

ML methods for Superconducting Materials

Machine Learning Informed Microscopy Characterization on Defects

Sam Mao

Florida A&M University-Florida State University College of Engineering

Funded by the National Science Foundation (DMR-1644779) and the State of Florida.

Zoom Meeting July12th, 2023

Support and Acknowledgements

- US Department of Energy (DOE), Office of Science, Basic Energy Sciences
- □ Materials Science and Technology Division
- Scientific Users Facilities Division
- □ Including one Early Career Award
- US DOE, Office of Nuclear Energy
- □ Fuel Cycle Research and Development
- □ Nuclear Science User Facilities (NSUF)
- □ Light Water Reactors Sustainability
- US Department Of Defense (DOD)
- US DOE Office of Science, Fusion Energy Sciences
- US National Science Foundation (NSF)

Upgrade advanced microscopy for materials science characterization from human approach to machine learning approach.

Rapid microscopy data increase!

Spurgeon, S. R., Ophus, C., Jones, L., Petford-Long, A., Kalinin, S. V., Olszta, M. J., ... & Taheri, M. L. (2021). Towards data-driven nextgeneration transmission electron microscopy. *Nature materials*, *20*(3), 274-279.

Cases

1. Improve Visibility.

- 2. Reveal Chemical Segregation.
- 3. Large-scale mapping.

SCAN ME!

Modern Electron Microscopy for High-burnup Fuels

Intragranular Nanoscale Xe bubbles

College of Engineering

non-equilibrium oxides via machine learning. Communications Materials, 3(1), 1-13. COE MagLab 2023 July 12

Unsupervised ML Improves the Visibility of Nanoscale Xe Bubbles at the Grain Boundary

HBS of the H. B. Robinson PWR fuel rod with average burnup at approximately 72 MWd/kgU.

Mao, K. S., Gerczak, T. J., Harp, J. M., McKinney, C. S., Lach, T. G., Karakoc, O., ... & Edmondson,

P. D. (2022). Identifying chemically similar multiphase nanoprecipitates in compositionally complex

non-equilibrium oxides via machine learning. Communications Materials, 3(1), 1-13.

amu-fsu

College of Engineering

Materials Informatics-driven Chemistry Analysis on Fission Product Metallic Precipitates along the Radial Position

Looking at the Nb₃Sn Grain Boundary (thin film)

College of Engineering

Accident-Tolerant High-Strength FeCrAl Alloys with Heterogeneous Structures

>> manual counting 10-20 images per hour

FAMU-FSU

College of Engineering

Mao, K. S., Massey, C. P., Yamamoto, Y., Unocic, K. A., Gussev, M. N., Zhang, D., ... & Edmondson, P. D. (2022). Improved irradiation resistance of accident-tolerant highstrength FeCrAI alloys with heterogeneous structures. *Acta Materialia*, 231, 117843.

Phase Stability & Nanoclustering

FeCrAI (Fe-13Cr-5AI-2Mo) C35M alloy neutron irradiated at 7 dpa, 282 °C, 8.16 x 10⁻⁷ dpa/s

Machine learning (ML) Processing

Cr-rich α' precipitates Denuded zone

Radiation-induced segregation (RIS)

-AMU-FSU

Atom probe tomography-21 at. % Cr isosurface Grain boundary (GB) College of Engineering

Chemical Disordering & Amorphization

Fe-Y-O amorphization

Representative ML processed map

FeCrAI (Fe-13Cr-5Al-2Mo) C35M alloy neutron irradiated at 7 dpa, 282 °C, 8.16 x 10⁻⁷ dpa/s.

Mao, K. S., Massey, C. P., Gussev, M. N., Yamamoto, Y., Nelson, A. T., Field, K. G., & Edmondson, P. D. (2021). Irradiation-induced amorphization of Fe-Y-based second phase particles in accident-tolerant FeCrAl alloys. *Materialia*, *15*, 101016.

Machine learning increase the confidence of the STEM-EDS map.

X-ray energy (keV)

Unmatched Irradiation Hardening model

Mao, K. S., Massey, C. P., Yamamoto, Y., Unocic, K. A., Gussev, M. N., Zhang, D., ... & Edmondson, P. D. (2022).
 Improved irradiation resistance of accident-tolerant high-strength FeCrAl alloys with heterogeneous structures. *Acta Materialia*, 231, 117843.

HRTEM & STEM EELS

ORNL Spallation Neutron Source (SNS) proton-beam window materials-Inconel 718 with <u>increased ductility</u> at 10 dpa with Herelated short-range order (SRO) vacancies.

McClintock, D. A., Gussev, M. N., Campbell, C., Mao, K., Lach, T. G., Lu, W., ... & Unocic, K. A. (2022). Observations of radiation-enhanced ductility in irradiated Inconel 718: Tensile properties, deformation behavior, and microstructure. *Acta Materialia*, 231, 117889.

Multicomponent Signal Unmixing from Nanoheterostructures: Overcoming the Traditional Challenges of Nanoscale X-ray Analysis via Machine Learning

David Rossouw,^{*,†} Pierre Burdet,[†] Francisco de la Peña,[†] Caterina Ducati,[†] Benjamin R. Knappett,[‡] Andrew E. H. Wheatley,[‡] and Paul A. Midgley[†]

[†]Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

[‡]Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

ABSTRACT: The chemical composition of core-shell nanoparticle clusters have been determined through principal component analysis (PCA) and independent component analysis (ICA) of an energy-dispersive X-ray (EDX) spectrum image (SI) acquired in a scanning transmission electron microscope (STEM). The method blindly decomposes the SI into three components, which are found to accurately represent the isolated and unmixed X-ray signals originating from the supporting carbon film, the shell, and the bimetallic core. The composition of the latter is verified by and is in

Example 1 Live coding

excellent agreement with the separate quantification of bare bimetallic seed nanoparticles.

KEYWORDS: ICA, EDX, TEM, electron microscopy, nanoparticle

https://github.com/keyoumao/Defect_dP_PaCKage/blob/main/ STEM_EDS_demonstration_MSE_FAMU_FSU.ipynb-FSU COE MagLab 2023 July 12

Ę

21

red-green-blue 'spectrum' space, the montage would be

SU COE MagLab 2023 July 12

Large-area EDS on different REBCO tapes

College of Engineering

Example 2

Large-area XSI maps

Aluminum / MAADF

(a) HAADF (high-angle annular dark field) montage of **10 X 10** tiles **2TB**from the nanoprecipitate sample. (b) MAADF (medium-angle ADF) montage
of **5 X 5** tiles of the aluminum sample.

The "nanoprecipitate" sample was an extraction replica from a modified (V-N added) Grade 91 alloy, produced by wire arc additive manufacturing (WAAM), normalized 1100 °C for 30 minutes and tempered at 760 °C for 60 minutes.

Composition was approximately Fe-8.4 wt% Cr-0.9Mo-0.3Mn-0.2V-0.1Ni-0.09C-0.04N-0.03O.

The aluminum alloy, AI-9 wt%Cu-6 wt%Ce nominally, was fabricated via laser powder bed fusion (LPBF) and produced by electropolishing a 3 mm conventional TEM disk.

10.13139/ORNLNCCS/1806276U-FSU COE MagLab 2023 July 12

 $Fe K\alpha$

24

 $Cr K\alpha$

O K + Cr L

Fe-8.4 wt% Cr-0.9Mo-0.3Mn-0.2V-0.1Ni-0.09C-0.04N-0.03O

10.13139/ORNLNCCS/ 1806276

COE MagLab 2023 July 12

0-21.3 0-19.3 0-11.4 $M_{23}C_{6}$ Panels #0-#5 are the abundance maps of the 0-2.5 0-3.1 0-3.4 endmembers seen in nanoprecipitate dataset. Al-Si-Cr-O MnS VX

Ni-rich background component.

The bottom row shows false color overlays.

the right overlay shows the VX, MnS, and Al-Si-Cr components.

FAMU-FSU COE MagLab 2023 July 12

The left overlay shows the two $M_{23}C_6$ components as yellow and blue;

Previous slide the

Matrix

Panels #0, #1, #2, and #3 are the abundance maps of the spatial-simplicity endmembers from the aluminum dataset

FAMU-FSU

College of Engineering

aluminum oxide

The arrow denotes a tile with low X-ray counts

References

Hyperspy

http://hyperspy.org/hyperspy-doc/current/index.html

Atomai

https://atomai.readthedocs.io/en/latest/

Pycroscopy

https://pycroscopy.github.io/pycroscopy/ecosystem.html

Py4DSTEM

https://py4dstem.readthedocs.io/en/latest/index.html

OpenCV

https://docs.opencv.org/4.x/d9/df8/tutorial_root.html

Code for EDS

https://github.com/keyoumao/ML_FUEL_CM_COMMSMAT

Today's materials https://github.com/keyoumao/Defect_dP_PaCKage

Contributions

- Successful characterization on materials in extreme conditions can be accomplished with the aid of modern electron microscopy to understand the processing-structure-property relationship.
- A Machine Learning (ML)-enhanced approach has been implemented for X-ray spectrum image mapping (XSI), where this method can facilitate the current data acquisition and analysis cycle by at least <u>1 magnitude of order</u>.
- This ML enhanced approach can be coupled with **deep learning** and other **automapping** software or open-access platform to identify nanoclusters with increased confidence and accuracy.

FAMU-FSU College of Engineering

microscopy. Nature materials, 20(3), 274-279.

FAMU-FSU COE MagLab 2023 July 12

Augmented analysis

NATIONAL HIGH AGNETIC FIELD LABORATORY

Sub-Ångström Resolution, World-Leading Analytical Electron Microscopy Facility: Analysis at the Atomic Level with Liquid-Cell

Aerial view of National MagLab

Thermo Fisher Scientific Dual Beam Focused Ion Beam/Field Emission Scanning Electron Microscope

Helios G4 UC with Oxford detector

FAMU-FSU COE MagLab 2023 July 12

.

•FIB: AutoSlice software allows for highest quality, fully automated acquisition of multimodal **3D datasets**.

•EBSD/EDS: Montage, large-area EDS automated mapping from Oxford Aztec upgrade.

•New workstation for the automated analysis on spectrum images and 3D reconstruction.

•STEM: Two-segment solid-state STEM detector for high-resolution bright and dark field imaging of FIBprepared cross sections and critical dimension measurements. e.g. <u>dislocation imaging, phase</u> <u>contrast</u> mapping.

This state-of-the-art transmission electron microscope is funded by Florida State University Research Foundation and supported by National High Magnetic Field Laboratory (funded by National Science Foundation) and the State of Florida.

To gain access, we welcome interested parties to contact us:

Sam Mao, Ph.D. Department of Industrial and Manufacturing Florida A&M University-Florida State University College of Engineering

2525 Pottsdamer St., Tallahassee, FL 32310-6046 E-mail: kmao@eng.famu.fsu.edu

Yan Xin, Ph.D. National Magnetic Field Laboratory Florida State University

1800 E. Paul Dirac Drive. Tallahassee, FL 32310 E-mail: xin@magnet.fsu.edu

New 4D STEM detector will be online!

amu-fsu