Current status of nuclear forces from chiral EFT
From QCD to nuclei

QCD

symmetries (especially the chiral symmetry); lost of information (LECs)

effective chiral Lagrangian $L_{\text{eff}}(\pi, N)$

integrate out $|\vec{p}| \sim \sqrt{M_\pi m_N}$ (but retain $|\vec{p}| \sim M_\pi$): Chiral Perturbation Theory

nuclear forces and currents

$5M \text{ eV}$

LET predictions

ab initio many-body methods: lattice, FY, NCSM,…

nuclear structure and dynamics
Effective Lagrangian:

\[\mathcal{L}_\pi = \frac{F^2}{4} \text{Tr}(\nabla^\mu U \nabla_\mu U^\dagger + \chi_+) + \ldots, \]

\[\mathcal{L}_{\pi N} = \bar{N} (i v \cdot D + g_A u \cdot S)N + \ldots, \]

\[\mathcal{L}_{NN} = -\frac{1}{2} C_S (\bar{N}N)^2 + 2 C_T (\bar{N}SN)^2 + \ldots \]
Effective Lagrangian:

\[
\mathcal{L}_\pi = \frac{F^2}{4} \text{Tr}(\nabla^\mu U \nabla_\mu U^\dagger + \chi) + \ldots,
\]

\[
\mathcal{L}_{\pi N} = \bar{N}(iv \cdot D + g_A u \cdot S)N + \ldots,
\]

\[
\mathcal{L}_{NN} = -\frac{1}{2} C_S (\bar{N}N)^2 + 2C_T (\bar{N}SN)^2 + \ldots
\]

Auxiliary quantities (not observable):
More difficult to calculate than Feynman graphs
(renormalizability, off-shell consistency...)

\[Q = \text{momenta of particles or } M_\pi \sim 140 \text{ MeV}
\text{breakdown scale } \Lambda_b\]

Chiral Perturbation Theory

GB dynamics
Weinberg, Gasser, Leutwyler, ...

πN dynamics
Bernard-Kaiser-Meißner et al.

Nuclear forces
Weinberg, van Kolck, Kaiser, EGM, ...

Nuclear currents
Park et al, Bochum-Bonn, JLab-Pisa
Chiral expansion of the nuclear forces

<table>
<thead>
<tr>
<th>Two-nucleon force</th>
<th>Three-nucleon force</th>
<th>Four-nucleon force</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO (Q⁰)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLO (Q²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N²LO (Q³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N³LO (Q⁴)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N⁴LO (Q⁵)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- LO (Q⁰): Two-nucleon force
 - In Weinberg '90

- NLO (Q²): Two-nucleon force
 - Ordonez, van Kolck '92

- N²LO (Q³): Two-nucleon force
 - Ordonez, van Kolck '92

- N³LO (Q⁴): Two-nucleon force
 - Kaiser '00 - '02
 - Bernard, EE, Krebs, Meißner, '08, '11

- N⁴LO (Q⁵): Two-nucleon force
 - Entem, Kaiser, Machleidt, Nosyk '15
 - EE, Krebs, Meißner '15
 - Girlanda, Kievsky, Viviani '11
 - Krebs, Gasparyan, EE '12,'13
 - still have to be worked out

- Much more involved than just calculating Feynman diagrams…
- A similar program is being pursued for in chiral EFT with explicit Δ(1232) DOF
Electromagnetic currents

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; PRC 86 (12) 047001

<table>
<thead>
<tr>
<th></th>
<th>single-nucleon</th>
<th>two-nucleon</th>
<th>three-nucleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q^{-1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q^{0}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q^{1}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Our results differ from the ones of the JLab-Pisa group (Pastore et al., 08-11)

- parameter-free static two-pion exchange
- depend on C_2, C_4, C_5, $C_7 + L_1$, L_2; no loop corrections
- depend on C_T

- no $1/m$ corrections
Chiral expansion of the axial current and charge operators

<table>
<thead>
<tr>
<th></th>
<th>single-nucleon</th>
<th>two-nucleon</th>
<th>three-nucleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q^{-1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q^0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q^1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison with Baroni et al. (TOPT)
- didn’t consider $1/m$-corrections at order Q^1
- looked only at irreducible 3N graphs
- different results for π-exchange current contributions
- differences in tree-level 1π-terms

For more details: [review article by Hermann Krebs](#) (in preparation)
A new generation of accurate & precise chiral NN potentials

— semi-local, coordinate-space-regularized up to N⁴LO

— semi-local, momentum-space-regularized up to N⁴LO⁺
 Reinert, Krebs, EE, EPJA 54 (2018) 88

— nonlocal, momentum-space-regularized up to N⁴LO⁺
 Entem, Machleidt, Nosyk, PRC 96 (2017) 024004

Other chiral EFT interactions on the market:
local potentials up to N²LO [Gezerlis et al. ’14]; minimally nonlocal N³LO potential including N²LO Δ(1232) contributions [Piarulli et al.’15]; N²LO potentials tuned to heavier nuclei [Ekström, Carlsson et al.] …
The long and short of nuclear forces

Conventional picture:

- Internucleon potential (MeV) vs. Separation (fm)
- Contact interactions

Chiral EFT:

- Internucleon potential (MeV) vs. Separation (fm)
- Contact interactions
- Multiple GB exchange (ChPT)
Short-range interactions have to be tuned to experimental data. In the isospin limit, one has according to NDA:

- **LO \([Q^0]\):** 2 operators (S-waves)
- **NLO \([Q^2]\):** + 7 operators (S-, P-waves and \(\varepsilon_1\))
- **N^2LO \([Q^3]\):** no new terms
- **N^3LO \([Q^4]\):** + 12 operators (S-, P-, D-waves and \(\varepsilon_1, \varepsilon_2\))
- **N^4LO \([Q^5]\):** no new terms
The long and short of nuclear forces

- Short-range interactions have to be tuned to experimental data. In the isospin limit, one has according to NDA:

 \[
 \begin{align*}
 \text{LO } [Q^0] & : \quad 2 \text{ operators (S-waves)} \\
 \text{NLO } [Q^2] & : \quad +7 \text{ operators (S-, P-waves and } \varepsilon_1) \\
 \text{N}^2\text{LO } [Q^3] & : \quad \text{no new terms} \\
 \text{N}^3\text{LO } [Q^4] & : \quad +12 \text{ operators (S-, P-, D-waves and } \varepsilon_1, \varepsilon_2) \\
 \text{N}^4\text{LO } [Q^5] & : \quad \text{no new terms}
 \end{align*}
 \]

- The long-range part of nuclear forces and currents is \textit{completely determined} by the chiral symmetry of QCD + experimental information on \(\pi N \) scattering

\[
\text{predicted in a parameter-free way}
\]
Determination of πN LECs

Pion-nucleon scattering up to Q^4 in heavy-baryon ChPT

Fettes, Meißner ’00; Krebs, Gasparyan, EE ’12

Order Q:

Order Q^2:

Order Q^3:

Order Q^4:

\begin{align*}
\text{Order } Q: & & \quad \text{Order } Q^2: \\
\text{Order } Q^3: & & \quad \text{Order } Q^4: \\
\end{align*}
Determination of πN LECs

Pion-nucleon scattering up to Q^4 in heavy-baryon ChPT

Fettes, Meißner 00; Krebs, Gasparyan, EE '12

Order Q:

Order Q^2:

Order Q^3:

Order Q^4:

Matching ChPT to πN Roy-Steiner equations

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

- χ expansion of the πN amplitude expected to converge best within the Mandelstam triangle

- Subthreshold coefficients (from RS analysis) provide a natural matching point to ChPT
 \[\bar{X} = \sum_{m,n} x_{mn} \nu^{2m+k}t^n, \quad X = \{ A^\pm, B^\pm \} \]

- Closer to the kinematics relevant for nuclear forces...
Determination of πN LECs

Pion-nucleon scattering up to Q^4 in heavy-baryon ChPT

Fettes, Meißner ’00; Krebs, Gasparyan, EE ’12

Relevant LECs (in GeV$^{-n}$) extracted from πN scattering

<table>
<thead>
<tr>
<th>LEC Type</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>$\bar{d}_1 + \bar{d}_2$</th>
<th>\bar{d}_3</th>
<th>\bar{d}_5</th>
<th>$\bar{d}{14} - \bar{d}{15}$</th>
<th>\bar{e}_{14}</th>
<th>\bar{e}_{17}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[Q^4]_{\text{HB, NN, GW PWA}}$</td>
<td>-1.13</td>
<td>3.69</td>
<td>-5.51</td>
<td>3.71</td>
<td>5.57</td>
<td>-5.35</td>
<td>0.02</td>
<td>-10.26</td>
<td>1.75</td>
<td>-0.58</td>
</tr>
<tr>
<td>$[Q^4]_{\text{HB, NN, KH PWA}}$</td>
<td>-0.75</td>
<td>3.49</td>
<td>-4.77</td>
<td>3.34</td>
<td>6.21</td>
<td>-6.83</td>
<td>0.78</td>
<td>-12.02</td>
<td>1.52</td>
<td>-0.37</td>
</tr>
<tr>
<td>$[Q^4]_{\text{HB, NN, Roy-Steiner}}$</td>
<td>-1.10</td>
<td>3.57</td>
<td>-5.54</td>
<td>4.17</td>
<td>6.18</td>
<td>-8.91</td>
<td>0.86</td>
<td>-12.18</td>
<td>1.18</td>
<td>-0.18</td>
</tr>
<tr>
<td>$[Q^4]_{\text{covariant, data}}$</td>
<td>-0.82</td>
<td>3.56</td>
<td>-4.59</td>
<td>3.44</td>
<td>5.43</td>
<td>-4.58</td>
<td>-0.40</td>
<td>-9.94</td>
<td>-0.63</td>
<td>-0.90</td>
</tr>
</tbody>
</table>

Notice:

- some LECs show sizable correlations (especially c_1 and c_3)...
- KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector
Determinaton of πN LECs

Pion-nucleon scattering up to Q^4 in heavy-baryon ChPT

Fettes, Meißner '00; Krebs, Gasparyan, EE '12

Relevant LECs (in GeV$^{-n}$) extracted from πN scattering

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>$\tilde{d}_1 + \tilde{d}_2$</th>
<th>\tilde{d}_3</th>
<th>\tilde{d}_5</th>
<th>$\tilde{d}{14} - \tilde{d}{15}$</th>
<th>\tilde{e}_{14}</th>
<th>\tilde{e}_{17}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[Q^4]_{\text{HB,NN}}$, GW PWA</td>
<td>-1.13</td>
<td>3.69</td>
<td>-5.51</td>
<td>3.71</td>
<td>5.57</td>
<td>-5.35</td>
<td>0.02</td>
<td>-10.26</td>
<td>1.75</td>
<td>-0.58</td>
</tr>
<tr>
<td>$[Q^4]_{\text{HB,NN}}$, KH PWA</td>
<td>-0.75</td>
<td>3.49</td>
<td>-4.77</td>
<td>3.34</td>
<td>6.21</td>
<td>-6.83</td>
<td>0.78</td>
<td>-12.02</td>
<td>1.52</td>
<td>-0.37</td>
</tr>
<tr>
<td>$[Q^4]_{\text{HB,NN}}$, Roy-Steiner</td>
<td>-1.10</td>
<td>3.57</td>
<td>-5.54</td>
<td>4.17</td>
<td>6.18</td>
<td>-8.91</td>
<td>0.86</td>
<td>-12.18</td>
<td>1.18</td>
<td>-0.18</td>
</tr>
<tr>
<td>$[Q^4]_{\text{covariant, data}}$</td>
<td>-0.82</td>
<td>3.56</td>
<td>-4.59</td>
<td>3.44</td>
<td>5.43</td>
<td>-4.58</td>
<td>-0.40</td>
<td>-9.94</td>
<td>-0.63</td>
<td>-0.90</td>
</tr>
</tbody>
</table>

Notice:
- some LECs show sizable correlations (especially c_1 and c_3)...
- KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector

With the LECs taken from πN, the long-range NN force is completely fixed (parameter-free)
The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$ (unless all counterterms are taken into account in the calculations) [Lepage '97; EE, Gegelia '09]. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda_{\text{crit}}$ make calculations for $\Lambda > 3$ unfeasible…

→ it is crucial to employ a regulator that minimizes finite-Λ artifacts!
Regularization

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$ (unless all counterterms are taken into account in the calculations) \cite{Lepage97,EE,Gegelia09}. In practice, low values of Λ are preferred:

— many-body methods require soft interactions,
— spurious deeply-bound states for $\Lambda > \Lambda_{\text{crit}}$ make calculations for $A > 3$ unfeasible…

→ it is crucial to employ a regulator that minimizes finite-Λ artifacts!

Nonlocal: $V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4 + p^4}{\Lambda^4}}}{\tilde{q}^2 + M_{\pi}^2} \rightarrow \frac{1}{\tilde{q}^2 + M_{\pi}^2} \left(1 - \frac{p'^4 + p^4}{\Lambda^4} + \mathcal{O}(\Lambda^{-8})\right)$

\textit{affect long-range interactions…}

EE, Glöckle, Meißner '04;
Entem, Machleidt '03;
Entem, Machleidt, Nosyk '17; …
Regularization

The cutoff \(\Lambda \) has to be kept finite, \(\Lambda \sim \Lambda_b \) (unless all counterterms are taken into account in the calculations) [Lepage '97; EE, Gegelia '09]. In practice, low values of \(\Lambda \) are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for \(\Lambda > \Lambda_{\text{crit}} \) make calculations for \(A > 3 \) unfeasible…

\[\rightarrow \text{it is crucial to employ a regulator that minimizes finite-}\Lambda \text{artifacts!} \]

Nonlocal:

\[V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p^4+p^4}{\Lambda^4}}}{q^2 + M^2_\pi} \rightarrow \frac{1}{q^2 + M^2_\pi} \left(1 - \frac{p^4 + p^4}{\Lambda^4} + \mathcal{O}(\Lambda^{-8}) \right) \]

affect long-range interactions…

Local:

\[V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{q^2+M^2_\pi}{\Lambda^2}}}{q^2 + M^2_\pi} \rightarrow \frac{1}{q^2 + M^2_\pi} (1 + \text{short-range terms}) \]

\[\rightarrow \text{does not affect long-range physics at any order in } 1/\Lambda^2\text{-expansion} \]

- Application to \(2\pi \) exchange does not require re-calculating the corresponding diagrams:

\[V(q) = \frac{2}{\pi} \int_{2M_\pi}^{\infty} \mu \, d\mu \, \frac{\rho(\mu)}{q^2 + \mu^2} + \ldots \overset{\text{reg}}{\rightarrow} V_\Lambda(q) = \frac{2}{\pi} \int_{2M_\pi}^{\infty} \mu \, d\mu \, \frac{\rho(\mu)}{q^2 + \mu^2} e^{-\frac{q^2}{2\Lambda^2}} + \ldots \]

- Convention: choose polynomial terms such that \(\Delta^n V_{\Lambda, \text{long}}(r^2) \big|_{r=0} = 0 \)
Regularization

Regularized 2π-exchange potential:

$$W_{C,\Lambda}(q) = e^{-\frac{q^2}{2\Lambda^2}} \frac{2}{\pi} \int_{2M_\pi^2}^{\infty} \mu \, d\mu \, \frac{\rho(\mu)}{q^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}}$$

Various regularization approaches

$\Lambda = 500$ MeV

Does it matter in practice?
To fix NN contact interactions, use scattering data together with $B_d = 2.224575(9)$ MeV and $b_{np} = 3.7405(9)$ fm.

Since 1950-es, about 3000 proton-proton + 5000 neutron-proton scattering data below 350 MeV have been measured.

However, certain data are mutually incompatible within errors and have to be rejected. The 2013 Granada database [Navarro-Perez et al., PRC 88 (2013) 064002], rejection rate: 31% np, 11% pp: 2158 proton-proton + 2697 neutron-proton data below $E_{lab} = 300$ MeV.
- Significant correlations within the 1S_0 and 3S_1-3D_1 channels but little correlations otherwise. Still, all LECs can be accurately determined...

- Natural units for the LECs according to NDA:

$$|\tilde{C}_i| \sim \frac{4\pi}{F^2}, \quad |C_i| \sim \frac{4\pi}{F^2\Lambda^2}, \quad |D_i| \sim \frac{4\pi}{F^2\Lambda^4}, \quad |E_i| \sim \frac{4\pi}{F^2\Lambda^6}$$

Assuming $\Lambda_b = 600$ MeV [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, Klco, Phillips, Wesolowski, PRC 92 (15) 024005], the LECs come out of a natural size.

Absolute values of the LECs in natural units
• Significant correlations within the 1S_0 and 3S_1-3D_1 channels but little correlations otherwise. Still, all LECs can be accurately determined…

• Natural units for the LECs according to NDA:

$$|\tilde{C}_i| \sim \frac{4\pi}{F^2_i}, \quad |C_i| \sim \frac{4\pi}{F^2_i \Lambda_b^2}, \quad |D_i| \sim \frac{4\pi}{F^2_i \Lambda_b^4}, \quad |E_i| \sim \frac{4\pi}{F^2_i \Lambda_b^6}$$

Assuming $\Lambda_b = 600$ MeV [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, Klco, Phillips, Wesolowski, PRC 92 (15) 024005], the LECs come out of a natural size.

Absolute values of the LECs in natural units

signals that Λ_b gets affected by the too soft choice of Λ…
— N⁴LO⁺ yields currently the best description of the 2013 Granada database
— 40% less parameters (27+1) compared to high-precision potentials
— Clear evidence of the parameter-free chiral 2π exchange
State-of-the-art NN potentials

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

neutron-proton data

- $E_{\text{lab}} = 0 - 100 \text{ MeV}$
- $E_{\text{lab}} = 0 - 200 \text{ MeV}$
- $E_{\text{lab}} = 0 - 300 \text{ MeV}$

proton-proton data

- $E_{\text{lab}} = 0 - 100 \text{ MeV}$
- $E_{\text{lab}} = 0 - 200 \text{ MeV}$
- $E_{\text{lab}} = 0 - 300 \text{ MeV}$

- $N^4\text{LO}^+$, Entem, Machleidt, Nosyk, PRC 96 (2017) 024004
- (3 more LECs)

- $N^4\text{LO}^+$, this work

- χ^2/datum

- Λ [MeV]
Careful error analysis: (i) truncation error [EE, Krebs, Meißner EPJ A51 (15)], (ii) statistical uncertainty (NN LECs), (iii) uncertainty due to πN LECs and (iv) choice of the energy range in the fits.
Careful error analysis: (i) truncation error [EE, Krebs, Mei\ss ner EPJ A51 (15)], (ii) statistical uncertainty (NN LECs), (iii) uncertainty due to πN LECs and (iv) choice of the energy range in the fits.

Example: deuteron asymptotic normalizations (relevant for nuclear astrophysics)

Our determination:

\[
A_S = 0.8847_{-3}^{(+3)}(3)(5)(1) \text{fm}^{-1/2}
\]

\[
\eta \equiv \frac{A_D}{A_S} = 0.0255_{-1}^{(+1)}(1)(4)(1)
\]

Exp: \(A_S = 0.8781(44) \text{fm}^{-1/2}, \ \eta = 0.0256(4) \)

Borbely et al. ’85

Rodning, Knutson ’90

Nijmegen PWA [errors are „educated guesses‟] Stoks et al. ’95

\(A_S = 0.8845(8) \text{fm}^{-1/2}, \ \eta = 0.0256(4) \)

Granada PWA [errors purely statistical] Navarro Perez et al. ’13

\(A_S = 0.8829(4) \text{fm}^{-1/2}, \ \eta = 0.0249(1) \)
Three-nucleon forces

N²LO: tree-level graphs, 2 new LECs
 van Kolck '94; EE et al '02

N³LO: leading 1 loop, parameter-free
 Ishikawa, Robilotta '08; Bernard, EE, Krebs, Meißner '08, '11

N⁴LO: full 1 loop, almost completely worked out, several new LECs
 Girlanda, Kievski, Viviani '11; Krebs, Gasparyan, EE '12,'13; EE, Gasparyan, Krebs, Schat '14

LENPIC: Low Energy Nuclear Physics International Collaboration
Three-nucleon forces

^2LO: tree-level graphs, 2 new LECs
van Kolck '94; EE et al '02

LENPIC: Low Energy Nuclear Physics International Collaboration
\textbf{Three-nucleon forces} \\

\textbf{N}²\textbf{LO}: tree-level graphs, 2 new LECs \\
\textit{van Kolck '94; EE et al '02} \\

\textbf{Determination of the LECs }c_D, c_E \\
– Triton BE (c_D-c_E correlation) \\
– Explore various possibilities and let theory and/or data decide… \\

\begin{itemize}
 \item pd minimum of d\alpha/d\theta at 135 MeV [Sekiguchi et al.'02]
 \item nd \sigma_{tot} at 135 MeV [Abfalterer et al.'01]
 \item pd minimum of d\alpha/d\theta at 108 MeV [Ermisch et al.'03]
 \item nd \sigma_{tot} at 108 MeV [Abfalterer et al.'01]
 \item pd minimum of d\alpha/d\theta at 70 MeV [Sekiguchi et al.'02]
 \item nd \sigma_{tot} at 70 MeV [Abfalterer et al.'01]
 \item nd scattering length a [Schoen et al.'03]
\end{itemize}

LENPIC, to appear \\
[based on the EKM potential, $R = 0.9$ fm]
Three-nucleon forces

\[\text{N}^2\text{LO}: \text{tree-level graphs, 2 new LECs} \]
van Kolck '94; EE et al '02

Determination of the LECs \(c_D, c_E \)

- Triton BE (\(c_D-c_E \) correlation)
- Explore various possibilities and let theory and/or data decide...

\[\begin{align*}
\text{pd minimum of } d\sigma/d\theta \text{ at } 135 \text{ MeV} & \quad [\text{Sekiguchi et al.'02}] \\
\text{nd } \sigma_{\text{tot}} \text{ at } 135 \text{ MeV} & \quad [\text{Abfalder et al.'01}] \\
\text{pd minimum of } d\sigma/d\theta \text{ at } 108 \text{ MeV} & \quad [\text{Ermisch et al.'03}] \\
\text{nd } \sigma_{\text{tot}} \text{ at } 108 \text{ MeV} & \quad [\text{Abfalder et al.'01}] \\
\text{pd minimum of } d\sigma/d\theta \text{ at } 70 \text{ MeV} & \quad [\text{Sekiguchi et al.'02}] \\
\text{nd } \sigma_{\text{tot}} \text{ at } 70 \text{ MeV} & \quad [\text{Abfalder et al.'01}] \\
\text{nd scattering length } a & \quad [\text{Schoen et al.'03}] \\
\end{align*} \]

LENPIC, to appear
[based on the EKM potential, \(R = 0.9 \text{ fm} \)]

yields the strongest constraint...

LENPIC: Low Energy Nuclear Physics International Collaboration
Nd total cross section at 70 MeV (preliminary)

LENPIC: Low Energy Nuclear Physics International Collaboration
Light nuclei (preliminary)
Summary and outlook

Nuclear Hamiltonian:
- derivation of contributions up to N^3LO completed already in 2011; derivation of N^4LO corrections done for V_{2N} and almost done for V_{3N} (new LECs…) and V_{4N}
- accurate & precise $2N$ potentials at N^4LO$^+$ are available,
- promising results for few-N systems based on $2NF + 3NF@N^2$LO [LENPIC]

Electroweak current operators:
- have been worked out completely to N^3LO
- some πN LECs in 1π axial charge at N^3LO are unknown…
 [lattice QCD? ν-induced π-production? resonance saturation? large-N_c?…]

Work in progress:
- regularization of $3NF$ & currents beyond N^2LO (nontrivial to maintain χ-symm!)

Next steps:
- Precision tests of the theory for 3H β decay & μ capture (validation)
- Extension to other processes, heavier nuclei, N^4LO, explicit Δ’s, …