Heavy Ion Highlights from the experiment

CMS Experiment at LHC, CERN
Data recorded: Sat Nov 12 16:47:55 2016 CET
Run/Event: 265216 / 269187420

Manuel Calderón de la Barca Sánchez
for the CMS Collaboration

CIPANP
Palm Springs, May 2018
Physics Highlights from CMS Heavy Ions

- Onset of collective effects: from small systems to PbPb
 - Are QGP effects present even in pPb?
- System size dependence of QGP effects: XeXe vs. PbPb.
- Flavor dependence of parton shower modification: gluon vs quark vs Heavy Quark
- Quark distribution functions in Pb: W boson measurements
- Quarkonia in hot medium
- New physics observables:
 - Limits on chiral-magnetic effect
 - Observation of light-by-light scattering
COLLECTIVE EFFECTS: AZIMUTHAL CORRELATIONS

Kolb et al., PRC 62 (2000) 054909
Strange and charm v_2 in pPb

- Charm (D^0, J/ψ) and strange quark flow in pPb

 - Charm v_2 observed in pPb collisions.
 - Weaker than flow for light quarks for $K_{ET}/n_q > 1$ GeV.
 - Less collectivity for charm quarks in pPb?

arXiv:1804.09767, CMS PAS HIN-18-010
Collectivity in small systems

- Suppressing contamination (jets, resonances) in low multiplicity events using η subevents
- Goal: understand onset of collective behavior

CMS PAS HIN-18-015

$N_{\text{trk}} > 80$: All methods consistent.
\Rightarrow negligible contamination

$N_{\text{trk}} < 80$: Contamination suppressed via subevents.

\Rightarrow Observe v_2, v_3 anti-correlation in pPb collisions for $N_{\text{trk}} \sim 50$.

\Rightarrow Similar to PbPb: attributed to hydrodynamic flow.

31-May-18

Manuel Calderón de la Barca Sánchez
Higher harmonics: PbPb and pPb

\(v_2 \), pPb vs PbPb:
- Multiparticle \(v_2 > 0 \) in both pPb and PbPb:
 - Collective behavior.
- Different trend with multiplicity
 - Fluctuation-driven eccentricity decreases in pPb?

\(v_3 \), pPb vs PbPb
- Comparable
 - Dominated by initial state geometry fluctuation
 - pPb: consistent with magnitude from hydro
SYSTEM SIZE DEPENDENCE

XeXe measurements

\[5.4 \text{ fm} \]

\[\text{Xe} \]

\[6.6 \text{ fm} \]

\[\text{Pb} \]
XeXe: Particle production

- XeXe ~1.4 less multiplicity than PbPb.
- For $N_{\text{part}} \sim 200$, Xe produces more particles per participant than Pb.
- No system size scaling
Flow in XeXe

- Xe v_2 higher than Pb in central, lower in peripheral
 - Most-central events: Xe quadrupole deformation matters.
- v_3 behavior as expected, but not v_4?

31-May-18
Manuel Calderón de la Barca Sánchez
XeXe: high-\(p_T\) hadron suppression

\[R_{AA}^* : \]
- Similar scaling with \(N_{\text{part}}\) in Xe and Pb.
- At same \(N_{\text{part}}\), \(R_{AA}(p_T)\) consistent within uncertainties between Xe and Pb.
Studying the QGP density and Temperature via

HARD PROBES

Jet Energy Loss/Tomography

Quarkonium Melting

Production

\[\mu^{-1} \]

In-medium Energy Loss

Fragmen-tation

\[p \]

\[k \]

\[\lambda \]

\[q \]

\[L \]

\[T=0 \]

\[T_{C}>T>0 \]

\[T>T_{C} \]

J/ψ
Photon-tagged jet fragmentation

- Final state: γ-quark
 - photon p_T constrains parton energy.
- Quark enriched sample:
 - flavor dependence of jet quenching.
- Most central collisions:
 - Depletion of high momentum particles
 - Sensitive to hard parton shower
 - Enhancement of particles carrying small fraction of jet momentum
 - Recoil

\begin{align*}
\sqrt{s_{NN}} &= 5.02 \text{ TeV} \\
PbPb &= 404 \mu b^{-1} \\
p p &= 27.4 \text{ pb}^{-1}
\end{align*}

\begin{align*}
p_T^{\text{trk}} &> 1 \text{ GeV/c, anti-}k_T \text{ jet } R = 0.3 \\
p_T^{\text{jet}} &> 30 \text{ GeV/c, } |\eta|^{\text{jet}} < 1.6 \\
p_T^{\gamma} &> 60 \text{ GeV/c, } |\eta|^{\gamma} < 1.44, \Delta \phi^{\gamma} > \frac{7\pi}{8}
\end{align*}
Jet Shapes: gluon vs quarks

Observe Jet-shape modification in PbPb compared to pp

r~0.1: Depletion for inclusive jets, no depletion for photon-tagged jets.

- Due to changing q/g fraction for inclusive sample?

r>0.15: Redistribution of energy to large angle for both light quark and gluon jets

Inclusive: Gluon/quark mixture

γ-jet: quark dominated

CMS PbPb, $\sqrt{s_{NN}} = 2.76$ TeV

- anti-k_T jets: $R = 0.3$

CMS PbPb, $\sqrt{s_{NN}} = 5.02$ TeV

- pp 27.4 pb$^{-1}$, PbPb 404 μb$^{-1}$

$\rho(r)$

$\rho(r)_{PbPb}/\rho(r)_{pp}$

Cent. 0 - 10%
How does the jet-shape modification depend on p_T?

Peripheral collisions: radial distribution similar to pp

Central collisions: enhancement of low p_T tracks, depletion for $p_T > 4$ GeV

Inclusive: Quark/Gluon Mixture

$P(\Delta r)_{PbPb}/P(\Delta r)_{pp}$

- $p_{\text{trk}}^{T} > 0.7$ GeV
- $p_{\text{trk}}^{T} > 2$ GeV
- $p_{\text{trk}}^{T} > 4$ GeV

Central 0-10%
Jet shapes: charm quarks

- Radial distributions of D0’s in pp and PbPb

- Indication that D mesons are further away from jet axis in PbPb.
Jet substructure via groomed jet mass

Jet grooming: sequentially prune soft constituents of jet until pair of hard subjets is found ⇒ information about hard splitting in medium

Flat : insensitive to multiple emissions
Large angle: Focus on jet core

Jet core unaffected by medium

Possible high mass enhancement

Jet quenching models do not describe large mass data for both large angle and flat grooming

PRL 120 (2018) 142302
arXiv:1805.05145
31-May-18

Manuel Calderón de la Barca Sánchez
Non-prompt D: Beauty suppression

- First measurement of non-prompt $D^0 R_{AA}$.

- Non-prompt D^0 and non-prompt J/ψ: b hadrons less suppressed than prompt D^0 and light hadrons for $p_T<10$ GeV/c
 - Consistent with dead-cone effect for heavy quarks.

31-May-18
Manuel Calderón de la Barca Sánchez
Strange B mesons

- First probe of recombination between beauty and strange quarks.

- Hint of enhancement of B_s with respect to B^+.
 - Recombination with abundantly produced s quarks in QGP?

31-May-18
Manuel Calderón de la Barca Sánchez
Charmonia: J/ψ and $\psi(2S)$

- $\psi(2S)$ $R_{AA} < J/\psi$ R_{AA}
 - Observed in both PbPb and pPb
- Effects beyond shadowing and energy loss in pPb
- Quantitative comparison in PbPb and pPb: towards disentangling cold vs. hot nuclear matter effects
Clear suppression of Upsilon family.
Sequential suppression observed in all centralities
\(\Upsilon(3S) \): smallest \(R_{AA} \) observed for any hadron.
Prompt J/ψ: PbPb and pp

- **PbPb**: Suppression of charm
 - Similar R_{AA} for open and hidden charm for $p_T>6.5$ GeV/c.

- **pp**: production of J/ψ in jets
 - J/ψ carries only half of jet p_T.
 - Not well described by Pythia.
Nuclear modification of quark PDF needed to describe our data.

- Constrains $q+\text{antiquark PDF } 10^{-3} < x < 10^{-1}$.
Nuclear PDFs with top quark

First experimental observation of the top quark in nuclear collisions (>5σ)

top cross section: Compatible with nPDF expectation.
Nuclear PDFs with dijets

Large $x (>0.3)$ in lead ions:
- Clearly suppressed wrt unbound nucleons
 - Inconsistent with DSSZ
 - Evidence of strong gluon EMC effect

Small x:
- Stronger shadowing effect than models
 - Data more precise than nPDF uncertainties
 - Improve description of gluon nPDF
NEW OBSERVABLES
Chiral magnetic effect: null result

CME signal: consistent with 0.

Possible CME signal in PbPb at LHC energies < 7% @ 95% CL
Significance of signal: 4.1σ observed (4.4σ expected)

Measured fiducial cross section:

- $\sigma_{\text{fid}} = 122 \pm 46$ (stat) ± 29 (syst) ± 4 (th) nb

Consistent with Standard Model:

- $\sigma_{\text{fid,SM}} = 138 \pm 14$ nb
Summary

- Redistribution of light and charm quarks within a jet
- Core of jet not modified
- Bottomonium melting. $\Upsilon(3S)$ smallest R_{AA} observed
- Hint for beauty recombination with strange
- XeXe similar to PbPb
- Evidence of guon EMC effect and quark modification in Pb
- First observation of top quark in nuclear collisions
- Collectivity in pPb down to $N_{trk}=50$
- CME effect not observable at LHC energies
- Observation of light-by-light scattering