Status of the proton EDM experiment
(A hybrid ring approach)

CIPANP 2018

Selcuk Haciomeroglu
Yannis K. Semertzidis

Center for Axion and Precision Physics
Institute for Basic Science
Korea

29 May 2018
Overview

- Proton EDM experiment is designed to be done in a storage ring
- Some systematics in a storage ring appear in different ways
 - misplacement of the ring elements
 - image charge effects
 - beam size effects, etc.
- On the other hand,
 - large statistics and spin coherence time can be achieved
 - beam dynamics is a very efficient tool for measuring and eliminating the systematic errors
 - geometric phase is under control
- Previously we presented an all-electric ring design (RSI 87,115116 (2016))
- Currently under technical evaluation at CERN
- Magnetic field should be shielded to nT with radial component cancelled to aT level
- Recent work with hybrid ring design makes the field and misalignment requirements much more flexible
Experimental goal

<table>
<thead>
<tr>
<th>Standard model</th>
<th>$< 10^{-30} - 10^{-31} \ e \cdot \ cm$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental limit (199Hg)</td>
<td>$< 7 \times 10^{-30} \ e \cdot \ cm$</td>
</tr>
<tr>
<td>Experimental limit (n)</td>
<td>$< 3 \times 10^{-26} \ e \cdot \ cm$</td>
</tr>
<tr>
<td>Experimental limit (p)</td>
<td>$< 7.9 \times 10^{-25} \ e \cdot \ cm$</td>
</tr>
<tr>
<td>pEDM experiment</td>
<td>$< 10^{-29} \ e \cdot \ cm$</td>
</tr>
</tbody>
</table>
pEDM experiment

- Coupling between radial E-field and EDM \rightarrow out-of-plane spin precession.
- Polarized beams will be injected at magic momentum into the ring.
- Radial E-field will couple with the EDM to grow vertical spin component.

Spin precession rate in the ideal case

$$\frac{d\vec{s}}{dt} = \frac{e}{m} \frac{\eta}{2c} \vec{s} \times \vec{E}$$
pEDM experiment

- Counter-rotating beams of 10^{11} particles.
- Spin coherence time is $\approx 10^3$ seconds.
- These counter-rotating beams of a few cm2 size will pass through each other.
- They will be extracted continuously within 1000s for polarization measurement.
- The rate of change in the polarization is proportional to the EDM value (estimated as a few nrad/s for $d_p = 10^{-29} e \cdot \text{cm}$ and $E_{\text{rad}} = 8 \text{MV/m}$).
Frozen spin method

T-BMT equation without magnetic field terms

\[
\frac{d\vec{s}}{dt} = \frac{e}{m} \vec{s} \times \left[\frac{\eta}{2c} \vec{E} - \left(G - \frac{m^2}{p^2} \right) \vec{\beta} \times \vec{E} \right]
\]

- The 2nd term determines the horizontal spin component \(s_{xz} \) and it is cancelled at magic momentum: \(p_0 = m/\sqrt{G} \)
- But there has to be deviation from \(p_0 \).
- The spread \(s_{xz} \) should not go beyond 90°
- We call the time of reaching 90° as spin coherence time
- JEDI Coll. reports \(\approx 10^3 \) is achievable (Phys. Rev. Accel. Beams 21, 024201)
- With some ring designs we obtained \(> 10^4 \) seconds in simulations
We presented a lattice RSI 87,115116 (2016)

- 500m long electric ring
- No magnetic field
- 8MV/m gradient
- Quads in each drift
- Beam position monitors (BPMs) in some drifts
- Polarimeters in 4 long drifts
What is different in a storage ring

- Static field in the lab frame is an alternating field in the particle’s rest frame
- Focusing mechanism may naturally compensate external field
- or cause systematic error (!)
- Spin coherence time of $> 10^3$ s shown to be achievable at COSY
- Average B-field can be measured through beam dynamics: Proportional to the split between counter-rotating beams.

\[1 \text{pm} \rightarrow \approx 1 \text{ aT} \]

- Vertical B-field can be indirectly measured by measuring spin polarization
Static vs alternating B-field

- With static, we mean static at the particle’s rest frame.
- For instance earth’s field is alternating in particle’s rest frame.
- We studied possible alternating B-field scenarios and found it to be harmless in a continuous ring, mostly because of CW/CCW cancellation.
B-field in a non-continuous ring

- Previously we have shown that alternating B-field along a continuous ring does not cause trouble: **No vertical spin accumulation**

- Recently a new potential systematic error was found (and solved by hybrid ring design)

- It is basically related to the coupling between β-function and radial B-field multipoles

- Vertical position does not cancel if β-function and the B-field multipoles correlate.

- This misleads the BPMs as y changes sign with CW vs. CCW.
Magnetic focusing

- It is possible to store counter-rotating beams in an alternating focusing ring.
- Then, external B-field can be compensated by the focusing field naturally, because the Lorentz force becomes zero.
- This can cause a systematic error if E-field has a contribution to the Lorentz force.
- Simulation results show that dipole E-field is OK thanks to the cancellation of counter-rotating beams.
- Effect of the quadrupole E-field is solved by **varying magnetic focusing**
Varying magnetic focusing

\[\omega_r = \omega_{EDM} + \omega_{Br} \frac{Q_{per}^2}{Q_{mag}^2 + Q_{per}^2} \]

\(Q_{per} \) refers to (de)focusing electric fields like quadrupole, beam-beam interaction, image charge, etc.

\[\omega_r \approx \omega_{EDM} + \omega_{Br} Q_{per}^2 P_{mag} \quad \left[P_{mag} \equiv \frac{1}{Q_{mag}^2} \right] \]

Simulating with various vertical focusing \((Q_{mag})\), we get a linear change in precession rate of vertical spin component \(\omega_r \).

Constant term in the linear fit gives \(\omega_{EDM} \)
In the all-electric ring design, the magnetic field imposed some strict requirements like BPMs with aT level sensitivity.

- Non-uniform β-function puts even more restrictions.
- Hybrid ring design solves the problem of external magnetic field because of the natural cancellation by the magnetic focusing.
- Simulations show that making the experiment with varying focusing strength eliminates the effects related to focusing electric fields (Q_{per}).
Thanks for your attention...
Additional slides - How BPM works
Additional slides - SQUID measurements

B-field (fT) vs. Freq (Hz) for different time intervals:
- 1 second
- 1 minute
- 10 minute

Data courtesy of S. Haciomeroglu, CAPP/IBS