How should we view the sea: threatening or calm?

PAUL E REIMER
Physicist
Argonne National Laboratory

1 June 2018
Palm Springs, CA

This work is supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
What are the origins of the Sea?

Conventional thought:
- Gluon splitting leads to sea
- Sea is flavor symmetric since splitting is flavor independent
- Unfortunately this picture doesn’t agree with observations
Abstract. Recent data from deep inelastic scattering experiments at $x > 10^{-2}$ are used to fix the parton distributions down to $x = 10^{-4}$ and $Q^2 = 0.3 \text{ GeV}^2$. The predicted extrapolations are uniquely determined by the requirement of a valence-like structure of all parton distributions at some low resolution scale

Gluck, Reya, Vogt,
ZPC 53, 127 (1992)
Evidence for a turbulent sea (II)

- Gottfried Sum Rule (NMC)

\[\int_0^1 [F_2^p(x) - F_2^n(x)] \, dx = \frac{1}{3} \]

if and only if

\[\int_0^1 [\bar{d}(x) - \bar{u}(x)] \, dx \neq 0 \]
Evidence for a turbulent sea (III)

- Drell-Yan
 NA51 at CERN

\[\bar{d} > \bar{u} \text{ at } x = 0.18 \]
Evidence for a turbulent sea (IIIb)

- Drell-Yan
 NA51 at CERN
 \[\bar{d} > \bar{u} \text{ at } x = 0.18 \]

- E866/NuSea (Fermilab)
 \[\bar{d}(x)/\bar{u}(x) \text{ for } 0.015 \leq x \leq 0.35 \]

- Knowledge of sea dist. are data driven

- Sea quark distributions are difficult for Lattice QCD*

*but significant progress is being made by the lattice community

Paul E Reimer,
Drell-Yan Cross Section—Sensitivity to Sea Quarks

- Point-like scattering of spin-1/2 particles
- Convoluted of beam and target parton distributions

\[
\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{x_b x_t s} \sum_{q \in \{u, d, s, \ldots\}} e_q^2 \left[\bar{q}_t(x_t) q_b(x_b) + \bar{q}_b(x_b) q_t(x_t) \right]
\]
Drell-Yan Cross Section—
Sensitivity to Sea Quarks

- Point-like scattering of spin-1/2 particles
- Convoluted of beam and target parton distributions

\[
\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi \alpha^2}{x_b x_t s} \sum_{q \in \{u, d, s, \ldots\}} e_q^2 \left[\bar{q}_t(x_t) q_b(x_b) + \bar{q}_b(x_b) q_t(x_t) \right]
\]

- u-quark dominance
 \((2/3)^2 \text{ vs. } (1/3)^2\)
- Acceptance limited
 (Fixed Target, Hadron Beam)

<table>
<thead>
<tr>
<th>Beam</th>
<th>Sensitivity</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadron</td>
<td>Beam quarks target antiquarks</td>
<td>Fermilab, J-PARC RHIC (forward acpt.)</td>
</tr>
<tr>
<td>Anti-Hadron</td>
<td>Beam antiquarks Target quarks</td>
<td>J-PARC, GSI-FAIR Fermilab Collider</td>
</tr>
<tr>
<td>Meson</td>
<td>Beam antiquarks Target quarks</td>
<td>COMPASS, J-PARC</td>
</tr>
</tbody>
</table>
Drell-Yan Cross Section—Sensitivity to Sea Quarks

Cross Section
- Point-like scattering of spin-1/2 particles
- Convoluted of beam and target parton distributions

\[
\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{x_b x_t s} \sum_{q\in\{u,d,s,\ldots\}} \left(e_q^2 \left[\bar{q}_t(x_t) q_b(x_b) + \bar{q}_b(x_b) q_t(x_t) \right] \right)
\]

u-quark dominance
\((2/3)^2\) vs. \((1/3)^2\)

Acceptance limited
(Fixed Target, Hadron Beam)

\[
\frac{\sigma_{pd}}{2\sigma_{pp}} = \frac{1}{2} \left[1 + \frac{\bar{d}(x)}{\bar{u}(x)} \right]
\]

Paul E Reimer, CIPANP

1 June 2018
Drell-Yan Cross Section—Next-to-leading order α_s

- Responsible for up to 50% of the cross section
SeaQuest Experiment

Main Injector 120 GeV

Tevatron 800 GeV

Fixed Target Beam
E906/SeaQuest Status

- Data with 1H, 2H, C, Fe and W targets
- Acceptance from below J/ψ to ≈ 8 GeV
- Completed data recording summer 2017
- Recorded 1.8×10^{18} “live” protons on target
 - 1/3 of requested integrated luminosity

Paul E Reimer, CIPANP
Solid Iron
Focusing Magnet, Hadron absorber and beam dump

4.9m
Mom. Meas. (KTeV Magnet)

Station 1:
Hodoscope array MWPC tracking

Station 2 and 3:
Hodoscope array Drift Chamber tracking

Liquid H_2, d_2, and solid targets (Fe, C, W)

25m

Hadron Absorber (Iron Wall)

Station 4:
Hodoscope array Prop tube tracking

Drawing: T. O’Connor and K. Bailey

Paul E Reimer,
21 June 2016
Data From FY2014—target-dump separation

- Entire beam interacts upstream of first SeaQuest Spectrometer tracking chamber
- Spatial resolution poor along beam axis
- Resolve target vs beam dump

Paul E Reimer, CIPANP

![Data From FY2014—target-dump separation](image)
Monte Carlo describe data well

Resolution better than expected

- $\sigma_M(J/\psi) \sim 180$ MeV
- $\sigma_M(D-Y) \sim 220$ MeV

- $J/\psi - \psi'$ separation
- Lower J/ψ mass cut (more Drell-Yan events)

On going work

- Previous optimization valued CPU time
- Reconstruction efficiency
 - Spectrometer Rate Dependence
 - Background subtraction
SeaQuest Cross Section Ratio

- Low-x overlap region consistency?
- There is a kinematic difference between SeaQuest and E866
 - $x_{1}^{SQ} > x_{1}^{E866}$
- LO calculations still slightly low

3.5×10^{17} live protons, 20% of final data set

Preliminary
Iteratively ask, “What ratio of \bar{d}/\bar{u} is needed to reproduce the observed cross section ratio.

Caveats:
- Leading order only—so far
- Correct method -> global fit
- Large $x_{\text{beam}} \bar{d}/\bar{u}$
- . . .

Low-x overlap region consistency?

SeaQuest Leading Order \bar{d}/\bar{u}

3.5 x 10^{17} live protons, 20% of final data set

Paul E Reimer, CIPANP
3.5 x 10^{17} live protons, 20% of final data set

Paul E Reimer,
21 June 2016
SeaQuest E906 Status

Plot based on first 0.3×10^{18} protons
SeaQuest has recorded 1.8×10^{18} protons
Acceptance improvements so later protons are “worth” more

Paul E Reimer, CIPANP
Fermilab E772 Data

- No clear EMC effect
- No evidence for nuclear pion enhancement

SeaQuest Seaquark EMC Effect

Parton distributions in nuclei are different than in nucleons!!

- No antiquark enhancement apparent.
- 10% of anticipated statistical precision
- Increased detector acceptance at large-x to come.
SeaQuest Seaquark EMC Effect

Parton distributions in nuclei are different than in nucleons!!

- No antiquark enhancement apparent.
- 10% of anticipated statistical precision
- Increased detector acceptance at large-x to come.
E-1039: Correlation between unpolarized quarks and nucleon transverse polarization

Do sea quarks have orbital angular momentum?
– Non-zero Sivers distribution ⇒ non-zero quark orbital momentum:

\[f_{1T} = \frac{1}{2} \]

Requires Transversely polarized target

Status
– Funding from DOE/Nuclear Physics with support from HEP
– Installation beginning!!
– Commissioning fall 2018
– Production data FY19-20.
Projected Statistical Precision with a Polarized Target

Drell-Yan Target Single-Spin Asymmetry

$pp^\uparrow \rightarrow \mu^+\mu^-X$, $4 < M_{\mu\mu} < 9$ GeV

Statistics precision shown for two calendar years of running:

Protons on target = 2.7×10^{18}
$L = 7.2 \times 10^{42}$/cm2

A_N

X_{target}

Sun and Yuan, 2013
Anselmino et al. 2009
Take Away Thoughts

The Proton’s Sea is Turbulent

- Drell-Yan can select sea quark distributions
- SeaQuest extends the reach of previous sea quark measurements to larger x_{Bj}
 - Preliminary results indicate
 - 5x more data recorded

- Sea quarks show no sign of the EMC effect

- Drell-Yan Sivers Function and sea quark orbital angular momentum will be probed with polarized target
 $$f_{1T} =$$