NEUTRINO FLAVOR TRANSFORMATION AND THE COSMIC LEPTON ASYMMETRY

LUKE JOHNS

UC San Diego
COLLABORATORS

George Fuller
UC San Diego

Vincenzo Cirigliano & Mark Paris
Los Alamos National Laboratory

Mattia Mina
UiO University of Oslo

Luke Johns
UC San Diego
BBN and the CMB agree on the **baryon asymmetry**:

\[\eta \equiv \frac{n_B}{n_\gamma} \approx 6 \times 10^{-10} \]
BBN and the CMB agree on the baryon asymmetry:

$$\eta \equiv \frac{n_B}{n_\gamma} \approx 6 \times 10^{-10}$$

But what about the lepton asymmetry?

$$L_\nu \equiv \frac{n_\nu - n_\bar{\nu}}{n_\gamma}$$
BBN and the CMB agree on the baryon asymmetry:

\[\eta \equiv \frac{n_B}{n_\gamma} \approx 6 \times 10^{-10} \]

But what about the lepton asymmetry?

\[L_\nu \equiv \frac{n_\nu - n_\bar{\nu}}{n_\gamma} \]

The constraint on lepton number is orders of magnitude weaker:

\[|L_\nu| \lesssim 5 \times 10^{-2} \]
BBN and the CMB agree on the baryon asymmetry:

\[\eta \equiv \frac{n_B}{n_\gamma} \approx 6 \times 10^{-10} \]

But what about the lepton asymmetry?

\[L_\nu \equiv \frac{n_\nu - n_{\bar{\nu}}}{n_\gamma} \]

The constraint on lepton number is orders of magnitude weaker:

\[|L_\nu| \lesssim 5 \times 10^{-2} \]

Lepton numbers much larger than the baryon asymmetry are utilized in a viable production scenario for sterile neutrino dark matter.

Prob. that neutrino is in sterile state

Luke Johns
UC San Diego
BBN and the CMB agree on the baryon asymmetry:

\[\eta \equiv \frac{n_B}{n_\gamma} \approx 6 \times 10^{-10} \]

But what about the lepton asymmetry?

\[L_\nu \equiv \frac{n_\nu - n_{\bar{\nu}}}{n_\gamma} \]

The constraint on lepton number is orders of magnitude weaker:

\[|L_\nu| \lesssim 5 \times 10^{-2} \]

Lepton numbers much larger than the baryon asymmetry are utilized in a viable production scenario for **sterile neutrino dark matter**.

The Standard Model struggles; **leptogenesis** is promising.

Luke Johns
UC San Diego
A lepton number modifies the way neutrino flavor evolves. (See next slide.)

Moreover, BBN is sensitive to both lepton number and flavor:

- An asymmetry drives a faster expansion rate.

 \[\nu_e + n \iff p + e^- \]

- \[\bar{\nu}_e + p \iff n + e^+ \]

\[n \iff p + e^- + \bar{\nu}_e \]

Lunardini & Smirnov 2001
Dolgov et al. 2002
Abazajian et al. 2002
Wong 2002
Pastor et al. 2009
Gava & Volpe 2010
Mangano et al. 2011
Mangano et al. 2012
Castorina et al. 2012
Neutrinos oscillate even in vacuum. But things get more interesting in medium…

The coherent term is like a nonlinear, matrix-structured index of refraction:

$$i \left(\partial_t - H_\rho \partial_\rho \right) \rho = [\mathcal{H}, \rho] + C$$

Luke Johns
UC San Diego
Our calculations have revealed a menagerie of different behaviors for sub-constraint lepton asymmetries...

\[\mathcal{L} \]

- Excluded by \(^4\text{He}\)
- Large synchronized oscillations
- Minimal transformation
- Asymmetric MSW
- Partial MSW
- Symmetric MSW

Johns, Mina, Cirigliano, Paris, and Fuller, PRD 2016
Our calculations have revealed a \textit{menagerie of different behaviors} for sub-constraint lepton asymmetries...

\[\mathcal{L} \]

- Excluded by ^4He
- Large synchronized oscillations
- Minimal transformation
- Asymmetric MSW
- Partial MSW
- Symmetric MSW

\[P_{z,\text{int}} \times 10^{-9} \]

- ν_e
- $\bar{\nu}_e$
- ν_x
- $\bar{\nu}_x$

\text{neutrinos} \quad \text{antineutrinos}

\text{Luke Johns}

\text{UC San Diego}

\text{Johns, Mina, Cirigliano, Paris, and Fuller, PRD 2016}
Our calculations have revealed a menagerie of different behaviors for sub-constraint lepton asymmetries...

\[\mathcal{L} \]

- Large synchronized oscillations
- Minimal transformation
- Asymmetric MSW
- Partial MSW
- Symmetric MSW

\[P_z (x10^{-3}) \]

MSW resonance

\[\nu_e \]

\[\bar{\nu}_e \]

\[\bar{\nu}_x \]

\[\nu_x \]

neutrinos \hspace{0.5cm} \text{antineutrinos}

\textbf{Johns, Mina, Cirigliano, Paris, and Fuller, PRD 2016}
Our calculations have revealed a **menagerie of different behaviors** for sub-constraint lepton asymmetries…

\[
\mathcal{L} = \begin{cases}
\text{Excluded by } ^4\text{He} \\
\text{Large synchronized oscillations} \\
\text{Minimal transformation} \\
\text{Asymmetric MSW} \\
\text{Partial MSW} \\
\text{Symmetric MSW}
\end{cases}
\]

MSW resonance

\[P_{z,\text{int}} \times 10^{-6}\]

\[\nu_e\]

\[\bar{\nu}_x\]

neutrinos antineutrinos

Luke Johns

UC San Diego

There is an exact mathematical equivalence between astrophysical neutrino flavor evolution and gyroscopic pendulum motion.

- Oscillations in vacuum correspond to the top swinging like a pendulum, with gravity set by vacuum mixing parameters.
- A lepton asymmetry corresponds to the spin of the top, which induces precession.

Hannestad et al., PRD 2006
Duan et al., PRD 2007

Johns and Fuller, PRD 2018

Luke Johns
UC San Diego
Suppression of flavor conversion...

There is an exact mathematical equivalence between astrophysical neutrino flavor evolution and gyroscopic pendulum motion.

Hannestad et al., PRD 2006
Duan et al., PRD 2007

- Oscillations in vacuum correspond to the top swinging like a pendulum, with gravity set by vacuum mixing parameters.

- A lepton asymmetry corresponds to the spin of the top, which induces precession.

Wikipedia

Luke Johns
UC San Diego
What happens at MSW?

Nonadiabaticity.
This explains the minimal-transformation regime.
This ω_{eff} phenomenon might also apply to compact-object environments...

Example:

O-Ne-Mg supernovae

\[
\begin{align*}
\text{SNe (canonical)} & : \quad \langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle \\
\text{EU (asymmetric)} & : \quad \langle E_{\nu_e} \rangle < \langle E_{\nu_x} \rangle < \langle E_{\bar{\nu}_e} \rangle \quad (\text{e.g.})
\end{align*}
\]
CONCLUSION

- Lepton asymmetries are associated with a rich array of flavor phenomena. This talk emphasized a new one, which can suppress resonant flavor conversion.

- Ongoing project: Realistic coupling of neutrinos, nuclides, and plasma over the weak-decoupling / BBN epoch. (Building on Grohs et al., PRD 2016.)

- Open questions: How does this relate to compact objects? Or to flavor instabilities? (e.g., Shalgar et al., PLB 2017.)