Determination of the Proton’s Charge Radius by Simultaneous Measurement of Electron- and Muon-Proton Elastic Scattering with the MUSE Experiment at PSI

Paul E Reimer
Physicist
Argonne National Laboratory

2 June 2018
Palm Springs, CA

This work is supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Atomic Spectroscopy

- Quantum Mechanics—solve the hydrogen atom.
- Coulomb field is distorted because the proton is not a point charge.
- This shifts atomic levels.
- Measure atomic levels.

Elastic Scattering

- Quantum Mechanics—scatter electron on point Coulomb
- Coulomb field is distorted because the proton is not a point charge.
- Define

\[\langle r \rangle^2 \equiv 6 \left. \frac{dG_E}{dQ^2} \right|_{Q^2=0} \]

- Cross section adding a form factor

\[\frac{d\sigma}{d\Omega}|_{\text{lab}} = \left(\frac{G_E^2}{1 + \tau} + \frac{G_M^2}{2} \cos^2 \frac{\theta}{2} \right) \]

\[+ 2\tau G_M^2 \sin^2 \frac{\theta}{2} \]

\[G_E \text{ Classically} \approx \int e^{iQ\cdot r} \rho(r) d^3r \approx 1 - \frac{1}{3!} Q^2 \langle r \rangle^2 + \frac{1}{5!} Q^4 \langle r \rangle^4 + \cdots \]
Measurements of the Proton's Charge Radius Disagree

The proton RMS charge radius measured with:
- Electrons: 0.8751 ± 0.0061 fm (CODATA2014)
- Muons: 0.8409 ± 0.0004 fm
Proton’s Size vs Probe and Method

<table>
<thead>
<tr>
<th>Probe</th>
<th>Method</th>
<th>Spectroscopy</th>
<th>Elastic scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td>Spectroscopy</td>
<td>0.876(8)</td>
<td>0.877(6)</td>
</tr>
<tr>
<td>Muon</td>
<td>Spectroscopy</td>
<td>0.8409(4)</td>
<td>??</td>
</tr>
</tbody>
</table>
Many explanations have been offered

- The μp (spectroscopy) result is wrong
 - Discussion about theory and proton structure for extracting the proton radius from muonic Lamb shift measurement

- The $e p$ (spectroscopy) results are wrong
 - Accuracy of individual Lamb shift measurements?
 - Rydberg constant could be off by 5 standard deviations?

- The $e p$ (scattering) results are wrong
 - Fit procedures not good enough
 - Q^2 not low enough, structures in the form factors
The world has become more confused!

Not here to critique new experiments, re-analyses or meta-analyses
Many Explanations Have Been Offered

- The μp (spectroscopy) *result is wrong*
 - Discussion about theory and proton structure for extracting the proton radius from muonic Lamb shift measurement

- The $e p$ (spectroscopy) *results are wrong*
 - Accuracy of individual Lamb shift measurements?
 - Rydberg constant could be off by 5 standard deviations?

- The $e p$ (scattering) *results are wrong*
 - Fit procedures not good enough
 - Q^2 not low enough, structures in the form factors

- Proton structure issues in theory
 - Off-shell proton in *two-photon* exchange leading to enhanced effects differing between μ and e
 - Hadronic effects different for μp and $e p$: *e.g.* proton polarizability ($\text{effect } \sim m_1^4$)

- Physics beyond Standard Model differentiating μ and e
 - Lepton universality violation, light massive gauge boson
 - Constraints on new physics *e.g.* from kaon decays (TREK@J-PARC)
Many Explanations Have Been Offered

- The \(\mu p \) (spectroscopy) *result is wrong*
 - Discussion about theory and proton structure for extracting the proton radius from muonic Lamb shift measurement

- The \(ep \) (spectroscopy) *results are wrong*
 - Accuracy of individual Lamb shift measurements?
 - Rydberg constant could be off by 5 standard deviations?

- The \(ep \) (scattering) *results are wrong*
 - Fit procedures not good enough
 - \(Q^2 \) not low enough, structures in the form factors

- Proton structure issues in theory
 - Off-shell proton in *two-photon* exchange leading to enhanced effects differing between \(\mu \) and \(e \)
 - Hadronic effects different for \(\mu p \) and \(ep \): e.g. proton polarizability (effect ~\(m_\mu^4 \))

- Physics beyond Standard Model differentiating \(\mu \) and \(e \)
 - Lepton universality violation, light massive gauge boson
 - Constraints on new physics e.g. from kaon decays (TREK@J-PARC)
MuSE at PSI

- **Muon Scattering Experiment**

- μ^+, μ^-, e^+, e^-—proton elastic scattering
- Incident momenta 115, 153, and 210 MeV/c
- Like sign leptons measured simultaneously
 - reduce syst. $\mu^+\leftrightarrow e^+$ and $\mu^-\leftrightarrow e^-$ comparisons

- Compact—roughly table top to room size experiment
MuSE at PSI

- **Muon Scattering Experiment**

- μ^+, μ^-, e^+, e^-—proton elastic scattering

- Incident momenta 115, 153, and 210 MeV/c

- Like sign leptons measured simultaneously
 - reduce syst. $\mu^+ \leftrightarrow e^+$ and $\mu^- \leftrightarrow e^-$ comparisons

- Compact—roughly table top to room size experiment
MuSE Spectrometer in a Nutshell

- Located on the πM1 beam line
- Measure incoming particle
 - position and direction with GEM
 - Timing with Beam Hodoscope and Scattered Particle Scintillators
BEAM HODOSCOPES & GEMs

BEAM HODOSCOPE

- Beam flux, TOF start
- 16 Channels/plane
- SiPM readout
- Resolution better than 80 ps
- 99.8% efficiency

- Beam trajectory particle-by-particle
- 3 planes 70 µm resolution
- Reused from Olympus
MuSE INSTALLATION
Cryo Target

- Successful cool down test w/Ne Tuesday
- Prerequisite for Safety Review for Hydrogen cool down test

Ne Cooldown 30 May 2018

Looking directly upstream
Straw Tube Tracker

- Straw Tube assembly almost complete at PSI

Straw Tube Tracker Mounting frame
SCATTERED PARTICLE SCINTILLATOR

- Timing resolution exceeded requirements for PID
 - $\sigma = 46$ ps (120 cm bars)
 - $\sigma = 52$ ps (220 cm bars)
- 1MHz rate capabilities
THE MUSE COLLABORATION

A. Afanaseva, A. Akmalb, J. Arringtonc, H. Atacd, C. Ayerbe-Gayosoe, F. Benmokhtarf, N. Benmounab, N. Bernb, J.C. Bernauerg, E. Brashh, W.J. Briscoea, T. Caoi, D. Ciofia, E. Clinej, D. Cohnk, E.O. Cohenl, C. Collicotta, K. Deitersm, J. Diefenbachn, B. Dongwii, E.J. Downiea, L. El Fassio, S. Giladg, R. Gilmanj, K. Gnanvop, R. Gotheq, D. Higinbothamr, Y. Ilievaq, M. Jonesr, N. Kalantariansi, M. Kohli, B. Krusches, G. Kumbartzkij, I. Lavrukhina, L. Liq, J. Lichtenstadtl, W. Lini, A. Liyanagei, N. Liyanagep, W. Lorenzont, Z.-E. Mezianid, P. Monaghanh, K.E. Mesicku, P. MohanMurthyg, J. Nazeeri, T. O’Connorc, C. Perdrisate, E. Piasetzskyl, R. Ransomei, R. Raymondt, D. Reggianim, P.E. Reimerc, A. Richterv, G. Ronk, T. Rostomyani, A. Sartyw, Y. Shamail, N. Sparverisd, S. Strauchq, V. Sulkoskyp, A.S. Tadepallii, M. Taraginx, L. Weinsteino

aGeorge Washington University, bMontgomery College, cArgonne National Laboratory, dTemple University, eCollege of William & Mary, fDuquesne University, gMassachusetts Institute of Technology, hChristopher Newport University, iHampton University, jRutgers University, kHebrew University of Jerusalem, lTel Aviv University, mPaul Scherrer Institut, nJohannes Gutenberg-Universität, oOld Dominion University, pUniversity of Virginia, qUniversity of South Carolina, rJefferson Lab, sUniversity of Basel, tUniversity of Michigan, uLos Alamos National Laboratory, vTechnical University of Darmstadt, wSt. Mary’s University, xWeizmann Institute
Estimated Uncertainty: Two Photon?

\[
\sigma_{e^\pm p} = |\mathcal{M}_{1\gamma}|^2 \pm 2 \Re \left\{ \mathcal{M}_{1\gamma}^\dagger \mathcal{M}_{2\gamma} \right\} + \cdots
\]

\[
\frac{\sigma_{e^- p}}{\sigma_{e^+ p}} \approx 1 + 4 \frac{\Re \left\{ \mathcal{M}_{1\gamma}^\dagger \mathcal{M}_{2\gamma} \right\}}{|\mathcal{M}_{1\gamma}|^2}
\]
ESTIMATED UNCERTAINTY: LEPTON UNIVERSALITY?

Does

\[G_\mu^E (Q^2) = G_e^E (Q^2) \]

MUSE Pseudodata: Estimated Errors for μ/e G^p_E

Relative Uncertainties

- Solid Angle: 0.10%
- Scintillator Efficiency: 0.10%
- Beam Mom. Sensitivity: 0.10%
- Angle Determination: 0.10%
- Magnetic Contributions: 0.10%
- Multiple Scattering: 0.30%
- Radiative Corr. μ: 0.10%
- Radiative Corr. e: 0.50%

Plot from K. Mesick
SUMMARY OF SYSTEMATIC UNCERTAINTIES IN MuSE

Table 1: Estimated MUSE relative systematic cross section uncertainties for the shape of angular distributions, the ratio of muon and electron scattering cross sections, and the ratio of + charge to − charge cross sections.

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>angular distribution (%)</th>
<th>μ/e (%)</th>
<th>+/− (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector efficiencies</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Solid angle</td>
<td>0.1</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Luminosity</td>
<td>small</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Scattering angle offset</td>
<td>0.2</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Multiple scattering correction</td>
<td>0.15</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Beam momentum offset</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Radiative correction</td>
<td>0.1 (µ), 0.5 (e)</td>
<td>0.5</td>
<td>1γsmall</td>
</tr>
<tr>
<td>Magnetic contribution</td>
<td>0.15</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Subtraction of µ decay from µp</td>
<td>0.1</td>
<td>0.1</td>
<td>small</td>
</tr>
<tr>
<td>Subtraction of target walls</td>
<td>0.3</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Subtraction of pion-induced events</td>
<td>small</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Beam PID / reaction misidentification</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Subtraction of µ decay from ep</td>
<td>small</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Subtraction of ee from ep</td>
<td>small</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.5 (µ), 0.7 (e)</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Estimated Uncertainty—Radius Extraction

For technical details on the MuSE spectrometer, please see arXiv:1709.09753.