b-jet tagging performance with ALICE at the LHC

Barbara Trzeciak (Utrecht University) on behalf of the ALICE Collaboration

CIPANP 2018
Palm Springs, CA
May 29 – June 3 2018
b-jets: Motivation

- **pp collisions**: sensitive probes of pQCD
- **pA collisions**: initial-state effects
- **AA collisions**: energy loss of hard-scattered partons via collisional and radiative processes
 - Flavour dependence of the jet quenching
 - Spatial redistribution of the lost energy

- **b-jets**: probes of the QGP transport properties

- Mass effects relevant $p_T < 70$ GeV/c
 - Lower jet p_T reach with ALICE
b-jets with ALICE

- Charged constituents (ITS, TPC): “charged” jets
- + neutral constituents (EMCAL, DCAL): full jets
- Reconstruction using anti-\(k_T\) algorithm
b-jets with ALICE

- Charged constituents (ITS, TPC): “charged” jets
- + neutral constituents (EMCAL, DCAL): full jets
- Reconstruction using anti-$$k_T$$ algorithm
 - b-tagging exploiting:
 - B-hadron long lifetime, $$c\tau \sim 500$$ $$\mu$$m
 - Displaced from primary vertex
 - Its large mass
 - Studied b-tagging algorithms:
 - Secondary vertex: using displaced vertices
 - Track counting: based on single tracks
 - Via heavy-flavour electron identification (charm+beauty)

http://bartosik.pp.ua/hep_sketches/btagging
I. Secondary Vertex algorithm

- Exploiting long lifetime and large vertex mass

- TPC and ITS used for tracking and secondary vertex reconstruction
 - Track impact parameter d_0 resolution $< 75 \, \mu m$ for $p_T > 1 \, \text{GeV}/c$
 - Secondary vertex resolution $\sim 120 \, \mu m$

- b-jet if B-hadron within given R
- Otherwise c-jet if charm hadron within given R
- Otherwise light-flavour jet

[Diagram showing resolution vs. p_T]
SV algorithm: Simulations

- p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV, Pythia 6 + Hijing
- FastJet anti-k_T, $R = 0.4$, $p_T^{\text{track}} > 150$ MeV/c
- 3-prong vertices: vertices reconstructed from 3-track combinations, $p_T^{\text{prong}} > 1$ GeV/c

Discriminators:

- Significance of signed secondary vertex flight distance $L_{xy}/\sigma_{L_{xy}}$:

 \[L_{xy} = |\vec{L}'| \text{sign} (\vec{L}' \cdot \vec{p}_{\text{jet}}) \]

 \vec{L}' - vector between primary and secondary vertices

 $\sigma_{L_{xy}}$ - uncertainty corresponding to L_{xy}

- SV dispersion (vertex quality measure):
 \[\sigma_{vtx} = \sqrt{d_1^2 + d_2^2 + d_3^2} \]

 $d_{1,2,3}$ - distances of the tracks from secondary vertex
SV algorithm: Performance

- “Rectangular” cuts on the vertex properties
 - b-jet tagging efficiency and c-/udsg-jet misidentification
 - The higher b-jet efficiency, the higher the c-/udsg-jet mistagging efficiency

→ Find condition of high purity and reasonably high efficiency
SV algorithm: Unfolding

- SVD (Singular Value Decomposition) [1] used for unfolding
- Background subtraction: background density calculated using CMS method [2], soft clusters found using FastJet k_T with $R = 0.4$
- Background density: $\rho_{\text{CMS}} = \text{median}\{ \frac{p_{T,i}}{A_i} \} \cdot C$

 C: correction factor for empty clusters

- Unfolding with combined detector and background fluctuations matrix
 - Background fluctuations using Random Cone method in MC: $\delta p_T = \sum_i p_{T,i} - \rho A_{\text{cone}}$

- Correction stability tests performed
 - E.g.: applying efficiency and purity corrections before and after the unfolding

II. Track Counting algorithm

- Impact parameter \(d_0 \) in \(r\phi \) for each track within a jet
 \[\text{sign}(d_0^\text{jet}) = \text{sign}(\vec{d}_0 \cdot \vec{p}_{T,jet}) \]
 ➔ Discriminator:
 third, second or first (N=3,2,1) most displaced sign(\(d_0^\text{jet}\))

- Pythia simulation: pp at \(\sqrt{s} = 7 \) TeV
 - FastJet anti-\(k_T \), \(R=0.4 \)
 - \(p_{T,\text{track}} > 150 \text{ MeV}/c \)
 - \(p_{T,jet} > 10 \text{ GeV}/c \)
 - \(d_0 r\phi > 0.2 \text{ cm} \)
 - DCA(jet,track) < 700 \(\mu \text{m} \)
 - \(\Delta R(\text{jet,track}) < 0.3 \)

Pythia simulation pp \(\sqrt{s}=7 \text{ TeV} \)
\[\text{Anti-} k_T, \ R=0.4 \]
\[|y| < 0.5, \ p_{T,jet} > 10 \text{ GeV/c} \]
\[\varepsilon_{b\text{-jet}} \text{ tagging } = 0.1 \]

\(d_0 \) \(r\phi \) for each track within a jet

CIPANP, 31 May 2018
B.Trzeciak, b-jets in ALICE
III. Machine-Learning based algorithm

- ML techniques applied to several low-level inputs: constituents, secondary vertices, track impact parameters
- General design: multibranched, multilayered neural network
- Different networks tested on different features

- Features:
 - Array of secondary vertices:
 - \((x,y,z)\) rel. to primary vertex
 - Transverse plane distance and uncertainty: \(L_{xy}, \sigma_{xy}\)
 - Vertex track dispersion \(\sigma_{vtx}\), fit quality \(\chi^2\)
 - Array of constituents:
 - \(\eta, \phi, r\) (relative to jet axis)
 - Track impact parameters \(D, Z\) and \(j_T\)

\[
\begin{align*}
\text{Secondary vertices:} & \quad (\nu, \nu, \nu, \sigma_v, \chi^2, L, \sigma_\nu), \\
\text{Jet constituents:} & \quad \eta, \phi, r, \text{Impact param., } j_T, \\
\text{High-level properties:} & \quad \text{Jet shapes, } \text{jet } p_T, N_{\text{const}}
\end{align*}
\]
ML method: Simulations

- p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV, Pythia 6 + Hijing
- FastJet anti-k_T, $R = 0.4$
- Underlying event corrected
- 200k training, 50k validation samples
 - Control parameters: accuracy and loss
 - Slow learning up to high epoch counts
 - Learning rate parameters lowered after 200 epoch
 - Not much to gain with longer training
ML method: Simulations

- p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV, Pythia 6 + Hijing
- FastJet anti-k_T, $R = 0.4$
- Underlying event corrected
- 200k training, 50k validation samples
 - Control parameters: accuracy and loss
 - Slow learning up to high epoch counts
 - Learning rate parameters lowered after 200 epoch
 - Not much to gain with longer training
 - AUC: Area Under ROC Curve, slow but constant learning up to 220 epoch
 - Clearly separated score distribution
ML method: Simulations

- p-Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, Pythia 6 + Hijing
- FastJet anti-k_T, $R = 0.4$
- Underlying event corrected
- 200k training, 50k validation samples
 - Control parameters: accuracy and loss
 - Slow learning up to high epoch counts
 - Learning rate parameters lowered after 200 epoch
 - Not much to gain with longer training
 - AUC: Area Under ROC Curve, slow but constant learning up to 220 epoch
 - Clearly separated score distribution

- Comparison to “rectangular” cuts method
- Optimizing: b-jet tagging and c-/udsg-mistagging efficiency
ML: b-jet vs c,udsg mistagging efficiency

- Mistagging efficiency much lower for c-/udsg-jets
- Very promising method

- Solid: ML-based method
- Dashed: cut-based method (previous SV slides)
ML: Mistagging efficiency vs jet p_T

- Mistagging efficiency vs jet p_T
- Fixed (~20%) b-jet efficiency to compare to cut-based method

- Solid: ML-based method
- Open: cut-based method (previous SV slides)
ML: Mistagging efficiency

- Mistagging efficiency for higher b-jet efficiencies
 - c-jet efficiency: below 5-10%
 - udsg-jet efficiency: below 0.5-1%

- Higher b-jet efficiency possible
 - Solid: c-jets
 - Open: udsg-jets
Summary

- Performances of different b-tagging jet algorithms have been studied in pp and p-Pb MC simulations
 - Based on track counting, displaced secondary vertices and machine learning

- **Very promising ML-based method in pp, p-Pb**
 - Allows for much higher b-jet efficiency

- Data analysis (in pp and p-Pb) being finalized
- Studies will be extended to Pb-Pb collisions: upcoming Pb-Pb run and run 3 and 4
 - Major detector upgrade with new ITS (x3 (x5) better spatial resolution on $r\phi$ (z) coordinates), improved readout (able to sustain 50 kHz Pb-Pb collisions: collect $L_{int}=10 \text{ nb}^{-1}$, x100 gain for min. bias)

 - **Major boost for heavy-flavour jet physics with ALICE**
Summary

- Performances of different b-tagging jet algorithms have been studied in pp and p-Pb MC simulations
 - Based on track counting, displaced secondary vertices and machine learning
 - **Very promising ML-based method in pp, p-Pb**
 - Allows for much higher b-jet efficiency
- Data analysis (in pp and p-Pb) being finalized
- Studies will be extended to Pb-Pb collisions: upcoming Pb-Pb run and run 3 and 4
 - Major detector upgrade with new ITS (x3 (x5) better spatial resolution on r_ϕ (z) coordinates), improved readout (able to sustain 50 kHz Pb-Pb collisions: collect $L_{int}=10$ nb$^{-1}$, x100 gain for min. bias)
 - **Major boost for heavy-flavour jet physics with ALICE**