The nucleon axial coupling from Quantum Chromodynamics

Chia Cheng Chang
Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN
Lawrence Berkeley National Lab

Conference on the Intersections of Particle and Nuclear Physics
Palm Springs, CA

Art by Bart-W. van Lith
Some outstanding questions

The origin of matter
Mechanism of asymmetric matter vs. antimatter production
Recent status: Tokai 2 Kamioka (T2K)
Current effort: T2HK with Hyper-Kamiokade
DUNE @ Fermilab to Sanford

Searches for dark matter
Only 5% is regular matter
Many ongoing efforts
Recent result Xenon1T @ Grand Sasso
Stronger bound on WIMP dark matter

Properties of the neutrino
What is the mass of the neutrino?
What is the origin of the neutrino mass?
Searches for neutrino-less double beta decay
e.g. CANDLES @ Kamioka with Ca-48

Additionally, there are specific “puzzles”
The neutron lifetime puzzle

Experimental measurements

Bottle-type experiment
Traps neutrons in bottle and measures how many are left.

Beam-type experiment
Count protons emerging from a beam of neutrons.

If neutrons decay to dark matter, bottle lifetime will be **shorter** than beam lifetime!

Precision LQCD can be use to discriminate between beam and bottle measurements.

Big Bang Nucleosynthesis
Prediction of the Helium-4 mass fraction is sensitive to the neutron lifetime.

Current observed values of Y_p have $>$1% uncertainty, but improvement in both quantities may shed light on BSM physics.
Nucleon axial form factor

What is it?
Axial coupling as function of momentum transfer
Fourier Transform of axial-charge density
Dictates quasi-elastic scattering of T2HK, DUNE

T2K: CP conservation excluded at 90% CI
Hint of mechanism for leptogenesis?
Need more precise determination at T2HK, DUNE

Precision axial form factor from LQCD

- $2 \Delta \ln L$
- Allowed 90% CL
 - Normal Ordering
 - Inverted Ordering

Experimental result:
- Dipole is over-constraining
- Experimental result noisy at $Q^2 \neq 0$
- Use LQCD to calculate $G_A(Q^2)$

Technical Details:
- $G_A(Q^2)/G_A(0)$
- M_A set to 1.1 GeV
- $eN \rightarrow e\pi N$: 1.069(16)
- $\nu N \rightarrow \nu N$: 1.026(21)

Additional Information:
- http://www.dunescience.org/
Proton charge radius puzzle

In 2010 the size of the proton was measured in muonic Hydrogen
Radius shrank by 4% with 5σ tension with atomic Hydrogen
Result published in Nature 466, 213-216 (08 July 2010)
New York Times ran an article four days later gaining popularity

Result challenges *lepton universality*

![Proton charge radius](image)

Lepton universality is also challenged in recent *B*-meson semileptonic decays
experimental data @ ~4σ

![Lepton universality](image)

Proton radius and multiple independent *B*
decay discrepancy -> new physics?

Lattice QCD can directly calculate the radius.

![Lattice QCD](image)
Connecting QCD to nuclear physics

Experiments require fundamental understanding of nuclear physics
DUNE uses Argon target
Dark matter detectors use Xenon
0vbb use nuclear spectroscopy

Goal: Understand how nuclei interact from first principle theory

Quantum chromodynamics (QCD)
Modern fundamental description of the strong interaction
Much of nuclear physics is in principle described by approximately 1 parameter

Problem: elegant theory but hard to evaluate
Nuclear physics emerges from non-perturbative dynamics of QCD

Solution:
Discretize theory: Lattice QCD non-perturbatively regulates the theory
Discretization allows for numerical evaluation

LQCD can determine nuclear properties difficult or impossible to measure from experiment
Lattice QCD with many-body effective field theory is the only way to understand nuclear physics from first-principles
The nucleon axial coupling

Fundamental parameter to much of nuclear physics
Benchmark calculation for Lattice QCD

Today I will present the first percent-level determination of g_A from QCD

$$g_A^{\text{QCD}} = 1.2711(126)$$
$$g_A^{\text{UNCA}} = 1.2772(020)$$

Phys. Rev. C 97, 035505

(experiment is still 6 times more precise, but we are catching up!)

The nucleon axial coupling

chiral, continuum, and infinite volume

g_A from LQCD in chronological order
Introduction to Lattice QCD

Lattice QCD is QCD with non-perturbative (lattice) regularization. Allows for first-principles approach to calculating hadronic observables.

Evaluate Feynman path integral on the lattice:

\[\langle A \rangle = \frac{1}{Z} \int [d\psi][d\bar{\psi}][dU] A e^{-S[\bar{\psi}, \psi, U]} \]

\[= \frac{1}{Z} \int [dU] \det (\hat{D} + m) e^{-S[U]} A \]

Importance sample gauge field \(\sim e^{-S[U] - \ln \det \hat{D}} \)

Observables from simple average:

\[\langle A \rangle \approx \frac{1}{N} \sum_{i=1}^{N} A[U_i] \]

Major lattice uncertainties and related issues:

- continuum limit: \(t_{\text{comp.}} \propto 1/a^6 \)
- infinite volume: \(t_{\text{comp.}} \propto V^{5/4} \)
- light pion mass: exponentially bad
- condition number
- signal-to-noise
Hadron spectroscopy on the lattice

Very successful history in hadron spectroscopy

$D, D^*, D_s, D_s^*, B, B^*, B_c, B_c^*$

B mesons offset by -4000 MeV

updated of plot in [hep-lat/1203.1204]
Flavor physics from Lattice QCD

Over-constrain CKM unitarity with great success

Why is g_A different?

- Large statistical uncertainty
- Large systematic uncertainty
- g_A vs. pion mass show no clear trend
Nucleon signal-to-noise problem

Exponentially larger signal-to-noise compared to mesonic systems

For an nucleon annihilation operator N, the time evolution of correlator (signal) is

$$\langle N \bar{N} \rangle = \sum_i \langle N | i \rangle \langle i | \bar{N} \rangle e^{-E_i t} \propto e^{-M_N t}$$

(Euclidean spacetime, long time limit)

The variance of the correlator (noise) is

$$\text{Var} \langle N \bar{N} \rangle = \langle |N \bar{N}|^2 \rangle - |\langle N \bar{N} \rangle|^2$$

$$= \langle |\pi \pi|^3 \rangle - |\langle N \bar{N} \rangle|^2 \propto e^{-3M_\pi t}$$

(long time limit only the lightest mode survives)

Signal-to-noise between mesonic and baryonic systems

light (pion/kaon) \(s/n \propto e^{-[\text{MeV}]t} / e^{-[\text{MeV}]t} \)

heavy-light (B/D) \(s/n \propto e^{-[\text{GeV}]t} / e^{-[\text{GeV}]t} \)

nucleon \(s/n \propto e^{-[\text{GeV}]t} / e^{-[\text{MeV}]t} \)
Signal-to-noise in data

\[m_{\text{eff}} = \ln \frac{C(t)}{C(t+1)} \]

\[C(t) \propto e^{-M_{\text{n}}t} \]

Pion
Relative uncertainty **constant** with time.

B-meson
Rel. uncertainty grows but controlled.

Nucleon
Rel. uncertainty *may* have correlated fluctuations before overwhelmed by noise.

(Light) baryons are most susceptible to systematic errors.
Overcoming noise

Get more statistics
Precision determination of g_A is believed to be an exascale problem.

Use a different computational strategy
Signal-to-noise is exponentially better at small time separations. However, signal is polluted with systematics that needs to be fully controlled.

Standard computational strategy typically yields data > 1fm to suppress systematics
The Feynman-Hellmann theorem

\[
\frac{\partial E_\lambda}{\partial \lambda} = \left\langle \psi_\lambda \left| \frac{\partial \hat{H}_\lambda}{\partial \lambda} \right| \psi_\lambda \right\rangle
\]

can be evaluated on the lattice

\[
\frac{\partial m_{\text{eff}}}{\partial \lambda} = \langle n | \mathcal{J} | n \rangle
\]

from the definition of \(m_{\text{eff}} \)

\[
\left. \frac{\partial m_{\text{eff}}}{\partial \lambda} \right|_{\lambda=0} = \left[\frac{\partial_\lambda C(t)}{C(t)} - \frac{\partial_\lambda C(t+1)}{C(t+1)} \right] \bigg|_{\lambda=0}
\]

Putting everything together

Good: Access small \(t \) where s/n is exp. improved.
Challenge: Control very large systematic effects.
Sensitivity analysis

Excited-states present at small t
Correlated fluctuations at larger t

Additionally:
- p-value > 0.05
- Gaussian bootstrap dist.
- e.s. subtract data is const. inside fit region

![Graphs showing sensitivity analysis results](image-url)
Renormalization

Purpose

- the axial and vector currents have discretization errors
- correct for differences by matching lattice to continuum vertex functions

Details

- non-perturbative Rome-Southampton renormalization procedure
- non-exceptional kinematics (RI-SMOM)

Calculate ratio

\[
\frac{Z_A \, \hat{g}_A}{Z_V \, \hat{g}_V}
\]

developed by definition

\[
Z_V \hat{g}_V = 1
\]

\[
\frac{Z_A}{Z_V} = 1
\]
@ one part in 10,000

Conclusion

the ratio \(g_A/g_V\) is continuum-like
HISQ gauge configurations and mixed action

HISQ action
Errors starting at $O(\alpha_s a^2, a^4)$

Lüscher-Weisz action
Errors starting at $O(\alpha_s^2 a^2, a^4)$

Möbius domain-wall tune $m_{\text{res}} < 0.1 m_l$
Errors effectively start at $O(a^2, \alpha_s a^2)$

MILC configurations are the only publicly available dataset capable of
- chiral extrapolation to physical pion mass
- continuum extrapolation
- infinite volume extrapolation
- all ensembles have add. 4D gradient-flow smearing

unofficial MILC cow
MILC = MIMD Lattice Computation (the acronym has an acronym in the acronym)

Extrapolation to the physical point

Model average

What goes in here?
- 5 pion masses
- 3 lattice spacing
- 3 to 7 fm box ($3.2 < m_\pi L < 5.8$)
- weighted average of different models

Strategy
- the final result is insensitive to a wide array of variations
- stability of the result is enhanced though a weighted average of different models

The final result for the nucleon axial coupling is $g_A = 1.271(13)$
Bayesian model averaging

Model averaging accounts for uncertainty from different physical-point extrapolations

- in general provides better out-of-sample forecast
- naturally expressed under the Bayesian framework

Marginalize over set of models

\[P(g_A|D) = \sum_k P(g_A|M_k, D) P(M_k|D) \]

Bayes’ Theorem gives

\[P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_l P(D|M_l)P(M_l)} \]

where \(P(D|M_k) \) is marginalized over params

\[P(D|M_k) = \int P(D|\theta_k, M_k)P(\theta_k|M_k)d\theta_k \]

Model averaged posterior distribution is

\[E[g_A] = \sum_k E[g_A|M_k]P(M_k|D) \]

\[\text{Var}[g_A] = \sum_k \text{Var}[g_A|M_k]P(M_k|D) \]

\[+ \left\{ \sum_k E^2[g_A|M_k]P(M_k|D) \right\} - E^2[g_A|D] \]

Kass and Raftery Bayes Factors (1995)
Model set

Taylor expansions around $m_\pi = 0$

- NLO Taylor ϵ_π: $c_0 + c_1\epsilon_\pi + \delta_a + \delta_L$
- NNLO Taylor ϵ_π: $c_0 + c_1\epsilon_\pi + c_2\epsilon_\pi^2 + \delta_a + \delta_L$

- NLO Taylor ϵ_π^2: $c_0 + c_2\epsilon_\pi^2 + \delta_a + \delta_L$
- NNLO Taylor ϵ_π^2: $c_0 + c_2\epsilon_\pi^2 + c_4\epsilon_\pi^4 + \delta_a + \delta_L$

Infinite volume extrapolation

leading order

$\delta_L = 8/3 \left(\epsilon_\pi^2 \left[g_0^3 F_1(m_\pi L) + g_0 F_3(m_\pi L) \right] \right)$

approximate NLO

$\delta_{L3} \equiv f_3\epsilon_\pi^3 F_1(m_\pi L)$

Baryon chiral perturbation theory

- NNLO χPT: $g_A^{\chi PT} + \delta_a + \delta_L$
- NNLO+ct χPT: $g_A^{\chi PT} + c_4\epsilon_\pi^4 + \delta_a + \delta_L$

$g_A^{\chi PT} = g_0 + c_2\epsilon_\pi^2 - \epsilon_\pi^2 (g_0 + 2g_0^3) \ln(\epsilon_\pi^2) + g_0c_3\epsilon_\pi^3$

Continuum extrapolation

$\delta_a = a_2\epsilon_a^2 + b_4\epsilon_a^2\epsilon_\pi^2 + a_4\epsilon_a^4$

Dimensionless parameters

$\epsilon_\pi = m_\pi / 4\pi F_\pi \quad \epsilon_a = a / \sqrt{4\pi w_0^2}$

Summary of results

| Fit | χ^2/dof | $\mathcal{L}(D|M_k)$ | $P(M_k|D)$ | $P(g_A|M_k)$ |
|-------------------|--------------|----------------------|------------|--------------|
| NNLO χPT | 0.727 | 22.734 | 0.033 | 1.273(19) |
| NNLO+ct χPT | 0.726 | 22.729 | 0.033 | 1.273(19) |
| NLO Taylor ϵ_π^2 | 0.792 | 24.887 | 0.287 | 1.266(09) |
| NNLO Taylor ϵ_π^2 | 0.787 | 24.897 | 0.284 | 1.267(10) |
| NLO Taylor ϵ_π | 0.700 | 24.855 | 0.191 | 1.276(10) |
| NNLO Taylor ϵ_π | 0.674 | 24.848 | 0.172 | 1.280(14) |

average $1.271(11)(06)$
Chiral extrapolation models

Taylor in m_π

Taylor in $(m_\pi)^2$

χPT
Convergence of chiral expansion

\[g_A = g_0 + \epsilon_\pi^2 \left[(g_0 + 2g_0^3) \ln(\epsilon_\pi^2) + c_2 \right] \]

\[+ g_0c_3 \epsilon_\pi^3 \]

\[+ c_4 \epsilon_\pi^4 \]

\[+ \epsilon_\pi^4 \ln(\epsilon_\pi^2) \]

\[+ \left(\frac{2}{3}g_0 + \frac{37}{12}g_0^3 + 4g_0^5 \right) \ln^2(\epsilon_\pi^2) \]

Continuum and infinite volume extrapolation

Continuum limit constant within $>1\sigma$
Volume extrap. constant within $>1\sigma$

Unknown coefficient for NLO FV is determined by Empirical Bayes method

Bayes Factor relative to optimal width
Chiral-continuum sensitivity analysis

model avg

- NNLO χPT
- NNLO+ct χPT
- NLO Taylor ϵ_π^2
- NNLO Taylor ϵ_π^2
- NLO Taylor ϵ_π
- NNLO Taylor ϵ_π

+ $O(\alpha_s a^2)$ disc.
+ $O(a)$ disc.

- omit FV
- NLO FV

- 2×LO width
- 2× all widths

- $m_\pi \leq 350$ MeV
- $m_\pi \leq 310$ MeV
- $m_\pi \geq 220$ MeV

- $a \leq 0.12$ fm
- $a \geq 0.12$ fm

- N3LO χPT
- NLO χPT(Δ)

final result

fits that enter the average

discretization

finite volume

prior widths

pion mass cuts

lattice spacing cuts

additional results

$m_\pi \leq 350$ MeV

$m_\pi \leq 310$ MeV

$m_\pi \geq 220$ MeV

$a \leq 0.12$ fm

$a \geq 0.12$ fm

N3LO χPT

NLO χPT(Δ)

1:
24
1:
28
1:
32

g_A

$x^2_{\text{aug}/\text{dof}}$

Bayes factor

1.24

1.28

1.32

0.0

0.5

1.0

0.0

0.5

1.0

1.28
Systematic error budget

Sources of uncertainty

statistical
\(g_A, g_V, m_\pi, \text{PDG } m_\pi \text{ & } F_\pi \)

chiral extrapolation
weighted \(\varepsilon_\pi \) coefficient uncertainties

continuum extrapolation
weighted \(\varepsilon_a \) coefficient uncertainties

finite volume
weighted \(f_3 \) coefficient uncertainties

isospin breaking
Largest uncertainty comes from
\[
\frac{|g_A(\varepsilon_{\pi^0}) - g_A(\varepsilon_{\pi^\pm})|}{2}
\]

Summary of uncertainties

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistical</td>
<td>0.81%</td>
</tr>
<tr>
<td>chiral extrapolation</td>
<td>0.15%</td>
</tr>
<tr>
<td>continuum extrapolation</td>
<td>0.12%</td>
</tr>
<tr>
<td>infinite volume extrap.</td>
<td>0.15%</td>
</tr>
<tr>
<td>isospin breaking</td>
<td>0.03%</td>
</tr>
<tr>
<td>model selection</td>
<td>0.43%</td>
</tr>
<tr>
<td>total (in quadrature)</td>
<td>0.99%</td>
</tr>
</tbody>
</table>

Final result
\(g_A = 1.271(13) \)

Recap summary

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHPC05</td>
<td></td>
</tr>
<tr>
<td>CLS12</td>
<td></td>
</tr>
<tr>
<td>† QCDSF13</td>
<td></td>
</tr>
<tr>
<td>QCDSF13</td>
<td></td>
</tr>
<tr>
<td>† RQCD14</td>
<td></td>
</tr>
<tr>
<td>ETMC15</td>
<td></td>
</tr>
<tr>
<td>PNDME16</td>
<td></td>
</tr>
<tr>
<td>ETMC17</td>
<td></td>
</tr>
<tr>
<td>CLS17</td>
<td></td>
</tr>
<tr>
<td>this work</td>
<td></td>
</tr>
<tr>
<td>PDG17</td>
<td></td>
</tr>
</tbody>
</table>
The lifetime of a free neutron from LQCD

\[\tau_n = \frac{4908.7(1.9)\text{sec}}{|V_{ud}|^2(1 + 3g_A^2)} \]

Numerator from one-loop electroweak contributions

\[V_{ud} \text{ from FNAL/MILC 14} \]
\[V_{ud} = 0.97438(12) \]

free neutron lifetime

880(14) seconds

\~14 minutes 40 seconds

PDG lifetime

880.2(1.0) seconds

consistent at 1.6%
Outlook

This work
First 1% determination of g_A from Lattice QCD.

Neutron lifetime puzzle
The current determination of the axial coupling is statistics limited.
Neutron lifetime differ by 1% between beam vs. bottle.
A 0.3% determination of g_A can discriminate two results at 1σ ($\tau \sim 0.5\%$).
New 100+ PFLOP supercomputers will help achieve this goal.

Applications to other single nucleon observables (in no particular order)

Proton radius puzzle
Atomic and muonic Hydrogen radii differ by 4%.
Goal to directly determine the radius at 1%.
Development of new methods may let us achieve this goal.

Nucleon axial form factor
Long baseline neutrino experiments may uncover large sources of leptonic CP-violation.
Precise experiments with precise prediction of the entire axial form factor is needed.
The Feynman-Hellmann method may be applied to non-zero momentum (and other ideas).

Charm content of the nucleon
WIMP-N cross section is particularly sensitive to the charm content.
Need ~10% precision to motivate detector size. [PRL 112, 211602]
Collaborators

Chia Cheng Chang
Amy Nicholson
Enrico Rinaldi
Evan Berkowitz
Nicolas Garron

David Brantley
Henry Monge-Camacho
Chris Monahan
Chris Bouchard
Kate Clark
Balint Joó
Thorsten Kurth
Kostas Orginos
Pavlos Vranas
André Walker-Loud

These calculations are made possible by

[Logos of various institutions]