>
<td>68.1%</td>
</tr>
<tr>
<td>ν e-like, 0 decay-e</td>
<td>69.5</td>
<td>81.2%</td>
<td>56.5</td>
<td>81.4%</td>
</tr>
<tr>
<td>ν e-like, 1 decay-e</td>
<td>6.9</td>
<td>78.8%</td>
<td>5.6</td>
<td>72.0%</td>
</tr>
<tr>
<td>$\bar{\nu}$ μ-like, ≤ 1 decay-e</td>
<td>62.0</td>
<td>79.7%</td>
<td>65.4</td>
<td>70.5%</td>
</tr>
<tr>
<td>$\bar{\nu}$ e-like, 0 decay-e</td>
<td>7.6</td>
<td>62.0%</td>
<td>6.1</td>
<td>63.7%</td>
</tr>
</tbody>
</table>

- μ-like samples: improved **purity** by reducing neutral current background.
IMPROVEMENTS FROM NEW SELECTION

<table>
<thead>
<tr>
<th>Sample</th>
<th>New selection</th>
<th>Old selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Candidates</td>
<td>Purity</td>
</tr>
<tr>
<td>ν</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ-like, ≤ 1 decay-e</td>
<td>261.6</td>
<td>79.7%</td>
</tr>
<tr>
<td>e-like, 0 decay-e</td>
<td>69.5</td>
<td>81.2%</td>
</tr>
<tr>
<td>e-like, 1 decay-e</td>
<td>6.9</td>
<td>78.8%</td>
</tr>
<tr>
<td>$\bar{\nu}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ-like, ≤ 1 decay-e</td>
<td>62.0</td>
<td>79.7%</td>
</tr>
<tr>
<td>e-like, 0 decay-e</td>
<td>7.6</td>
<td>62.0%</td>
</tr>
</tbody>
</table>

- μ-like samples: improved **purity** by reducing neutral current background.
- e-like, 0 decay-e samples: increase **efficiency** by $>20\%$ while keeping previous selection’s purity.
Improvements from New Selection

<table>
<thead>
<tr>
<th>Sample</th>
<th>New selection</th>
<th>Old selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Candidates</td>
<td>Purity</td>
</tr>
<tr>
<td>ν</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ-like, ≤ 1 decay-e</td>
<td>261.6</td>
<td>79.7%</td>
</tr>
<tr>
<td>e-like, 0 decay-e</td>
<td>69.5</td>
<td>81.2%</td>
</tr>
<tr>
<td>e-like, 1 decay-e</td>
<td>6.9</td>
<td>78.8%</td>
</tr>
<tr>
<td>$\bar{\nu}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ-like, ≤ 1 decay-e</td>
<td>62.0</td>
<td>79.7%</td>
</tr>
<tr>
<td>e-like, 0 decay-e</td>
<td>7.6</td>
<td>62.0%</td>
</tr>
</tbody>
</table>

- μ-like samples: improved **purity** by reducing neutral current background.
- e-like, 0 decay-e samples: increase **efficiency** by $>20\%$ while keeping previous selection’s purity.
- e-like, 1 decay-e sample: improvement in **purity** from better particle identification and increased **efficiency** from fiducial volume expansion.
DATA TAKING

• Stable accelerator operation with 470 kW beam power.
 • Neutrino-mode data doubled in one year of data taking!

• Up to December 2017 a total of \(2.65 \times 10^{21} \) protons on target (POT) have been collected.
 • Doubled antineutrino-mode data, in total: 60% in neutrino-mode and 40% in anti-neutrino mode.
 • Keep an eye out for results at Neutrino 2018!

Data included in results presented today:
\[2.25 \times 10^{21} \text{ POT } \left(\frac{2}{3} \nu\text{-mode}, \frac{1}{3} \bar{\nu}\text{-mode} \right) \]
OSCILLATION ANALYSIS STRATEGY

NA61/SHINE hadron production measurements

INGRID/Beam monitor DATA

External cross-section measurements

Flux model

Near detector model

Cross-section model

Far detector model

Near Detector Fit

Far Detector Fit

Combined Oscillation Fit

ND280 DATA

Super-K DATA

Oscillation parameters

ND + FD Bayesian analysis

ND → FD Frequentist analysis
NEAR DETECTOR FIT

- Fourteen near detector samples are used to constrain flux and cross-section model.
 - For ν-mode: charged current with: 0 π; 1π^+; or other particles.
 - Single-track and multi-track charged current with μ^+ or μ^- for $\bar{\nu}$-mode.
 - Seven samples for each FGD.
After fit to near detector samples, flux and cross-section uncertainties at far detector reduced from ~15% to ~5%.

Good fit to the data.

p-value: 0.47
FAR DETECTOR DATA

ν_μ Disappearance

$\nu_-mode\mu-like$

$\nu_-mode\mu-like$

$\nu_-mode\mu-like$

$\nu_-mode\mu-like$

ν_e Appearance

$\nu_-mode\mu-like$

$\nu_-mode\mu-like$
% Errors on predicted event rate at Super-K

<table>
<thead>
<tr>
<th>Error Source</th>
<th>ν-mode</th>
<th>$\bar{\nu}$-mode</th>
<th>ν-mode</th>
<th>$\bar{\nu}$-mode</th>
<th>ν-mode 1 dcy-e</th>
<th>$\nu/\bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Detector</td>
<td>2.41</td>
<td>2.02</td>
<td>2.85</td>
<td>2.83</td>
<td>13.26</td>
<td>1.47</td>
</tr>
<tr>
<td>SK final state and secondary interactions</td>
<td>2.21</td>
<td>1.99</td>
<td>3.03</td>
<td>2.34</td>
<td>11.51</td>
<td>1.57</td>
</tr>
<tr>
<td>ND280-constrained flux and cross section</td>
<td>3.25</td>
<td>2.74</td>
<td>3.24</td>
<td>2.90</td>
<td>4.08</td>
<td>2.50</td>
</tr>
<tr>
<td>$\sigma(\nu_e)/\sigma(\nu_\mu)$, $\sigma(\bar{\nu}e)/\sigma(\bar{\nu}\mu)$</td>
<td>0.00</td>
<td>0.00</td>
<td>2.64</td>
<td>1.45</td>
<td>2.63</td>
<td>3.04</td>
</tr>
<tr>
<td>NC1γ</td>
<td>0.00</td>
<td>0.00</td>
<td>1.08</td>
<td>2.60</td>
<td>0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>NC Other</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.33</td>
<td>0.98</td>
<td>0.18</td>
</tr>
<tr>
<td>Binding energy</td>
<td>2.42</td>
<td>1.73</td>
<td>7.27</td>
<td>3.70</td>
<td>2.99</td>
<td>3.71</td>
</tr>
<tr>
<td>Total Systematic Error</td>
<td>5.07</td>
<td>4.32</td>
<td>8.81</td>
<td>7.02</td>
<td>18.41</td>
<td>5.87</td>
</tr>
</tbody>
</table>

- Largest uncertainties are the Super-K detector modelling and π interaction modelling, both for the e-like events with one decay electron.
Systematic Uncertainties

% Errors on predicted event rate at Super-K

<table>
<thead>
<tr>
<th>Error Source</th>
<th>ν-mode</th>
<th>$\bar{\nu}$-mode</th>
<th>ν-mode</th>
<th>$\bar{\nu}$-mode</th>
<th>ν-mode 1 dcy-(e)</th>
<th>$\nu/\bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Detector</td>
<td>2.41</td>
<td>2.02</td>
<td>2.85</td>
<td>2.83</td>
<td>13.26</td>
<td>1.47</td>
</tr>
<tr>
<td>SK final state and secondary interactions</td>
<td>2.21</td>
<td>1.99</td>
<td>3.03</td>
<td>2.34</td>
<td>11.51</td>
<td>1.57</td>
</tr>
<tr>
<td>ND280-constrained flux and cross section</td>
<td>3.25</td>
<td>2.74</td>
<td>3.24</td>
<td>2.90</td>
<td>4.08</td>
<td>2.50</td>
</tr>
<tr>
<td>$\sigma(\nu_e)/\sigma(\nu_\mu)$</td>
<td>0.00</td>
<td>0.00</td>
<td>2.64</td>
<td>1.45</td>
<td>2.63</td>
<td>3.04</td>
</tr>
<tr>
<td>$\sigma(\bar{\nu}e)/\sigma(\bar{\nu}\mu)$</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC1(\gamma)</td>
<td>0.00</td>
<td>0.00</td>
<td>1.08</td>
<td>2.60</td>
<td>0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>NC Other</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.33</td>
<td>0.98</td>
<td>0.18</td>
</tr>
<tr>
<td>Binding energy</td>
<td>2.42</td>
<td>1.73</td>
<td>7.27</td>
<td>3.70</td>
<td>2.99</td>
<td>3.71</td>
</tr>
<tr>
<td>Total Systematic Error</td>
<td>5.07</td>
<td>4.32</td>
<td>8.81</td>
<td>7.02</td>
<td>18.41</td>
<td>5.87</td>
</tr>
</tbody>
</table>

- No precise measurement of $\nu_e(\bar{\nu}_e)$ interactions in the near detector.
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Error Source</th>
<th>ν-mode</th>
<th>$\bar{\nu}$-mode</th>
<th>ν-mode</th>
<th>$\bar{\nu}$-mode</th>
<th>ν-mode 1 dcy-e</th>
<th>ν/$\bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Detector</td>
<td>2.41</td>
<td>2.02</td>
<td>2.85</td>
<td>2.83</td>
<td>13.26</td>
<td>1.47</td>
</tr>
<tr>
<td>SK final state and secondary interactions</td>
<td>2.21</td>
<td>1.99</td>
<td>3.03</td>
<td>2.34</td>
<td>11.51</td>
<td>1.57</td>
</tr>
<tr>
<td>ND280-constrained flux and cross section</td>
<td>3.25</td>
<td>2.74</td>
<td>3.24</td>
<td>2.90</td>
<td>4.08</td>
<td>2.50</td>
</tr>
<tr>
<td>$\sigma(\nu_e)/\sigma(\nu_\mu), \sigma(\bar{\nu}e)/\sigma(\bar{\nu}\mu)$</td>
<td>0.00</td>
<td>0.00</td>
<td>2.64</td>
<td>1.45</td>
<td>2.63</td>
<td>3.04</td>
</tr>
<tr>
<td>NC1γ</td>
<td>0.00</td>
<td>0.00</td>
<td>1.08</td>
<td>2.60</td>
<td>0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>NC Other</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.33</td>
<td>0.98</td>
<td>0.18</td>
</tr>
<tr>
<td>Binding energy</td>
<td>2.42</td>
<td>1.73</td>
<td>7.27</td>
<td>3.70</td>
<td>2.99</td>
<td>3.71</td>
</tr>
<tr>
<td>Total Systematic Error</td>
<td>5.07</td>
<td>4.32</td>
<td>8.81</td>
<td>7.02</td>
<td>18.41</td>
<td>5.87</td>
</tr>
</tbody>
</table>

- No near detector constraint on neutral current modes.
- Uncertainty based on modelling and external data.
SYSTEMATIC UNCERTAINTIES

<table>
<thead>
<tr>
<th>Error Source</th>
<th>ν-mode</th>
<th>$\bar{\nu}$-mode</th>
<th>ν-mode</th>
<th>$\bar{\nu}$-mode</th>
<th>ν-mode 1 dcy-e</th>
<th>$\nu/\bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Detector</td>
<td>2.41</td>
<td>2.02</td>
<td>2.85</td>
<td>2.83</td>
<td>13.26</td>
<td>1.47</td>
</tr>
<tr>
<td>SK final state and secondary interactions</td>
<td>2.21</td>
<td>1.99</td>
<td>3.03</td>
<td>2.34</td>
<td>11.51</td>
<td>1.57</td>
</tr>
<tr>
<td>ND280-constrained flux and cross section</td>
<td>3.25</td>
<td>2.74</td>
<td>3.24</td>
<td>2.90</td>
<td>4.08</td>
<td>2.50</td>
</tr>
<tr>
<td>$\sigma(\nu_e)/\sigma(\nu_\mu), \sigma(\bar{\nu}e)/\sigma(\bar{\nu}\mu)$</td>
<td>0.00</td>
<td>0.00</td>
<td>2.64</td>
<td>1.45</td>
<td>2.63</td>
<td>3.04</td>
</tr>
<tr>
<td>NC1γ</td>
<td>0.00</td>
<td>0.00</td>
<td>1.08</td>
<td>2.60</td>
<td>0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>NC Other</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.33</td>
<td>0.98</td>
<td>0.18</td>
</tr>
<tr>
<td>Binding energy</td>
<td>2.42</td>
<td>1.73</td>
<td>7.27</td>
<td>3.70</td>
<td>2.99</td>
<td>3.71</td>
</tr>
<tr>
<td>Total Systematic Error</td>
<td>5.07</td>
<td>4.32</td>
<td>8.81</td>
<td>7.02</td>
<td>18.41</td>
<td>5.87</td>
</tr>
</tbody>
</table>

- Binding energy range based on A. Bodek (arXiv:1801.07975), motivated by electron scattering data.
- Size of effect estimated by running oscillation analyses on simulated data.
• Fit under normal and inverted hierarchy assumptions separately.
• Apply constraint on θ_{13} from reactor experiments.
• T2K data consistent with maximal mixing.
• Closed contours at 90% CL in δ_{CP} for fit without external θ_{13} constraints.

• T2K best fit consistent with PDG 2016.
 • T2K: $\sin^2 \theta_{13} = 0.0279^{+0.0064}_{-0.0048}$ (NH)
 • PDG 2016: $\sin^2 \theta_{13} = 0.0210 \pm 0.0011$
• Best-fit point: -1.83 radian in Normal Hierarchy
• CP conserving values are outside of the 2σ CL intervals.

<table>
<thead>
<tr>
<th></th>
<th>NH</th>
<th>IH</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% CL</td>
<td>[-2.82, -0.85]</td>
<td>∅</td>
</tr>
<tr>
<td>2σ CL</td>
<td>[-2.99, -0.59]</td>
<td>[-1.81, -1.01]</td>
</tr>
</tbody>
</table>
θ_{23} OCTANT AND MASS HIERARCHY

- Look at posterior probability from Bayesian analysis to infer T2K data preference for θ_{23} octant and mass hierarchy.
- Equal prior probability given to all hypotheses.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>$\sin^2\theta_{23} < 0.5$</th>
<th>$\sin^2\theta_{23} > 0.5$</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH ($\Delta m_{32} > 0$)</td>
<td>0.191</td>
<td>0.681</td>
<td>0.872</td>
</tr>
<tr>
<td>IH ($\Delta m_{32} < 0$)</td>
<td>0.024</td>
<td>0.104</td>
<td>0.128</td>
</tr>
<tr>
<td>Sum</td>
<td>0.216</td>
<td>0.784</td>
<td></td>
</tr>
</tbody>
</table>

- Data shows weak preference for *normal* hierarchy and upper octant.
PLANS FOR AN EXTENDED T2K RUN

- T2K originally approved to take 7.8×10^{21} POT (~2021).
- T2K-II: proposal to extend T2K running to 20×10^{21} POT (~2026). arxiv:1609:04111
- Sensitivity to exclude CP conserving values of δ_{CP} at 3σ within reach if δ_{CP} is near current best fit.
- Analysis improvements foreseen to increase sensitivity by 50% compared to 2016 results.
 - 30% already achieved!
- Systematic uncertainties will play significant role in measurement – expect improvement.

![Graph showing sensitivity to exclude CP](image-url)
SUMMARY

• Since summer 2016:
 • Doubled neutrino-mode protons-on-target with steady beam operation at 470 kW.
 • New reconstruction algorithm and event selection improved Super-K samples statistics by > 20%.

• With new data and analysis improvements, CP conserving values of δ_{CP} are disfavoured at 2σ.

• Proposal to run T2K until ~2026, accumulating 20x1021 POT.
 • Potential to exclude CP conservation in lepton sector at 3σ if δ_{CP} near maximal.

• Expect results with new 2017 antineutrino-mode data soon!
NEUTRAL CURRENT REJECTION

• Optimize selection criterium to reject neutral current π^+ events in $\nu_\mu (\bar{\nu}_\mu)$ samples.
 • Large uncertainty on cross section degrades precision on disappearance measurements.

• Run simplified oscillation analysis framework, including systematic uncertainties.

• Choose cut point in $\log \left(\frac{L_{\pi^+}}{L_\mu} \right)$ vs p_μ that maximizes precision on $\sin^2 \theta_{23}$ measurement.
 • Optimal cut point is different for equivalent study with statistical uncertainty only.

• Same procedure for neutral current π^0 rejection cut optimization for appearance samples.
SIMULATED DATA STUDIES FOR E_B

• Generate 2D templates of μ momentum shifts in E_ν vs θ_μ.
 • For each ν species and for carbon and oxygen targets.
 • Carbon: 25^{+18}_{-9} MeV
 • Oxygen: 27^{+18}_{-9} MeV
 • Shifts are applied to 1p1h events.

• Produce simulated data sets using E_B templates and run oscillation analysis fit.

• Setting both C and O E_B to the maximum value considered gives:
 • At the near detector: slight decrease in CCQE cross-section parameters; increased 2p2h contribution.
 • At far detector: significant bias in Δm_{32}^2 estimation; small impact on θ_{13}, δ_{CP}.

• Setting E_B to maximum for ν and minimum for $\bar{\nu}$ gives similar results.
\(\delta_{CP} \) SENSITIVITY

- Data constraint on \(\delta_{CP} \) is stronger than the average sensitivity.
- Run toy experiments with normal hierarchy and \(\delta_{CP} = -\pi/2 \).
- Data constraint falls within range for 95.54% of experiments for most \(\delta_{CP} \) points.
- 30% of experiments exclude \(\delta_{CP} = 0 \) at 2\(\sigma \).
- 25% of experiments exclude \(\delta_{CP} = \pi \) at 2\(\sigma \).