Neutron-Antineutron Conversion to Search for B-L Violation

(\bar{n}-n via scattering)

Susan Gardner

Department of Physics and Astronomy
University of Kentucky
Lexington, KY

Based, in part, on...

and on ongoing work in collaboration with Xinshuai Yan

CIPANP
Indian Wells, CA
May 31 2018
Perspective: Why Search for \bar{n}-n?

The origin of the neutrino mass is not yet known.

A massive neutrino can have a Dirac and/or Majorana mass.

If Dirac, then one can use the Higgs mechanism (after adding a new field: ν_R).

If Majorana, a dimension five (B-L violating!) mass term appears: \(\lambda (\nu_{\text{weak}}^2/\Lambda) \nu_L^T C \nu_L\) \cite{Weinberg, 1979}

If both mass types appear, the mass eigenstates would be Majorana \cite{Gribov and Pontecorvo, 1969; Bilenky and Pontecorvo, 1983}

\rightarrow The neutrino is its own antiparticle

If B-L is broken, then the “see-saw” mechanism can explain why m_ν is so small \cite{Minkowski, 1977; Gell-Mann, Ramond, & Slansky, 1979; Yanagida, 1980; Mohapatra & Senjanovic, 1980}
Mechanisms of 0ν ββ decay

Why the energy scale of B-L violation matters

If it is generated by the Weinberg operator, then SM electroweak symmetry yields $m_\nu = \frac{\lambda v^2_{\text{weak}}}{\Lambda}$. If $\lambda \sim 1$ and $\Lambda \gg v_{\text{weak}}$, then naturally $m_\nu \ll m_f$!

N.B. if $m_\nu \sim 0.2$ eV, then $\Lambda \sim 1.6 \times 10^9$ GeV!

Alternatively it could also be generated by higher dimension $|\Delta L| = 2$ operators, so that m_ν is small just because $d \gg 4$ and Λ need not be so large.

[Effective Field Theories: Babu & Leung, 2001; de Gouvea & Jenkins, 2008 and many models]

Can we establish the scale of $B - L$ violation in another way?

N.B. searches for same sign dilepton final states at the LHC also constrain the higher dimension (“short range”) operators. [Helo, Kovalenko, Hirsch, and Päs, 2013]

Here we consider B-L violation in the quark sector: via $n - \bar{n}$ transitions

$\Lambda_{B-L} \sim 100$ TeV
Neutron-Antineutron Transitions

Can be realized in different ways

Enter searches for

- neutron-antineutron oscillations (free n’s & in nuclei)

 \[M = \begin{pmatrix} M_n - \mu_n B & \delta \\ \delta & M_n + \mu_n B \end{pmatrix} \]

 \[P_{n\rightarrow\bar{n}}(t) \simeq \frac{\delta^2}{2(\mu_n B)^2} \left[1 - \cos(2\mu_n B t) \right] \]

- dinucleon decay (in nuclei)
 (limited by finite nuclear density)

- neutron-antineutron conversion \(\text{(NEW!)}\)

Neutron-Antineutron Transitions

Some Novel Features

• Majorana C, P, and T phase constraints

Recall from neutrino physics: the discrete symmetry transformations of a theory should not depend on whether it contains Dirac or Majorana fields.

[Kayser and Goldhaber, 1983; Kayser, 1984 — also Carruthers, 1971; Feinberg and Weinberg, 1959]

Consequently the CPT, CP, and C phases of Majorana fields or states are restricted.

[Kayser and Goldhaber, 1983; Kayser, 1984]

Generalizing this to theories of fermions with B-L violation, the phases associated with the discrete symmetry transformations must themselves be restricted.

[SG and Yan, 2016]

• Incompatible with pure QCD in the isospin symmetry (but compatible with the SM!)

[SG & Xinshuai Yan, 2016: Carruthers, 1967….]
Dirac Fermions with B-L Violation

The prototypical $B - \mathcal{L}$ violating operator is of form
\[\psi^T C \psi + \text{h.c.} \]
Since C satisfies $(\sigma^{\mu\nu})^T C = -C\sigma^{\mu\nu}$, this operator is Lorentz invariant. Under CPT...

unimodular phases: $\eta_P \propto i$; $\eta_P \eta_C \eta_T \propto i$

\[
\begin{align*}
O_1 &= \psi^T C \psi + \text{h.c.} \\
O_2 &= \psi^T C \gamma^5 \psi + \text{h.c.} \\
O_3 &= \psi^T C \gamma^\mu \psi \partial^\nu F_{\mu\nu} + \text{h.c.} \\
O_4 &= \psi^T C \gamma^\mu \gamma^5 \psi \partial^\nu F_{\mu\nu} + \text{h.c.} \\
O_5 &= \psi^T C \sigma_{\mu\nu} \psi F^{\mu\nu} + \text{h.c.} \\
O_6 &= \psi^T C \sigma_{\mu\nu} \gamma^5 \psi F^{\mu\nu} + \text{h.c.}
\end{align*}
\]

CPT odd operators vanish from fermion antisymmetry

The phase constraint is crucial!

Neutrinos:

[Schechter and Valle, 1981; Nieves, 1982; Kayser, 1982; Shrock, 1982; Li and Wilczek, 1982; Davidson, Gorbahn, Santamaria, 2006]
Spin can play a role in a “mediated” process

A neutron-antineutron oscillation is a spontaneous process & thus the spin does not ever flip

However,

\[O_4 = \psi^T C \gamma^\mu \gamma_5 \psi \partial^\nu F_{\mu \nu} + \text{h.c.} \]

\[n(+) \rightarrow \bar{n}(-) \] occurs directly because the interaction with the current flips the spin.

This is concomitant with \[n(p_1, s_1) + n(p_2, s_2) \rightarrow \gamma^*(k) \], for which only \(L = 1 \) and \(S = 1 \) is allowed via angular momentum conservation and Fermi statistics. [Berezhiani and Vainshtein, 2015]

Here \(e + n \rightarrow \bar{n} + e \), e.g., so that the experimental concept for “\(n\bar{n} \) conversion” would be completely different.
Neutron-Antineutron Conversion

Different mechanisms are possible

* $\eta - \bar{\eta}$ conversion and oscillation could share the same “TeV” scale BSM sources

Then the quark-level conversion operators can be derived noting the quarks carry electric charge

* $\eta - \bar{\eta}$ conversion and oscillation could come from different BSM sources

Then the neutron-level conversion operators could also be different

Note studies of scattering matrix elements of Majorana dark matter [Kumar & Marfatia, PRD, 2013]
Effective Lagrangian

Neutron interactions with B-L violation & electromagnetism

\[\mathcal{L}_{\text{eff}} \supset -\frac{1}{2} \mu_n \bar{n} \sigma^{\mu\nu} n F_{\mu\nu} - \frac{\delta}{2} n^T C n - \frac{\eta}{2} n^T C \gamma^\mu \gamma^5 n j_\mu + \text{h.c.} \]

magnetic moment

\[[Q e j^\nu = \partial_\mu F^{\mu\nu}] \]

"spontaneous" oscillation

Since the quarks carry electric charge, a BSM model that generates neutron-antineutron oscillations can also generate conversion

[SG & Xinshuai Yan, arXiv: 1710.09292]
Neutron-Antineutron Oscillation

Quark-level operators

\[(O_1)_{\chi_1 \chi_2 \chi_3} = [u^T_\chi_1 C u^\beta_\chi_1] [d^T_\chi_2 C d^\delta_\chi_2] [d^T_\chi_3 C d^\sigma_\chi_3] (T_s)_{\alpha \beta \gamma \delta \rho \sigma},\]

\[(O_2)_{\chi_1 \chi_2 \chi_3} = [u^T_\chi_1 C d^\beta_\chi_1] [u^T_\chi_2 C d^\delta_\chi_2] [d^T_\chi_3 C d^\sigma_\chi_3] (T_s)_{\alpha \beta \gamma \delta \rho \sigma},\]

\[(T_s)_{\alpha \beta \gamma \delta \rho \sigma} = \epsilon_{\rho \alpha \gamma} \epsilon_{\sigma \beta \delta} + \epsilon_{\sigma \alpha \gamma} \epsilon_{\rho \beta \delta} + \epsilon_{\rho \beta \gamma} \epsilon_{\sigma \alpha \delta} + \epsilon_{\sigma \beta \gamma} \epsilon_{\rho \alpha \delta},\]

\[(T_a)_{\alpha \beta \gamma \delta \rho \sigma} = \epsilon_{\rho \alpha \beta} \epsilon_{\sigma \gamma \delta} + \epsilon_{\sigma \alpha \beta} \epsilon_{\rho \gamma \delta}\]

Only 14 of 24 operators are independent

\[(O_1)_{\chi_1 LR} = (O_1)_{\chi_1 RL}, \quad (O_{2,3})_{LR\chi_3} = (O_{2,3})_{RL\chi_3},\]

\[(O_2)_{mmn} - (O_1)_{mmn} = 3(O_3)_{mmn} \quad [Caswell, Milutinovic, & Senjanovic, 1983]\]
From Oscillation to Conversion

Quark-level operators: compute \(q^\rho(p) + \gamma(k) \rightarrow \bar{q}^\delta(p') \)

\[
\mathcal{H}_I \supset \frac{\delta_q}{2} \sum_{\chi_1} (\psi_{\chi_1}^\rho C \psi_{\chi_1}^\delta + \bar{\psi}_{\chi_1}^\delta C \bar{\psi}_{\chi_1}^\rho) + Q_\rho e \sum_{\chi_2} \bar{\psi}_{\chi_2}^\rho A \psi_{\chi_2}^\rho \\
+ Q_\delta e \sum_{\chi_3} \bar{\psi}_{\chi_3}^\delta A \psi_{\chi_3}^\delta,
\]

matrix element:

\[
\left\langle \bar{q}^\delta(p') \right| T \left(\sum_{\chi_1, \chi_2} \left(-i \frac{\delta_q}{2} \int d^4 x \psi_{\chi_1}^{\rho T} C \psi_{\chi_1}^\delta \right) \right. \\
\times \left. \left(-i Q_\rho e \int d^4 y \bar{\psi}_{\chi_2}^\rho A \psi_{\chi_2}^\rho - i Q_\delta e \int d^4 y \bar{\psi}_{\chi_2}^\delta A \psi_{\chi_2}^\delta \right) \right) \\
\times \left| q^\rho(p) \gamma(k) \right\rangle,
\]

Effective vertex

\[
- \frac{m \delta_q e}{p^2 - m^2} (Q_\rho \psi_{-\chi_2}^\delta C \gamma^\mu \psi_{\chi_2}^\rho - Q_\delta \psi_{\chi_2}^\delta C \gamma^\mu \psi_{-\chi_2}^\rho),
\]

if \(\delta = \rho \)
yields

\(C \gamma_\mu \gamma_5 \) only
B-L Violation via e-n scattering

Linking neutron-antineutron oscillation to conversion

\[
(\mathcal{O}_2)_{\chi_1 \chi_2 \chi_3} = \left[u_{\chi_1}^T C d_{\chi_1}^\beta \right] \left[u_{\chi_2}^T C d_{\chi_2}^\delta \right] \left[d_{\chi_3}^T C d_{\chi_3}^\sigma \right] (T_s)_{\alpha \beta \gamma \delta \rho \sigma}
\]

[Rao & Shrock, 1983]

e.g.:

\[
(\tilde{\mathcal{O}}_2)_{\chi_1 \chi_2 \chi_3} = \left[u_{-\chi}^T C \gamma^\mu \gamma^5 d_{\chi}^\beta - 2 u_{\chi}^T C \gamma^\mu \gamma^5 d_{-\chi}^\beta \right] \left[u_{\chi_2}^T C d_{\chi_2}^\delta \right] \left[d_{\chi_3}^T C d_{\chi_3}^\sigma \right] + \left[u_{\chi_1}^T C d_{\chi_1}^\beta \right] \left[u_{-\chi}^T C \gamma^\mu \gamma^5 d_{\chi}^\delta - 2 u_{\chi}^T C \gamma^\mu \gamma^5 d_{-\chi}^\delta \right] \left[d_{\chi_3}^T C d_{\chi_3}^\sigma \right] + \left[u_{\chi_1}^T C d_{\chi_1}^\beta \right] \left[u_{\chi_2}^T C d_{\chi_2}^\delta \right] \left[d_{-\chi}^T C \gamma^\mu \gamma^5 d_{\chi}^\sigma + d_{\chi}^T C \gamma^\mu \gamma^5 d_{-\chi}^\sigma \right] T_s...
\]
B-L Violation via e-n scattering
Linking neutron-antineutron oscillation to conversion

Moreover...

\[(\tilde{O}_1)^{\chi \mu}_{\chi_1 \chi_2 \chi_3} = \left[-2[u^T_{-\chi} C \gamma^\mu \gamma_5 u^\beta_{-\chi} + u^T_{\chi} C \gamma^\mu \gamma_5 u^\beta_{-\chi}]\left[d^\gamma_{\chi_2} C d^\delta_{\chi_2}\right][d^\rho_{\chi_3} C d^\sigma_{\chi_3}] + [u^T_{\chi_1} C u^\beta_{\chi_1}]\left[d^\gamma_{-\chi} C \gamma^\mu \gamma_5 d^\delta_{-\chi} + d^\gamma_{\chi} C \gamma^\mu \gamma_5 d^\delta_{-\chi}\right][d^\rho_{\chi_3} C d^\sigma_{\chi_3}] + [u^T_{\chi_1} C u^\beta_{\chi_1}]\left[d^\gamma_{\chi_2} C d^\delta_{\chi_2}\right]\left[d^\rho_{-\chi} C \gamma^\mu \gamma_5 d^\sigma_{-\chi} + d^\rho_{\chi} C \gamma^\mu \gamma_5 d^\sigma_{-\chi}\right]\right](T_s)_{\alpha \beta \gamma \delta \rho \sigma}\]

yielding [Here \(\chi=R-\chi=L\) for em scattering]

\[(\tilde{O}_1)^{\chi}_{\chi_1 \chi_2 \chi_3} = (\delta_1)_{\chi_1 \chi_2 \chi_3} \frac{em}{3(p_{\text{eff}}^2 - m^2)} \frac{Q e j_\mu}{q^2} \frac{Q e j_\mu}{q^2} (\tilde{O}_1)^{\chi \mu}_{\chi_1 \chi_2 \chi_3},\]

with similar relationships for \(i=2,3\) [only these in em case]

The hadronic matrix elements are computed in the MIT bag model.
B-L Violation via e-d scattering

What sorts of limits could be set?

Matching relation:

$$
\eta \bar{\nu}(p', s') C f \gamma_5 u(p, s) = \frac{e m}{3(p_{\text{eff}}^2 - m^2)} \frac{e j_\mu}{q^2}
$$

$$
\times \langle \bar{n}_q(p', s') | \int d^3 x \sum_{i,\chi_1, \chi_2, \chi_3} ^{'} (\delta_i)_{\chi_1, \chi_2, \chi_3} [(\tilde{O}_i)^{R,\mu}_{\chi_1, \chi_2, \chi_3} - (\tilde{O}_i)^{L,\mu}_{\chi_1, \chi_2, \chi_3}] | n_q(p, s) \rangle
$$

The best limits come from small-angle scattering — using the uncertainty principle to estimate θ_{min}

Sensitivity estimate for a beam energy of 20 MeV:

$$
|\tilde{\delta}| \lesssim 2 \times 10^{-15} \sqrt{\frac{N \text{ events}}{1 \text{ event}}} \sqrt{\frac{1 \text{ yr}}{t}} \sqrt{\frac{0.6 \times 10^{17} \text{ s}^{-1}}{\phi}} \sqrt{\frac{1 \text{ m}}{L}} \sqrt{\frac{5.1 \times 10^{22} \text{ cm}^{-3}}{\rho}} \text{ GeV.}
$$

for the Majorana mass of the neutron
B-L Violation via n-d scattering

What sorts of limits could be set?

For cold neutrons (as at the ILL)

$$|p_n| = 1.94 \text{ keV}$$

Sensitivity estimate (set by n-e scattering):

$$|\delta| \lesssim 3 \times 10^{-19} \sqrt{\frac{N \text{ events}}{1 \text{ event}}} \sqrt{\frac{1 \text{ yr}}{t}} \sqrt{\frac{1.7 \times 10^{11} \text{ s}^{-1}}{\phi}} \sqrt{\frac{1 \text{ m}}{L}} \sqrt{\frac{5 \times 10^{22} \text{ cm}^{-3}}{\rho}} \text{ GeV}$$

for the Majorana mass of the neutron

The combination of e and n beam experiments should offer a powerful crosscheck
We are studying how the best experimental paths change if conversion and oscillation stem from different new physics sources.
The discovery of B-L violation would reveal the existence of dynamics beyond the Standard Model.

The energy scale of B-L violation speaks to different explanations as to why the neutrino is light (A “TeV scale” mechanism could also generate B-L violation in the quark sector).

We have discussed neutron-antineutron conversion, i.e., neutron-antineutron transitions as mediated by an external current (as via scattering).

Neutron-antineutron conversion is not sensitive to medium effects and can also yield limits on the neutron’s Majorana mass. It can also lead to the discovery of B-L violation in its own right.

Experiments with intense low-energy electron or neutron beams can also be used to search for B-L violation.
Backup Slides
Neutron-Antineutron Transitions

C, P, & T Phase Constraints

For any fermion field

\[
\begin{align*}
C\psi(x)C^{-1} &= \eta_c C \gamma^0 \psi^*(x) \equiv \eta_c i \gamma^2 \psi^*(x) \equiv \eta_c \psi^c(x), \\
P\psi(t, x)P^{-1} &= \eta_p \gamma^0 \psi(t, -x), \\
T\psi(t, x)T^{-1} &= \eta_t \gamma^3 \psi(-t, x),
\end{align*}
\]

Thus \(P^2 \psi(x)P^{-2} = \eta_p^2 \psi(x)\) but \(C^2 \psi(x)C^{-2} = \psi(x); T^2 \psi(x)T^{-2} = -\psi(x)\)

The plane wave expansion of a general Majorana field \(\psi_m\) is

\[
\psi_m(x) = \int \frac{d^3p}{(2\pi)^{3/2} \sqrt{2E}} \sum_s \{ f(p, s)u(p, s)e^{-ip \cdot x} + \lambda f^\dagger(p, s)v(p, s)e^{ip \cdot x} \}
\]

Applying \(C\) and noting the Majorana relation,

\[
i \gamma^2 \psi^*_m(x) = \lambda^* \psi_m(x)
\]

yields

\[
C\psi_m(x)C^{-1} = \eta_c \lambda^* \psi_m(x)
\]

\[
Cf(p, s)C^{-1} = \eta_c \lambda^* f(p, s) \quad \text{and} \quad Cf^\dagger(p, s)C^{-1} = \eta_c \lambda^* f^\dagger(p, s)
\]

Since \(C\) is a unitary operator, taking the adjoint shows \(\eta_c^* \lambda\) is real.
C, P, & T Phase Constraints

Under CP, we find $\eta_p^* \eta_c^* \lambda$ is imaginary, or that η_p^* is imaginary.

Under T we find that $\eta_t \lambda$ is real, whereas

$$\text{CPT}\psi_m(x)(\text{CPT})^{-1} = -\eta_c \eta_p \eta_t \gamma^5 \psi_m^*(-x)$$

yielding

$$\text{CPT}f(p, s)(\text{CPT})^{-1} = s\lambda^* \eta_c \eta_p \eta_t f(p, -s)$$

$$\text{CPT}f^\dagger(p, s)(\text{CPT})^{-1} = -s\lambda \eta_c \eta_p \eta_t f^\dagger(p, -s)$$

Since CPT is antiunitary, $\text{CPT} = KU_{cpt}$, where U_{cpt} denotes a unitarity operator.

We conclude $\eta_c \eta_p \eta_t$ is pure imaginary.

Since η_p is imaginary, $\eta_c \eta_t$ must also be real — but $\eta_c \eta_p$ itself is unconstrained.

Since the phases are unimodular, they impact the discrete symmetry transformation properties of $B-L$ violating operators only.

Building a Majorana field from Dirac fields yields

$$\psi_{m\pm}(x) = \frac{1}{\sqrt{2}}(\psi(x) \pm C\psi(x)C^{-1})$$

and $\lambda = \pm \eta_c$; all our other conclusions emerge as well.

$$\eta_p \propto i \quad ; \quad \eta_p \eta C \eta T \propto i$$
\(n - \bar{n}\) & Nuclear Stability

\(n-\bar{n}\) oscillations can be studied in bound or free systems.

New limits on dinucleon decay in nuclei have also recently been established.

\[\begin{align*}
16\text{O}(pp) &\rightarrow 14\text{C} \pi^+ \pi^+ \text{ has } \tau > 7.22 \times 10^{31} \text{ years at 90\% CL.} \\
16\text{O}(pn) &\rightarrow 14\text{N} \pi^+ \pi^0 \text{ has } \tau > 1.70 \times 10^{32} \text{ years at 90\% CL.} \\
16\text{O}(nn) &\rightarrow 14\text{O} \pi^0 \pi^0 \text{ has } \tau > 4.04 \times 10^{32} \text{ years at 90\% CL.}
\end{align*}\]

Note \(\tau_{NN} = T_{\text{nuc}} \tau_{n\bar{n}}^2\) with \(T_{\text{nuc}} \sim 1.1 \times 10^{25} \text{s}^{-1}\)

Large suppression factors appear in all such nuclear studies, making free searches more effective. (at first glance)

In the case of bound \(n-\bar{n}\) the suppression is set by

\[\frac{\delta^2}{(V_n - V_{\bar{n}})^2}\]

the difference in nuclear optical potentials. [Dover, Gal, and Richard; Friedman and Gal, 2008]

Now \(16\text{O}(n-\bar{n})\) has \(\tau > 1.9 \times 10^{32} \text{ years at 90\% CL,} \)
yielding \(\tau_{n\bar{n}} > 2.7 \times 10^8 \text{ s.} \) [Abe et al., Super-K Collaboration, arXiv:1109.4227.]

Cf. free limit: \(\tau_{n\bar{n}} \geq 0.85 \times 10^8 \text{ s at 90\% C.L.} \) [Baldo-Ceolin et al., ZPC, 1994 (ILL)]

with future improvements expected.

The nuclear suppression dwarfs that from magnetic fields.
B-L Violation & Self-Conjugate Fermions

In attempting to rationalize the spectral pattern of the low-lying, light hadrons, Carruthers discovered a class of theories for which the CPT theorem does not hold. [Carruthers, 1967]

The pions form a self-conjugate isospin multiplet \((\pi^+, \pi^0, \pi^-)\), but the kaons form pair-conjugate multiplets \((K^+, K^0)\) and \((\bar{K}^0, K^-)\).

Carruthers discovered that free theories of self-conjugate bosons with half-integer isospin are nonlocal, that the commutator of two self-conjugate fields with opposite isospin components do not vanish at space-like separations. [Carruthers, 1967]

Moreover, since weak local communitivity fails, CPT symmetry is no longer expected to hold, nor should the CPT theorem of Greenberg apply. [Carruthers, 1968; Streater and Wightman, 2000; Greenberg, 2002]

The neutron and antineutron are members of pair-conjugate \(I = 1/2\) multiplets. The quark-level operators that generate \(n - \bar{n}\) oscillations would also produce \(p - \bar{p}\) oscillations under the isospin transformation \(u \leftrightarrow d\), though the latter are removed by electric charge conservation....

Ergo \(n-\bar{n}\) oscillations are problematic in pure QCD in the isospin limit. [SG and Yan, 2016]

B-L Violation & $n-\bar{n}$ Transitions

It has long been thought that $n-\bar{n}$ oscillations could shed light on the mechanism of

- Baryogenesis [Kuzmin, 1967]
- Neutrino mass [Mohapatra and Marshak, 1980]

The observation of $n-\bar{n}$ transformations would reveal that $B - \mathcal{L}$ is indeed broken.

Extracting the scale of $B - \mathcal{L}$ breaking from such a result can be realized through a matrix element computation in lattice QCD. There has been much progress towards this goal.

[Buchoff, Schroeder, and Wasem, 2012; Buchoff and Wagman, 2016; Syritsen, Buchoff, Schroeder, and Wasem, 2016]

In contrast to proton decay, $n-\bar{n}$ probes new physics at “intermediate” energy scales. The two processes can be generated by $d=6$ and $d=9$ operators, respectively.

Crudely, $\Lambda_{p\text{decay}} \geq 10^{15}$ GeV and $\Lambda_{n\bar{n}} \geq 10^{5.5}$ GeV.

Observing a neutron-antineutron transition would show that B-L violation does exists at an intermediate (~100 TeV) scale….
Why Search for $n - \bar{n}$?

The Standard Model (SM) cannot explain the origin of the cosmic baryon asymmetry, dark matter, or dark energy.

B violation plays a role in at least one of these puzzles.

Although B violation appears in the SM (sphalerons),

[Kuzmin, Rubakov, & Shaposhnikov, 1985]

we know nothing of its pattern at accessible energies.

Do processes occur with $|\Delta B| = 1$ or $|\Delta B| = 2$ or both?

The SM conserves B-L, but does Nature?

If neutron-antineutron oscillations, e.g., are observed, then B-L is broken, and we have found physics BSM!