Lattice QCD constraints on the QCD critical point

Alexei Bazavov
Michigan State University
June 2, 2018
Introduction

QCD phase diagram
Lattice gauge theory
Challenges

Results at $\mu_B = 0$
Chiral symmetry restoration

Results at $\mu_B > 0$
Curvature of the crossover line
The equation of state at $O(\mu_B^6)$
Freeze-out parameters
Constraints on the critical point

Conclusion
I Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase.

I Experimental program: RHIC, LHC, FAIR, NICA

I RHIC BES: search for the critical point

I First-principle calculations are possible at $\mu_B/T = 0$, expansions/extrapolations at small μ_B/T.

1Collins, Perry (1975), Cabbibo, Parisi (1975)
Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase\(^1\)

\(^1\)Collins, Perry (1975), Cabbibo, Parisi (1975)
Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase \(^1\)

Experimental program: RHIC, LHC, FAIR, NICA

\(^1\) Collins, Perry (1975), Cabbibo, Parisi (1975)
Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase\(^1\)

Experimental program: RHIC, LHC, FAIR, NICA

RHIC BES: search for the critical point

\(^1\)Collins, Perry (1975), Cabbibo, Parisi (1975)
Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase\(^1\)

Experimental program: RHIC, LHC, FAIR, NICA

RHIC BES: search for the critical point

First-principle calculations are possible at $\mu_B/T = 0$, expansions/extrapolations at small μ_B/T

\(^1\)Collins, Perry (1975), Cabbibo, Parisi (1975)
Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

\[
\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi] \mathcal{D}[A] \, \mathcal{O} \exp(-S_E(T, V, \bar{\mu})),
\]

\[
\mathcal{Z}(T, V, \bar{\mu}) = \int \mathcal{D}[\psi] \mathcal{D}[\psi] \mathcal{D}[A] \exp(-S_E(T, V, \bar{\mu})),
\]
Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

\[
\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \mathcal{O} \exp(-S_E(T, V, \bar{\mu})),
\]

\[
\mathcal{Z}(T, V, \bar{\mu}) = \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-S_E(T, V, \bar{\mu})),
\]

\[
S_E(T, V, \bar{\mu}) = -\int_0^{1/T} d\chi_0 \int_\mathcal{V} d^3x \mathcal{L}^E(\bar{\mu}),
\]
Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

\[
\langle \mathcal{O} \rangle = \frac{1}{Z} \int D[\psi] D[\bar{\psi}] D[A] \mathcal{O} \exp(-S_E(T, V, \bar{\mu})),
\]

\[
Z(T, V, \bar{\mu}) = \int D[\psi] D[\bar{\psi}] D[A] \exp(-S_E(T, V, \bar{\mu})),
\]

\[
S_E(T, V, \bar{\mu}) = -\int_0^{1/T} d\chi_0 \int d^3x \mathcal{L}_E^{\mathcal{E}}(\bar{\mu}),
\]

\[
\mathcal{L}_E^{\mathcal{E}}(\bar{\mu}) = \mathcal{L}_{QCD}^{\mathcal{E}} + \sum_{f=u,d,s} \mu_f \bar{\psi}_f \gamma_0 \psi_f
\]
Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

\[
\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \mathcal{O} \exp(-S_E(T, V, \bar{\mu})),
\]

\[
Z(T, V, \bar{\mu}) = \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-S_E(T, V, \bar{\mu})),
\]

\[
S_E(T, V, \bar{\mu}) = -\int_0^{1/T} d\chi_0 \int_0^V d^3x \mathcal{L}^E(\bar{\mu}),
\]

\[
\mathcal{L}^E(\bar{\mu}) = \mathcal{L}_{QCD}^E + \sum_{f=u,d,s} \mu_f \bar{\psi}_f \gamma_0 \psi_f
\]

- Introduce a (non-perturbative!) regulator – minimum space-time “resolution” scale \(a \), i.e. lattice, Wilson (1974)
Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

\[
\langle O \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \, O \exp(-S_E(T, V, \bar{\mu})),
\]

\[
\mathcal{Z}(T, V, \bar{\mu}) = \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-S_E(T, V, \bar{\mu})),
\]

\[
S_E(T, V, \bar{\mu}) = -\int_0^{1/T} d\chi_0 \int_V d^3x \mathcal{L}^E(\bar{\mu}),
\]

\[
\mathcal{L}^E(\bar{\mu}) = \mathcal{L}^E_{QCD} + \sum_{f=u,d,s} \mu_f \bar{\psi}_f \gamma_0 \psi_f
\]

- Introduce a (non-perturbative!) regulator – minimum space-time “resolution” scale \(a \), i.e. lattice, Wilson (1974)

- The lattice spacing \(a \) acts as a UV cutoff, \(p_{max} \sim \pi/a \)
Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

\[
\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[\mathcal{A}] \mathcal{O} \exp(-S_E(T, V, \bar{\mu})),
\]

\[
\mathcal{Z}(T, V, \bar{\mu}) = \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[\mathcal{A}] \exp(-S_E(T, V, \bar{\mu})),
\]

\[
S_E(T, V, \bar{\mu}) = -\frac{1}{T} \int_0^{1/T} dx_0 \int_V d^3x \mathcal{L}^E(\bar{\mu}),
\]

\[
\mathcal{L}^E(\bar{\mu}) = \mathcal{L}_{QCD}^E + \sum_{f=u,d,s} \mu_f \bar{\psi}_f \gamma_0 \psi_f
\]

- Introduce a (non-perturbative!) regulator – minimum space-time “resolution” scale \(a \), i.e. lattice, Wilson (1974)

- The lattice spacing \(a \) acts as a UV cutoff, \(p_{\text{max}} \sim \pi/a \)

- The integrals can be evaluated with importance sampling methods
Challenges

- Broken symmetries – e.g., Lorentz, chiral
Challenges

- Broken symmetries – e.g., Lorentz, chiral
- Fermion doubling

\[
\begin{align*}
Z &= Z_D[U]\ D[S\ G[U]_S]\ [U]\ \\
&= Z_D[U]\ e^{S_G[U]}\ \det|M[U]| \equiv \mathcal{Z}_{2}\ .
\end{align*}
\]

The effective action is highly non-local, Monte Carlo sampling is costly.
The computational cost is determined by the condition number of the fermion matrix, which scales with the inverse lightest quark mass.

Sign problem at $\mu_B > 0$.
Real-time properties are hard to access.
Challenges

- Broken symmetries – e.g., Lorentz, chiral
- Fermion doubling
- Grassmann fields (fermions) cannot be sampled, integrate them out:

\[
\mathcal{Z} = \int \mathcal{D}[U] \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] e^{-S_G[U] - S_F[\bar{\psi}, \psi, U]}
= \int \mathcal{D}[U] e^{-S_G[U]} \det |M[U]| \]
Challenges

- Broken symmetries – e.g., Lorentz, chiral
- Fermion doubling
- Grassmann fields (fermions) cannot be sampled, integrate them out:

\[
\mathcal{Z} = \int \mathcal{D}[U] \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] e^{-S_G[U] - S_F[\bar{\psi}, \psi, U]}
\]

\[
= \int \mathcal{D}[U] e^{-S_G[U]} \det |M[U]|
\]

- The effective action is highly non-local, Monte Carlo sampling is costly
- The computational cost is determined by the condition number of the fermion matrix, which scales with the inverse lightest quark mass
Challenges

- Broken symmetries – e.g., Lorentz, chiral
- Fermion doubling
- Grassmann fields (fermions) cannot be sampled, integrate them out:

\[
Z = \int \mathcal{D}[U]\mathcal{D}[\psi]\mathcal{D}[\bar{\psi}] e^{-S_G[U]-S_F[\bar{\psi},\psi,U]} \\
= \int \mathcal{D}[U] e^{-S_G[U]} \det |M[U]|
\]

- The effective action is highly non-local, Monte Carlo sampling is costly
- The computational cost is determined by the condition number of the fermion matrix, which scales with the inverse lightest quark mass
- Sign problem at $\mu_B > 0$
Challenges

- Broken symmetries – e.g., Lorentz, chiral
- Fermion doubling
- Grassmann fields (fermions) cannot be sampled, integrate them out:

\[
Z = \int \mathcal{D}[U] \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] e^{-S_G[U]} - S_F[\bar{\psi}, \psi, U]
\]

\[
= \int \mathcal{D}[U] e^{-S_G[U]} \det |M[U]|
\]

- The effective action is highly non-local, Monte Carlo sampling is costly
- The computational cost is determined by the condition number of the fermion matrix, which scales with the inverse lightest quark mass
- Sign problem at \(\mu_B > 0 \)
- Real-time properties are hard to access
How to access $\mu_B > 0$?

Method 1: Taylor expansion (Allton et al. (2002)), evaluate various derivatives at $\mu = 0$, e.g.

$$u_2 = \text{Tr} D_{\mu} M_1 u_{M_0} u (M_1 u_M) + \text{Tr} (M_1 u_M)$$

Method 2: Perform simulations at imaginary chemical potential, then evaluate the derivatives of $P(i\mu)$ (Lombardo (1999), de Forcrand, Philipsen (2002))

Methods 3, 4, ...: Complex Langevin dynamics, contour deformation, reweighting/density of states, ...
How to access $\mu_B > 0$?

- **Method 1**: Taylor expansion (Allton et al. (2002)), evaluate various derivatives at $\mu = 0$, e.g.

\[
\chi^u_2 = \frac{T}{V} \left\langle \text{Tr} \left(M_u^{-1} M''_u - (M_u^{-1} M'_u)^2 \right) + \left(\text{Tr}(M_u^{-1} M'_u) \right)^2 \right\rangle
\]
How to access $\mu_B > 0$?

- **Method 1**: Taylor expansion (Allton et al. (2002)), evaluate various derivatives at $\mu = 0$, e.g.

 $$
 \chi_2^u = \frac{T}{V} \left< \text{Tr} \left(M_u^{-1} M''_u - (M_u^{-1} M'_u)^2 \right) + \left(\text{Tr}(M_u^{-1} M'_u) \right)^2 \right>
 $$

- **Method 2**: Perform simulations at imaginary chemical potential, then evaluate the derivatives of $P(i\mu)$ (Lombardo (1999), de Forcrand, Philipsen (2002))
How to access $\mu_B > 0$?

- **Method 1**: Taylor expansion (Allton et al. (2002)), evaluate various derivatives at $\mu = 0$, e.g.
 \[
 \chi_2^u = \frac{T}{V} \left\langle \text{Tr} \left(M_u^{-1} M''_u - (M_u^{-1} M'_u)^2 \right) + \left(\text{Tr}(M_u^{-1} M'_u) \right)^2 \right\rangle
 \]

- **Method 2**: Perform simulations at imaginary chemical potential, then evaluate the derivatives of $P(i\mu)$ (Lombardo (1999), de Forcrand, Philipsen (2002))

- **Methods 3, 4, ...**: Complex Langevin dynamics, contour deformation, reweighting/density of states, ...
Method 1: Taylor expansion

- The chemical potentials for conserved charges B, Q, S:

\[
\begin{align*}
\mu_u &= \frac{1}{3} \mu_B + \frac{2}{3} \mu_Q, \\
\mu_d &= \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q, \\
\mu_s &= \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q - \mu_s
\end{align*}
\]
Method 1: Taylor expansion

The chemical potentials for conserved charges B, Q, S:

\[
\begin{align*}
\mu_u &= \frac{1}{3}\mu_B + \frac{2}{3}\mu_Q, \\
\mu_d &= \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q, \\
\mu_s &= \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q - \mu_S.
\end{align*}
\]

The pressure can be expanded in Taylor series

\[
\frac{P}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \hat{\mu}_B^i \hat{\mu}_Q^j \hat{\mu}_S^k
\]
Method 1: Taylor expansion

- The chemical potentials for conserved charges B, Q, S:

\[
\mu_u = \frac{1}{3} \mu_B + \frac{2}{3} \mu_Q,
\]
\[
\mu_d = \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q,
\]
\[
\mu_s = \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q - \mu_S
\]

- The pressure can be expanded in Taylor series

\[
\frac{P}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i! j! k!} \hat{\mu}_B^i \hat{\mu}_Q^j \hat{\mu}_S^k
\]

- The generalized susceptibilities are evaluated at vanishing chemical potential

\[
\chi_{ijk}^{BQS} \equiv \chi_{ijk}^{BQS}(T) = \frac{\partial P(T, \hat{\mu})/T^4}{\partial \hat{\mu}_B^i \partial \hat{\mu}_Q^j \partial \hat{\mu}_S^k} \bigg|_{\hat{\mu}=0}, \quad \hat{\mu} \equiv \frac{\mu}{T}
\]
Fluctuations of conserved charges

Strangeness (left) and baryon number (right) fluctuations
The number densities can also be represented with Taylor expansions:

\[
\frac{n_X}{T^3} = \frac{\partial P}{\partial \mu_X}, \quad X = B, Q, S
\]
Constrained series expansions

- The number densities can also be represented with Taylor expansions:

\[
\frac{n_X}{T^3} = \frac{\partial P}{\partial \hat{\mu}_X} T^4, \quad X = B, Q, S
\]

- In heavy-ion collisions there are additional constraints:

\[
n_S = 0, \quad \frac{n_Q}{n_B} = 0.4
\]
Constrained series expansions

- The number densities can also be represented with Taylor expansions:

\[
\frac{n_X}{T^3} = \frac{\partial P}{T^4 \partial \hat{\mu}_X}, \quad X = B, Q, S
\]

- In heavy-ion collisions there are additional constraints:

\[
n_S = 0, \quad \frac{n_Q}{n_B} = 0.4
\]

- These constraints can be fulfilled by

\[
\begin{align*}
\hat{\mu}_Q(T, \mu_B) &= q_1(T)\hat{\mu}_B + q_3(T)\hat{\mu}_B^3 + q_5(T)\hat{\mu}_B^5 + \ldots , \\
\hat{\mu}_S(T, \mu_B) &= s_1(T)\hat{\mu}_B + s_3(T)\hat{\mu}_B^3 + s_5(T)\hat{\mu}_B^5 + \ldots
\end{align*}
\]
Method 2: Imaginary chemical potential2

\[\frac{d(p/T^4)}{d\mu} \]

\(T_c(\mu) \)

\text{continuation}

\(\mu^2/T^2 \)

\(\kappa \)

\text{lattice simulations} \hspace{1cm} \text{real chemical potentials}

\text{Roberge-Weiss}

\text{many exploratory studies:}

\[\text{[de Forcrand & Philipsen hep-lat/0205016]} \]
\[\text{[Philipsen 0708.1293]} \]
\[\text{[Philipsen 1402.0838]} \]
\[\text{[Cea et al hep-lat/0612018,0905.1292,1202.5700]} \]

\text{Figure from the talk at Quark Matter 2018 by S. Borsanyi}

2Figure from the talk at Quark Matter 2018 by S. Borsanyi
Baryon number susceptibilities

χ_2^B, χ_4^B, χ_6^B, χ_8^B vs T/MeV.

3Borsanyi et al. [WB], 1805.04445
Results at $\mu_B = 0$
Chiral symmetry restoration

- Chiral condensate and susceptibility

\[
\langle \bar{\psi}\psi \rangle_f = \frac{T}{V} \frac{\partial \ln Z}{\partial m_f}, \quad \chi(T) = \frac{\partial \langle \bar{\psi}\psi \rangle_f}{\partial m_f}
\]
Chiral symmetry restoration

- Chiral condensate and susceptibility

\[\langle \bar{\psi} \psi \rangle_f = \frac{T}{V} \frac{\partial \ln Z}{\partial m_f}, \quad \chi(T) = \frac{\partial \langle \bar{\psi} \psi \rangle_f}{\partial m_f} \]
Chiral symmetry restoration

- Chiral condensate and susceptibility

\[\langle \bar{\psi} \psi \rangle_f = \frac{T}{V} \frac{\partial \ln Z}{\partial m_f}, \quad \chi(T) = \frac{\partial \langle \bar{\psi} \psi \rangle_f}{\partial m_f} \]

The chiral crossover temperature at \(\mu_B = 0 \) (Borsanyi et al. [BW] (2010), Bazavov et al. [HotQCD] (2012))

\[T_c = 154 \pm 9 \text{ MeV} \]
Chiral symmetry restoration (update)4

The chiral crossover temperature at $\mu_B = 0$ (HotQCD, preliminary)

$$T_c = 156.5 \pm 1.5 \text{ MeV}$$

4Figure from the talk at Quark Matter 2018 by P. Steinbrecher
Chiral symmetry restoration (update)5

- Comparison with earlier results

![Graph showing comparison with earlier results](image)

5Figure from talk at Quark Matter 2018 by P. Steinbrecher
Results at $\mu_B > 0$
Curvature of the chiral crossover line

- Change in the chiral crossover temperature with μ_B

\[
\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_c(0)} \right)^2 - \kappa_4 \left(\frac{\mu_B}{T_c(0)} \right)^4 + O(\mu_B^6)
\]

\[\text{Figure from the talk at Quark Matter 2018 by M. D’Elia}\]
Chiral crossover at $\mu_B > 0$

The magnitude of the chiral susceptibility shows almost no change with increasing $\mu_B > 0$.

No indication that the crossover is getting stronger.

Similar conclusion from the baryon number fluctuations along the crossover line.

Figure from the talk at Quark Matter 2018 by P. Steinbrecher
Chiral crossover at $\mu_B > 0$

The magnitude of the chiral susceptibility shows almost no change with increasing $\mu_B > 0$.
Chiral crossover at $\mu_B > 0$

The magnitude of the chiral susceptibility shows almost no change with increasing $\mu_B > 0$

No indication that the crossover is getting stronger

Figure from the talk at Quark Matter 2018 by P. Steinbrecher
The magnitude of the chiral susceptibility shows almost no change with increasing $\mu_B > 0$.

No indication that the crossover is getting stronger.

Similar conclusion from the baryon number fluctuations along the crossover line.

Figure from the talk at Quark Matter 2018 by P. Steinbrecher

May 16, 2018

Patrick Steinbrecher

Slide 20
The equation of state at $O(\mu_B^6)$

- The equation of state at $\mu_B = 0$

8 Borsanyi et al. [WB] (2014), Bazavov et al. [HotQCD] (2014)
The equation of state at $O(\mu_B^6)$

- The equation of state at $\mu_B = 0^8$

- Additional contribution at $\mu_B > 0$, $\mu_Q = \mu_S = 0$:

\[
\frac{\Delta P}{T^4} = \frac{1}{2} \frac{\chi_2^B(T)\hat{\mu}_B^2}{\chi_2^B(T)} \left(1 + \frac{1}{12} \frac{\chi_4^B(T)\hat{\mu}_B^2}{\chi_2^B(T)} + \frac{1}{360} \frac{\chi_6^B(T)\hat{\mu}_B^4}{\chi_2^B(T)} + \ldots \right)
\]

\(^8\)Borsanyi et al. [WB] (2014), Bazavov et al. [HotQCD] (2014)
Bazavov et al. [HotQCD] (2017)
The equation of state at $O(\mu_B^6)$

- The contribution to the pressure due to finite chemical potential (left) and the baryon number density (right) for strangeness neutral systems:

$$n_S = 0, \quad \frac{n_Q}{n_B} = 0.4$$
Relativistic heavy-ion collisions

- Cumulants of the event-by-event multiplicity distributions:

\[
C_1 = \langle N \rangle, \quad C_2 = \langle (\delta N)^2 \rangle, \quad C_3 = \langle (\delta N)^3 \rangle, \quad C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2
\]
Relativistic heavy-ion collisions

- Cumulants of the event-by-event multiplicity distributions:

 \[C_1 = \langle N \rangle, \quad C_2 = \langle (\delta N)^2 \rangle, \quad C_3 = \langle (\delta N)^3 \rangle, \quad C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2 \]

- Mean, variance, skewness and kurtosis:

 \[M = C_1, \quad \sigma^2 = C_2, \quad S = \frac{C_3}{(C_2)^{3/2}}, \quad \kappa = \frac{C_4}{(C_2)^2} \]
Relativistic heavy-ion collisions

- Cumulants of the event-by-event multiplicity distributions:
 \[C_1 = \langle N \rangle, \quad C_2 = \langle (\delta N)^2 \rangle, \quad C_3 = \langle (\delta N)^3 \rangle, \quad C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2 \]

- Mean, variance, skewness and kurtosis:
 \[M = C_1, \quad \sigma^2 = C_2, \quad S = \frac{C_3}{(C_2)^{3/2}}, \quad \kappa = \frac{C_4}{(C_2)^2} \]
Freeze-out parameters

- Consider the ratios of cumulants:

\[
R_{31}^Q = \frac{S_Q \sigma_Q^3}{M_Q} = \frac{\chi_3^Q}{\chi_1^Q}, \quad R_{12}^Q = \frac{M_Q}{\sigma_Q^2} = \frac{\chi_1^Q}{\chi_2^Q}
\]

\footnote{Bazavov et al. [BNL-Bielefeld] (2012)}
Freeze-out parameters

- Consider the ratios of cumulants:
 \[R_{31}^Q = \frac{S_Q\sigma_Q^3}{M_Q} = \frac{\chi_3^Q}{\chi_1^Q}, \quad R_{12}^Q = \frac{M_Q}{\sigma_Q^2} = \frac{\chi_1^Q}{\chi_2^Q} \]

- These ratios can be evaluated on the lattice for constrained system and serve as thermometer (left) and baryometer (right)\(^\text{10}\)

\(^{10}\)Bazavov et al. [BNL-Bielefeld] (2012)
Skewness and kurtosis

STAR: 0.4 GeV < p_T < 0.8 GeV
PRL 112 (2014) 032302

HRG

S_p \sigma_p^3 / M_p

M_p / \sigma_p^2

S_p \sigma_p^2 / M_p

K_p \sigma_p^2

S_p \sigma_p^3 / M_p

STAR: 0.4 GeV < p_T < 2.0 GeV
preliminary

M_p / \sigma_p^2

Freeze-out temperatures
[BNL-Bielefeld] (2017):
T_0 \approx 149 MeV for p_cut T = 0.8 GeV
T_0 = (153 \pm 5) MeV for p_cut T = 2.0 GeV
Skewness and kurtosis

Freeze-out temperatures
[BNL-Bielefeld] (2017):

\[T_0 \leq 149 \text{ MeV} \]
for \(p_t^{\text{cut}} = 0.8 \text{ GeV} \)

\[T_0 = (153 \pm 5) \text{ MeV} \]
for \(p_t^{\text{cut}} = 2.0 \text{ GeV} \)
Recent result by Borsanyi et al. [WB] 1805.04445
Constraints on the critical point

- For $\mu_Q = \mu_S = 0$ the net baryon-number susceptibility is

$$\chi_B^2(T, \mu_B) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^B \hat{\mu}_B^{2n}$$
Constraints on the critical point

- For $\mu_Q = \mu_S = 0$ the net baryon-number susceptibility is

$$\chi_2^B(T, \mu_B) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^B \hat{\mu}_B^{2n}$$

- The radius of convergence

$$r_{2n}^\chi = \sqrt{\frac{2n(2n-1)}{\chi_{2n+2}^B}}$$
Constraints on the critical point

- For $\mu_Q = \mu_S = 0$ the net baryon-number susceptibility is

 \[\chi_2^B(T, \mu_B) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^B \hat{\mu}_B^{2n} \]

- The radius of convergence

 \[r_{2n}^\chi \equiv \sqrt{\frac{2n(2n-1)\chi_{2n}^B}{\chi_{2n+2}^B}} \]

- We observe $\chi_6^B/\chi_4^B < 3$ for $135 < T < 155$ MeV $\Rightarrow r_4^\chi \geq 2$
Conclusion

- Lattice QCD calculations are now in the regime of the physical light quark masses and continuum limit is possible for many observables
- The most studied region of the QCD phase diagram is at $\mu_B = 0$
- At non-zero baryon chemical potential direct Monte Carlo simulations are not (yet) possible due to the sign problem
- The region of small μ/T can be explored with expansions in μ/T or by analytic continuation from imaginary μ
- Generalized susceptibilities are now calculated up to 8th order in μ_B
- The equation of state is now known up to the 6th order in μ_B
- Ratios of the generalized susceptibilities can be related to experimentally measured cumulants of event-by-event multiplicity distributions
- Recent lattice calculations strongly disfavor QCD critical point in the region of $\mu_B < 2T$ in the temperature range $135 < T < 155$ MeV