Interactions between Decuplet Baryons from Lattice QCD

Shinya Gongyo (RIKEN)

HAL(Hadrons to Atomic nuclei from Lattice) QCD Collaboration

K. Sasaki (YITP), S. Aoki (YITP), T. Doi (RIKEN), F. Etiminan (Birjand U.), T. Hatsuda (RIKEN), Y. Ikeda (YITP), T. Inoue (Nihon Univ.), T. Iritani (RIKEN), N. Ishii (RCNP), T. Miyamoto (YITP), H. Nemura (RCNP)

ΩΩ interaction with J=0 at almost physical point

“di-Omega” Most Strange dibaryon

May 29, 2018@CIPANP2018
Introduction

Baryon (B=1)

Proton, Neutron, Lambda,…

Dibaryon (B=2)

Deuteron (1930s)

Dibaryon = Bound (or resonance) two baryon states
Introduction: SU(3) classification for Baryon (B=1)

All octet baryons are stable under strong decay
Introduction: SU(3) classification for Baryon (B=1)

Octet (S=1/2)

- n
- p
- udd
- uud
- uus
- dds
- sus
- Σ-
- Σ^0, Λ
- Σ^+

Decuplet (S=3/2)

- Δ-
- Δ^0
- Δ^+
- Δ^{++}
- udd
- dud
- uud
- uuu
- Σ-
- Σ^0
- Σ^+
- Σ^{*-}
- uds
- sus
- Ξ-
- Ξ^0
- Ξ^{*-}
- Σ^{*-}
- sss
- Ω^-

All octet baryons are stable under strong decay.
In Decuplet baryons, only Ω-baryon is stable.
Introduction: SU(3) classification for Dibaryon candidates (B=2)

1) octet-octet system

\[8 \otimes 8 = 27 \oplus 8_s \oplus 1 \oplus 10 \oplus 10 \oplus 8_a \]

H-dibaryon (J=0) Jaffe (1977)

Deuteron (J=1)

2) decuplet-octet system

\[10 \otimes 8 = 35 \oplus 8 \oplus 10 \oplus 27 \]

N\(\Omega\) system (J=2) Goldman et al (1987)

3) decuplet-decuplet system

\[10 \otimes 10 = 28 \oplus 27 \oplus 35 \oplus 10 \]

\(\Omega\Omega\) system (J=0) Zhang et al (1997)

\(\Delta\Delta\) system (J=3) Dyson, Xuong (1964)

Oka, Yazaki (1980)

found as a “resonance” by CELSIUS/WASA, 2009
Previous model works on $\Omega\Omega$ in J=0

SU(3) chiral quark model

$\Delta M_{\Omega\Omega} = -166\text{MeV}$

Quark Disloc/Color-screen model
F. Wang et al (1992)

$\Delta M_{\Omega\Omega} = 43 \pm 18\text{MeV}$

$\Delta M_{\Omega\Omega} \equiv E_{\Omega\Omega} - 2M_{\Omega}$

- Bound/unbound problem highly depends on models and their parameters.
- To clarify $\Omega\Omega$ interaction in our world, first-principle calculations are needed.
Baryon-Baryon interaction from lattice QCD
-HAL method-
Aoki, Hatsuda, Ishii, PTP123, 89 (2010)

c.f. another method: Luscher’s direct method

Nambu-Bethe-Salpeter (NBS) w.f.
\[\Psi_n (\vec{r}) e^{-E_n t} = \sum_{\vec{x}} \langle 0 | B_1 (t, \vec{r} + \vec{x}) B_2 (t, \vec{x}) | E_n \rangle \]

Local operators \(B_1 \) and \(B_2 \) for \(\Omega \) baryon
\[\Omega_{\alpha, k} (x) = \epsilon^{abc} \left[s^T_a (x) C \gamma_k s_b (x) \right] s_{c, \alpha} (x) \]

In asymptotic region \((r >> R)\)
Helmholtz eq. is satisfied:
\[(\nabla^2 + k^2) \Psi (\vec{r}) = 0 \]
\[\Psi(\vec{r}) \sim A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr} \]
Baryon-Baryon interaction from lattice QCD
-HAL method-

\[\Omega \]

\[\Omega \]

\[\begin{align*}
\Psi_n(r) &= e^{-E_n t} \\
&= \sum \langle 0 | B_1(t, \vec{r} + \vec{x}) B_2(t, \vec{x}) | E_n \rangle
\end{align*} \]

Nambu-Bethe-Salpeter (NBS) w.f.

Local operators \(B_1 \) and \(B_2 \) for \(\Omega \) baryon

\[\Omega_{\alpha,k}(x) = \epsilon^{abc} \left[T_a(x) C\gamma_k S_b(x) \right] s_{c,\alpha}(x) \]

In interacting region,

Schroedinger type equation is satisfied

\[\left(\vec{p}_n^2 + \nabla^2 \right) \Psi_n(r) = 2\mu \int d\vec{r}' U(\vec{r}, \vec{r}') \Psi_n(\vec{r}') \]
Nonlocal potential $U(r,r')$

$$(\hat{p}_n^2 + \nabla^2) \Psi_n (\vec{r}) = 2\mu \int d\vec{r}' U(\vec{r},\vec{r}') \Psi_n (\vec{r}')$$

- The potential is energy-independent but non-local.
- The local leading potential can be obtained by its derivative expansion (c.f. Okubo-Marshak expansion):

$$U(\vec{r},\vec{r}') = V_c(r) + V_\sigma(r)(\vec{S}_1 \cdot \vec{S}_2) + S_{12} V_{T_1}(r)$$

$$+ O(\nabla^2)$$

$$= V_{C,\text{eff}}(r) + O(\nabla^2)$$

- The convergence of the expansion can be checked.
- The NLO term is explicitly determined by utilizing two source functions (Iritani et. al, arXiv:1805.02365)
Time-dependent HAL method

- original (t-indep) HAL method \(\Rightarrow\) applicable for each NBS w.f.

\[
G_{BB}(\vec{r}, t) = \langle 0 | B(\vec{y}, t) B(\vec{x}, t) \bar{J}(t_0; J^P) | 0 \rangle
\]

\[
\mathcal{R}(\vec{r}, t; J^P) = \frac{G_{BB}(\vec{r}, t)}{G_B(t)} = \sum A_n \psi_n(\vec{r}) e^{-(W_i - 2m_B)t}
\]

\[
\int dr' U(r, r') \psi_{W_0}(r') = (E_{W_0} - H_0) \psi_{W_0}(r)
\]

\[
\int dr' U(r, r') \psi_{W_1}(r') = (E_{W_1} - H_0) \psi_{W_1}(r)
\]

- Many states contribute to the R-correlator
- As lattice size increases, the extraction of g.s. becomes difficult

\[
E_n \sim 2\sqrt{m_B^2 + (2\pi n/L)^2} \sim E_0 \quad (L \gg 1)
\]

The same problem appears for the direct method (Iritani et al. JHEP(2016), PRD(2017))
Time-dependent HAL method

- new (t-dep) HAL method \Rightarrow directly applicable for R-correlator

\[
\int dr' U(r, r') \psi_{W_0}(r') = (E_{W_0} - H_0) \psi_{W_0}(r)
\]
\[
\int dr' U(r, r') \psi_{W_1}(r') = (E_{W_1} - H_0) \psi_{W_1}(r)
\]

\[\Delta E_n = \frac{k_n^2}{m_B} - \frac{\Delta E_n^2}{4m_N}\]

All equations are combined as

\[
\left(\frac{1}{4m_B} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{m_B} \right) R = \int U(\vec{r}, \vec{r}') R d^3 r'
\]

G.S. saturation is not required.

\Rightarrow “Elastic state saturation” is required

Weaker condition as $L \rightarrow \infty$
Experiment

- rich data for less strange quarks
- More strange quarks, more difficult experiment due to short life time

Lattice QCD

- better S/N for more strange quarks
- Less strange quarks, more difficult numerical simulation due to increasing statistical noise

ΩΩ system is the best S/N ratio calculation on lattice
Interactions in $\Omega\Omega$ (J=0) system

1) Nf = 2+1, L = 1.93fm, $m_\pi=1015$MeV, SU(3) limit
2) Nf=2+1, L = 3fm, $m_\pi=700$MeV, SU(3) breaking
3) Nf=2+1, L = 8.1fm, $m_\pi=146$MeV, almost physical mass
1) $N_f=2+1$ full QCD with $L = 1.93\,\text{fm}$ $m_\pi = 1015\,\text{MeV}$, SU(3) limit $\Omega \Omega$ in $J=0$

$m_\Omega = 2220 \,\text{MeV}$

- Short range repulsive core and attractive pocket are found
- Phase shift shows the system is in the unitary limit

let's consider the lighter quark masses with SU(3) breaking
2) $N_f=2+1$ full QCD with $L = 3\text{fm}$, $\Omega\Omega$ in $J = 0$

\[m_\pi = 700\text{MeV} \text{ w. SU}(3) \text{ breaking} \]

\[m_\Omega = 1970\text{MeV} \]

- Short range repulsive core and attractive pocket are found
- Potential is nearly independent on “t” within error
- Phase shift shows rapid changes depending on “t”
- *The system may appear close to the unitary limit*

c.f. Direct method by Buchoff et al., PRD(2012): L=4fm, $m_\pi = 390\text{MeV}$

$a = 0.16 \pm 0.22 \text{ fm} \leq \text{ unitary limit} $
Numerical Setup at (almost) physical mass

2+1 flavor gauge configurations
- Iwasaki gauge action & O(a) improved Wilson quark action
- $a = 0.0846$ [fm], $a^{-1} = 2333$ [MeV]
- $96^3 \times 96$ lattice, $L = 8.1$ [fm]
- 400 confs x 48 source positions x 4 rotations

Wall source is employed. Only S-wave state is produced.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass [MeV]</th>
<th>Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>146</td>
<td>8</td>
</tr>
<tr>
<td>K</td>
<td>525</td>
<td>6</td>
</tr>
<tr>
<td>N</td>
<td>964</td>
<td>3</td>
</tr>
<tr>
<td>Ω</td>
<td>1712</td>
<td>2</td>
</tr>
</tbody>
</table>

![Graph](image)
\(\Omega\Omega\) in \(J=0\)

Nf=2+1 full QCD with \(L = 8.1\text{fm}, m_\pi = 146\text{MeV}\)

\[a_0^{(\Omega\Omega)} = 4.6(6)(+1.2\text{fm}),\]
\[r_{\text{eff}}^{(\Omega\Omega)} = 1.27(3)(+0.06\text{fm}).\]

- Short range repulsive core and attractive pocket are found
- Phase shift shows the presence of a bound state
- The state is very close to the unitary region \((r/a<1)\)

SG and K. Sasaki et.al.(HAL), PRL(2018)

“most strange dibaryon”
$$\Omega \Omega \text{ in } J = 0$$

Binding energy and the Coulomb effect

“most strange dibaryon”

Q = -1

\[
\mathcal{H} = -\frac{\nabla^2}{m_\Omega} + V_{\Omega\Omega}^{\text{LQCD}}(r) + \frac{\alpha}{r}
\]

\[
\begin{align*}
\langle B_{\Omega\Omega}^{(\text{QCD})}, B_{\Omega\Omega}^{(\text{QCD+Coulomb})} \rangle &= (1.6(6) \text{MeV}, 0.7(5) \text{MeV})
\end{align*}
\]
Conservative estimate at exact phys. pt.

$m_\pi = 146 \text{ MeV} \rightarrow 135 \text{ MeV}, \quad m_\Omega = 1712 \text{ MeV} \rightarrow 1672 \text{ MeV}$

Figure Description:
- Graph showing the behavior of $V(r)$ as a function of r.
- The graph indicates changes in the attractive pockets, becoming deeper.
- This results in an increase in B.E.

Equations:
- $H = -\frac{\nabla^2}{m_\Omega} + V_{\Omega\Omega}^{\text{LQCD}}(r)$
- Conservative estimate:
 - Only change the mass of kinetic term
 - $(B_{\Omega\Omega}^{(\text{QCD})}, B_{\Omega\Omega}^{(\text{QCD+Coulomb})}) = (1.6(6) \text{ MeV}, 0.7(5) \text{ MeV})$
 - $\rightarrow (1.3(5) \text{ MeV}, 0.5(5) \text{ MeV})$
- These changes are within errors.
Measuring Pair Correlation
→ Constrain Pairwise Interaction

\[C_{AB}(Q) = \frac{N_{AB}^{\text{pair}}(Q)}{N_A N_B(Q)} = \begin{cases} 1 & \text{No Correlation} \\ \text{others} & \text{Interaction, Interference etc} \end{cases} \]

Deviation from “1”, tells us the behavior of the interaction.
ΩΩ Correlation@LHC

The Small-Large Ratio $C_{SL}(Q)$

Response to system size change

$$C_{SL}(Q) = \frac{C_R(Q)}{C_{R'}(Q)}$$

QS (HBT) Correlation suppresses the ratio

Nevertheless FSI dominates at low Q
To have 100 pairs at low Q:

Acceptance \times Efficiency : 0.01

10^{11} events : unreachable at LHC

Not impossible in Future J-PARC ? (int. rate 10^8 Hz)
Summary

- We have investigated \(\Omega \Omega \) interaction \((J=0)\) from lattice QCD

- (almost) physical pion masses:
 \(\Omega \Omega \) interaction in \(^1S_0 \)
 - short range repulsive and attractive pocket
 - a very shallow bound state

[Most strange dibaryon, di-Omega]

Dibaryon

Deuteron + di-Omega\((\Omega \Omega)\)

found in 1930s

will be found by J-PARC or FAIR?
Back Slides
Estimate NLO contribution for ΩΩ system at almost physical pt.

\[U(r, r') = V_0(r)\delta(r - r') + \sum_{n=1} V_{2n}(r)\nabla^{2n}\delta(r - r') \]

- Determining the higher order potentials explicitly by utilizing multiple quark sources is the best way to estimate their contributions.

 \[V(r) = R^{-1}(r, t) \left(\nabla^2_{m_\Omega} - \frac{\partial}{\partial t} + \frac{1}{4m_\Omega} \frac{\partial^2}{\partial t^2} \right) R(r, t) \]

 \[= V_0(r) + \sum_{n=1} V_{2n}(r)R^{-1}(r, t)\nabla^{2n}R(r, t) \]

- Instead, we have estimated in two alternative ways:
 1. their contributions are estimated from its t-dependence
 2. pertubative estimate on the binding energy

 \[|V_2/m_{2\pi}| \sim |V_0| + \text{several functional forms such as square-well form...} \]

 => B.E. changes less than 20% in all cases

 (within systematic errors from the t-dependence)