Current Status of Very-Large-Basis Hamiltonian Diagonalizations for Nuclear Physics

Calvin W. Johnson

“This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-96ER40985”

CIPANP, June 1, 2018
An all-too-common view:
An all-too-common view:

Dark matter, string theory, neutrino physics....
An all-too-common view:

Dark matter, string theory, neutrino physics....

Nuclear structure physics
An all-too-common view:

Dark matter, string theory, neutrino physics....

Nuclear structure physics
A better view:

Dark matter, string theory, neutrino physics....

Nuclear structure physics
A better view:

Modern nuclear structure physics is rigorous, vigorous, and the launchpoint for many other investigations.
To detect dark matter, one needs **nuclear cross-sections**. For neutrino physics, **nuclear cross-sections**. For neutrinoless $\beta\beta$ decay, **need nuclear matrix element**. For parity/time-reversal violation (e.g. EDM), **need nuclear matrix element**....

CIPANP, June 1, 2018
To compute electromagnetic and weak transition rates, we use Fermi’s (actually Dirac’s) Golden Rule from time-dependent perturbation theory:

\[
R_{i \rightarrow f} = \frac{2\pi}{\hbar} \left| \langle f | \hat{\mathcal{O}} | i \rangle \right|^2 \frac{dN_f}{dE}
\]

Transition probability (strength)

\[
\langle f | \hat{\mathcal{O}} | i \rangle = \sum_{a,b} \langle a | \hat{\mathcal{O}} | b \rangle \langle f | \hat{c}_a^+ \hat{c}_b | i \rangle
\]

Many-body matrix element \hspace{1cm} One-body matrix element \hspace{1cm} One-body density matrix elements between many-body states

(can also generalize to two-body transition operators)
To get the many-body states, we use the matrix formalism (a.k.a configuration-interaction)

\[\hat{H} |\Psi\rangle = E |\Psi\rangle \]

\[|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\alpha\rangle \quad \quad H_{\alpha\beta} = \langle \alpha | \hat{H} | \beta \rangle \]

\[\sum_{\beta} H_{\alpha\beta} c_{\beta} = Ec_{\alpha} \quad \text{if} \quad \langle \alpha | \beta \rangle = \delta_{\alpha\beta} \]
Issues:

\[\sum_{\beta} H_{\alpha\beta} c_{\beta} = E c_{\alpha} \]

\[|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\alpha\rangle \]

- Origin of Hamiltonian matrix elements
 Semi-phenomenological vs. \textit{ab initio}
 (fit to \textit{A-body} vs. fit to few-body)

- Representation and selection of basis
 (basis “scheme” and model space)

- Computation with Hamiltonian matrix element
 Storage vs. construction “on-the-fly”
Modern many-body calculations

No-core shell model: in harmonic oscillator basis, “all” particles active (up to N_{max} h.o. excitation quanta), with high-precision interaction (e.g. chiral EFT, HOBET, etc.) fit to few-body data

e.g. p-shell nuclides up to $N_{\text{max}} = 10 \ldots 22$
Ab initio/ “No-core shell model”: take to infinite limit

Two parameters: h.o. basis frequency Ω and model space cutoff N_{max}

Naïve expectation: take $N_{\text{max}} \to \text{infinity}$
Converged results independent of Ω
FIG. 1. (Color online) The energy of the ground state ($J=\frac{3}{2}$) for 7Be and 7Li with the JISP16 and NNLO$_{opt}$ interactions as a function of HO energy. In this figure and the following figures, for 7Li and 7Be, the N_{\max} value ranges from 8 up to 16. The increment of N_{\max} is 2. Extrapolated ground state energies are shown in purple with uncertainties depicted as vertical bars.

From Heng, Vary, Maris: arXiv:1602.00156
Extrapolation via assumed exponential $E(N_{\max}) = E(\infty) + a \exp(-cN_{\max})$
Choice of wave function basis

One chooses between a few, complicated states or many simple states
Choice of wave function basis

One chooses between *a few, complicated states* or *many simple states*
Choice of wave function basis

One chooses between *a few, complicated states* or *many simple states*

![Graph showing the choice between wave functions](image)
Choice of wave function basis

One chooses between a few, complicated states or many simple states.

M-scheme: basis states with fixed total J_z
Simple and easy to construct/work with
Requires large dimension basis

J-scheme: basis states with fixed total J
Enforced rotational symmetry, smaller dimensions
Generally built from M-scheme states
Choice of wave function basis

One chooses between *a few, complicated states* or *many simple states*

Symmetry-adapted (SU(3), Sp(3,R), etc): States from selected group irreps
Enforced symmetries, rotational + translational, smaller dimensions
Often built from M-scheme states
It’s also important to know:

Computational burden is *not* primarily the dimension but is the # of nonzero Hamiltonian matrix elements.

\[
\sum_{\beta} H_{\alpha\beta} c_{\beta} = E c_{\alpha}
\]
J-scheme matrices are smaller but much denser than M-scheme, and “symmetry-adapted” (i.e. SU(3)) matrices are smaller (and denser) still.

example: $^{12}\text{C} \; \text{N}_{\text{max}} = 8$

scheme basis dim
M 0.6×10^9
J (J=4) 9×10^7
SU(3) 9×10^6
(truncated)
J-scheme matrices are smaller but much denser than M-scheme, and “symmetry-adapted” (i.e. SU(3)) matrices are smaller (and denser) still.

example: $^{12}\text{C} N_{\text{max}} = 8$

<table>
<thead>
<tr>
<th>scheme</th>
<th>basis dim</th>
<th># of nonzero matrix elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.6×10^9</td>
<td>5×10^{11}</td>
</tr>
<tr>
<td>J (J=4)</td>
<td>9×10^7</td>
<td>3×10^{13}</td>
</tr>
<tr>
<td>SU(3)</td>
<td>9×10^6</td>
<td>2×10^{12}</td>
</tr>
</tbody>
</table>

(truncated)

J-scheme matrices are smaller but much denser than M-scheme, and “symmetry-adapted” (i.e. SU(3)) matrices are smaller (and denser) still.

example: 12C $N_{\text{max}} = 8$

<table>
<thead>
<tr>
<th>scheme</th>
<th>basis dim</th>
<th># of nonzero matrix elements</th>
<th>Memory requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.6×10^9</td>
<td>5×10^{11}</td>
<td>4 Tb of memory!</td>
</tr>
<tr>
<td>J (J=4)</td>
<td>9×10^7</td>
<td>3×10^{13}</td>
<td>240 Tb of memory!</td>
</tr>
<tr>
<td>SU(3)</td>
<td>9×10^6</td>
<td>2×10^{12}</td>
<td>16 Tb of memory!</td>
</tr>
</tbody>
</table>

(truncated)

Older codes (e.g., OXBASH) stored nonzero matrix elements on hard drive -> I/O as bottleneck

More recent codes (e.g., MFDn) store nonzero matrix elements in RAM -> requires supercomputer
Older codes (e.g., OXBASH) stored nonzero matrix elements on hard drive -> I/O as bottleneck

More recent codes (e.g., MFDn) store nonzero matrix elements in RAM -> requires supercomputer

Alternate approach: “on-the-fly/factorization” pioneered by ANTOINE code used by NuShellX, BIGSTICK, KSHELL codes
Alternate approach: “on-the-fly/factorization” pioneered by ANTOINE code used by NuShellX, BIGSTICK, KSHELL codes

“On-the-fly” uses the fact that only two (or three) particles at a time interact; the rest are spectators -> ”loop over spectators”

A description of the “factorization” algorithm:

J-scheme matrices are smaller but much denser than M-scheme, and “symmetry-adapted” (i.e. SU(3)) matrices are smaller still.

example: \(^{12}\text{C}\) \(N_{\text{max}} = 8\)

<table>
<thead>
<tr>
<th>scheme</th>
<th>basis dim</th>
<th># of nonzero matrix elements</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.6 x (10^9)</td>
<td>5 x (10^{11})</td>
<td>4 Tb</td>
</tr>
<tr>
<td>J (J=4)</td>
<td>9 x (10^7)</td>
<td>3 x (10^{13})</td>
<td>240 Tb</td>
</tr>
<tr>
<td>SU(3)</td>
<td>9 x (10^6)</td>
<td>2 x (10^{12})</td>
<td>16 Tb</td>
</tr>
</tbody>
</table>

(truncated) \[\text{On-the-fly requires only 43 Gb!}\]
Links to free, open-source many-body codes:

fribtheoryalliance.org

In particular **BIGSTICK**, available from:
github.com/cwjsdsdu/BigstickPublick

Manual at arXiv:1801.08432
Despite advances, it is easy to get to model spaces beyond our reach:

\[\text{N}_{\text{max}} \text{ calculations:} \]
\[^{12}\text{C} \text{ N}_{\text{max}} = 4 \text{ dim 1 million} \]
\[^{12}\text{C} \text{ N}_{\text{max}} = 6 \text{ dim 30 million} \]
\[^{12}\text{C} \text{ N}_{\text{max}} = 8 \text{ dim 500 million} \]
\[^{12}\text{C} \text{ N}_{\text{max}} = 10 \text{ dim 7.8 billion} \]
\[^{12}\text{C} \text{ N}_{\text{max}} = 12 \text{ dim 81 billion} \]
Despite advances, it is easy to get to model spaces beyond our reach:

\[N_{\text{max}} \text{ calculations:} \]
\[^{12}\text{C} \ N_{\text{max}} = 4 \text{ dim 1 million} \]
\[^{12}\text{C} \ N_{\text{max}} = 6 \text{ dim 30 million} \]
\[^{12}\text{C} \ N_{\text{max}} = 8 \text{ dim 500 million} \]
\[^{12}\text{C} \ N_{\text{max}} = 10 \text{ dim 7.8 billion} \]
\[^{12}\text{C} \ N_{\text{max}} = 12 \text{ dim 81 billion} \]

Largest (?) known calculation, \(^{6}\text{Li}, N_{\text{max}} = 22, 25 \text{ billion}\) (Forssen et al, arXiv:1712.09951 with pANTOINE)
FIG. 1. (Color online) The energy of the ground state \((J=\frac{3}{2}) \) for \(^7\)Be and \(^7\)Li with the JISP16 and NNLO\(_{opt}\) interactions as a function of HO energy. In this figure and the following figures, for \(^7\)Li and \(^7\)Be, the \(N_{\text{max}}\) value ranges from 8 up to 16. The increment of \(N_{\text{max}}\) is 2. Extrapolated ground state energies are shown in purple with uncertainties depicted as vertical bars.

From Heng, Vary, Maris: arXiv:1602.00156

Extrapolation via assumed exponential

\[
E(N_{\text{max}}) = E(\infty) + a \exp(-cN_{\text{max}})
\]
Paths for going forward/upwards:

-- Human learning, part I: Infrared extrapolation

-- Human learning, part II: The right degrees of freedom (“symmetry-adapted bases”)

-- Human learning, part III: The right degrees of freedom: natural orbitals

-- Machine learning
Paths for going forward/upwards:

-- Human learning, part I: Infrared extrapolation
Idea: truncation in h.o. space (N_{max}) = “wall”
Extrapolate as “wall” -> infinity (infrared limit)

(also need convergence in ultraviolet (UV) limit)
FIG. 4. (Color online) Extrapolations of the binding energy per particle for several p-shell nuclei computed with the NCSM. The color of each circular marker indicates the UV cutoff of that calculation with darker colors corresponding to larger cutoffs. Markers with a black border are included in the extrapolation. The solid red (gray) curve shows the exponential fit (16), and the horizontal red (gray) line marks the value of E_∞ with uncertainty estimates indicated as blue (gray) bands. The dashed black line marks the variational minimum E_{varmin} for the largest model space included in the fit.

Paths for going forward/upwards:

-- Human learning, part II: The right degrees of freedom, “symmetry-adapted bases”
Symplectic $Sp(3,R)$ Symmetry

(From K. Launey, LSU)

From first principles:
light/intermediate-mass nuclei, low-lying states

Launey et al., Prog. Part. Nucl. Phys. 89 (2016) 101
Collectivity features

^{20}Ne

E_x [MeV]

- 0^+_0: 0.000
- 2^+_1: 1.634
- 4^+_0: 4.248
- 6^+_0: 8.778
- 0^+_0: 8.621

SA-NCSM (selected model space): 50 million SU(3) states
Complete model space: 1000 billion states

^{18}Ne, B(E2: $2^+ \rightarrow 0^+$)

Experiment......... 17.7(18) W.u.

9 shells 1.13 W.u.

33 shells 13.0(7) W.u.
(no effective charges)

Grigor Sargsyan, PhD student, LSU

CIPANP, June 1, 2018

Ne & Mg isotopes

$^{2^+}$ Giant resonances

0^+

$^{18}\text{Ne} (2 \ 1)$ S=1

2^+

0^+

2^+

2^+

(2 1) S=1

0^+

2^+

2^+

0^+

0^+

(4 0) S=0

N2LOopt; 9 shells, $\hbar\omega = 15$ MeV
Paths for going forward/upwards:

-- Human learning, part III: The right degrees of freedom: natural orbitals
FIG. 4: Infrared basis extrapolations for the 6He ground state energy (top) and point proton radius (bottom), based on calculations in the harmonic oscillator basis (left) and natural orbital basis (right). The extrapolations (diamonds) are shown along with the underlying calculated results (plain lines) as functions of $\hbar \omega$ at fixed N_{max} (as indicated). Experimental values (circles) are shown with uncertainties. The shaded bands reflect the mean values and standard deviations of the extrapolated results, at the highest N_{max}, over the $\hbar \omega$ range considered.

From Constantinou et al, arXiv:1605.04976
Harmonic Oscillator

Natural Orbitals

E_{gs} vs $\hbar\Omega$ for ^{16}O,

$N_{\text{max}}=2$

MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

From R. Roth, talk at TRIUMF, Feb 2018

CIPANP, June 1, 2018
Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

NN+3N(400), $\alpha = 0.08$ fm4, $e_{\text{max}} = 12$

Harmonic Oscillator

Natural Orbitals

^16_O

- $\hbar \Omega$ [MeV]
- R_{rms} [fm]
- $N_{\text{max}} = 2$

From R. Roth, talk at TRIUMF, Feb 2018
Paths for going forward/upwards:

-- Machine learning
Machine learning

From Negoita et al, arXiv:1803.03215

Extrapolation via Artificial Neural Net (ANN)

Figure 7. Comparison of the NCSM calculated and the corresponding ANN predicted gs energy values of 6Li as a function of $\hbar\Omega$ at $N_{\text{max}} = 12, 14, 16, \text{and} 18$. The lowest horizontal line corresponds to the ANN nearly converged result at $N_{\text{max}} = 70$.
Machine learning
From Negoita et al, arXiv:1803.03215
Extrapolation via Artificial Neural Net (ANN)

Figure 9. Comparison of the NCSM calculated and the corresponding ANN predicted gs point proton rms radius values of 6Li as a function of $\hbar \Omega$ for $N_{\text{max}} = 12, 14, 16,$ and 18. The highest curve corresponds to the ANN nearly converged result at $N_{\text{max}} = 90$.

CIPANP, June 1, 2018
Summary:

Modern nuclear structure physics is modern and a vigorous, rigorous discipline, necessary for many other fields (astrophysics, tests of fundamental symmetries, etc.)

One approach is **diagonalization of the Hamiltonian in a basis**. Modern techniques and computers can handle up to ~ 25 billion basis states (though that is not the primarily measure of computational burden) and there are many promising techniques for extending the reach and accuracy of *ab initio* calculations.
Additional slides
Modern many-body calculations

Semi-Phenomenological: usually for medium- to heavy-mass nuclei, with fixed core, with well-tuned (to A-body spectra) interaction

e.g. sd shell with USDB interaction

pf shell with GX1A interaction

No-core shell model: in harmonic oscillator basis, “all” particles active (up to N_{max} h.o. excitation quanta), with high-precision interaction (e.g. chiral EFT, HOBET, etc.) fit to few-body data

e.g. p-shell nuclides up to $N_{\text{max}} = 10 \ldots 22$
Modern many-body calculations

“Ab initio medium/heavy nuclei”

Semi-Phenomenological: usually for medium- to heavy-mass nuclei, with fixed core, with well-tuned (to A-body spectra) interaction

e.g. sd shell with

In-medium similarity renormalization group, etc

No-core shell model: in harmonic oscillator basis, “all” particles active (up to N_{max} h.o. excitation quanta), with high-precision interaction (e.g. chiral EFT, HOBET, etc.) fit to few-body data

e.g. p-shell nuclides up to $N_{\text{max}} = 10$ to 22
Despite advances, it is easy to get to model spaces beyond our reach:

sd shell: max dimension 93,000. *Can be done in a few minutes on a laptop.*

pf shell: 48Cr, dim 2 million, ~10 minutes on laptop

52Fe, dim 110 million, a few hours on modest workstation

56Ni, dim 1 billion, 1 day on advanced workstation

60Zn, dim 2 billion, < 1 hour on supercomputer
Despite advances, it is easy to get to model spaces beyond our reach:

shells between 50 and 82 ($0g_{7/2}$ $2s1d$ $0h_{11/2}$)

128Te: dim 13 million (laptop)

127I: dim 1.3 billion (small supercomputer)

128Xe: dim 9.3 billion (supercomputer)

129Cs: dim 50 billion (haven’t tried!)
Some Shell-Model Codes

Matrix storage:
- Oak Ridge-Rochester (small matrices)
- Glasgow-Los Alamos (M-scheme, stored on disk; introduced Lanczos)
- OXBASH / Oxford-MSU (J-scheme, stored on disk)
- MFDn/ Iowa State (M-scheme, stored in RAM)
- MCSM/ Tokyo (J-scheme from selected states)
- Importance Truncation SM/ Darmstadt (M-scheme from selected states)
- Sym Adapted SM / LSU, Notre Dame (J-scheme + symplectic)

Factorization:
- ANTOINE Strasbourg (M-scheme; originator of factorization)
- NATHAN Strasbourg (J-scheme)
- EICODE (J-scheme)
- NuShell/ NuShellX (J-scheme)
- MSHELL64 / KSHELL Tokyo (M-scheme)
- BIGSTICK/ SDSU-Livermore