

ALICE Overview

Anthony Timmins

CPOD 2024 @ LBNL

Large acceptance and world leading particle identification probes all aspects of QGP behavior √ Broad physics program utilizing heavy-ion and pp collisions for hot and cold QCD

Taken ~30 pb of pp data in 2022-2023 → **500x times more than Runs 1&2** ✓ Courtesy of new continuous readout TPC with greatly improved track resolution

Status of pp data taking in Run 3

Status of Pb-Pb data taking in Run 3

https://home.cern/news/news/experiments/alice-bags-about-twelve-billion-heavy-ion-collisions

Hugely successful heavy-ion run in 2023 year → recorded 40x times data than Runs 1&2
✓ First set of public physics results on Pb-Pb data released this summer!

What have we learned from ALICE at $\mu_B \sim 0$?

• Critical Point

- Phase transitions
- Deconfined Matter
- Hadronization
- Compact Stars
- Future experimental facilities and detectors

A Large Ion Collider Experiment

Net-proton fluctuations & magnetic field

Lattice QCD predicts large magnetic fields increase proton fluctuations close to T_{pc} \checkmark Splitting for κ_2/κ_1 with momentum in peripheral collisions where B field largest...

M. Arslandok, Wed. at 11.00 am

CPOD 2024

Higher order *p*_T fluctuations

Measured for a variety of systems...

Skewness of mean $p_T h^{\pm}$ fluctuations can only be explained by models invoking a QGP in central Pb-Pb

Promising measurement at lower collision energies to establish when a QGP is formed...

Phys. Lett. B 850 (2024) 138541

EM probes and QGP temperature

<u>https://cerncourier.com/a/dielectrons-take-the-</u> temperature-of-pb-pb-collisions/

QGP temperatures can be obtained from slope of intermediate di-electron mass spectrum

✓ Background from heavy flavor decays dominate in Run 2 data..

✓ Direct photon yield consistent with hydro expectations

Thresholds of QGP formation

Discovery of QGP-like effects in high multiplicity pp and p-Pb collisions major finding at LHC
✓ Flow persists towards lower multiplicities in pp collisions

Formation of anti-deuteron in Pb-Pb collisions

 Ω^{-} $\overline{\Omega}^{+}$

V (fm³)

5825 ± 411

4476 ± 696

4962 ± 363

4175 ± 380

[୰]ᡂᡂ</mark>ᡩᢤᡰᢤᢥ^ᡂᢦᡂ

đ

 γ^2 /NDF

45.5/19

27.6/19

22.1/19

17.1/19

d

midrapidity

³He ³He ³_∧H ³_∧H ⁴He ⁴He

BR = 25%

ALICE, 0-10% Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

 $\Lambda \equiv \overline{\Xi}^+$

T (MeV)

 155 ± 2

156 ± 3

155 ± 2

157 ± 2

p

 K_{s}^{0}

.... Thermal-FIST (energy dep. BW)

GSI-Heidelberg (S-Matrix)

φp

K

Model

• • SHARE 3

- THERMUS 3.0

 π^{+} π^{-} K⁺

Snowball in hell appears to be thermally produced...

Phys. Rev. Lett. 131 (2023) 041901

dN/dy

10³

10

10⁻¹

 10^{-3}

10⁻⁵

10⁻⁷

0.5

(mod.-data)

(mod.-data) (⁰
_{data}

-0.5

Pinning down the correlation volume V_c

Event-by-event correlations of anti-proton and anti-deuterons indicate 1.6·dV/dy

✓ The same measurement in the strange sector requires 3·dV/dy

Limits of statistical production of light nuclei

Improved accuracy of A=3 data favor coalescence predictions

 \checkmark A=4 on other hand described by thermal models \rightarrow not affected by V_c in central collisions

Compact stars and the ²⁰⁸Pb neutron skin

Large neutron skin Δr_{np} leads to more diffuse and spherical QGP \rightarrow reduces QGP flow \checkmark Bayesian analysis of v₂ and $\langle p_T \rangle$ ALICE flow data offers **competitive constraints on** Δr_{np} (Pb) \checkmark Relevant for neutron star equation of state...

Transparency of the milky way with ALICE

Nature Physics 19 (2023) 61–71

Novel approach uses ALICE detector as target to measure anti-He³ cross section

✓ Sensitive to dark-matter (DM) interactions → specific DM profile implies transparency ~50%

https://home.cern/news/news/physics/alice-estimates-how-transparent-milky-way-antimatter

Forward Calorimeter (FoCal) and wafer-thin cylindrical ITS3 to be installed

✓ ITS3 increases precision for heavy-flavor and electromagnetic probes in large & small systems
 ✓ FoCal offers deepest explorations of proton/nuclear structure & complimentary to future EIC studies

Gluon saturated state precedes QGP formation ALICE FoCal has the answer!

Direct photon R_{pPb}

Compton scattering provides clean probe of gluon nPDFs

Bjorken-x reach 2 orders magnitude smaller than RHIC

UPC vector meson production

Quarkonia ratios highly sensitive to proton saturation

ALICE 3 - a next generation heavy-ion detector

Compact all-silicon tracker with high-resolution vertex detector and **extremely low material budget** for **Run 5**

✓ |η| < 4 and *p*_T resolution 1-2% for 0.1 < *p*_T < 100
 GeV/c

Particle Identification over large acceptance: muons, electrons, hadrons, photons

Operates in continuous readout so **designed to measure everything!**

ALICE 3 physics program

Key QGP findings from top RHIC energies and the LHC
✓ Evolves as almost perfect fluid that quenches jets
✓ Produces light hadrons in apparent thermal equilibrium
✓ Readily couples with heavy quarks
✓ Indications formed in small systems

ALICE 3 physics program

Key QGP findings from top RHIC energies and the LHC
✓ Evolves as almost perfect fluid that quenches jets
✓ Produces light hadrons in apparent thermal equilibrium
✓ Readily couples with heavy quarks
✓ Indications formed in small systems

What is **ALICE 3** designed to discover and explore?

✓ QGP temperature evolution and when equilibrium achieved .

✓ Limits and precision on heavy quark QGP diffusion

 \checkmark Nature of QCD phase transition at $\mu_b \simeq 0$

✓ Exotic hadron production mechanisms and hadronic interactions
 ✓ Beyond Standard Model searches...

Very clean separation of prompt and heavy-flavor electrons

- ✓ Extracting QGP temperature directly with di-electrons becomes accessible with high accuracy
- ✓ Increasing di-electron $p_{\rm T}$ probes earlier times → Evolution of QGP temperature

Anthony Timmins

Searches for Chiral Symmetry Restoration

New tests of Lattice QCD during QGP transition

Measured fluctuations of net-quantum numbers explore chiral features of cross-over transition

✓ Increased precision of high order net baryon fluctuations and strangeness/charm being explored

Summary of ALICE endeavors at $\mu_B \sim 0$

Achievements

- ✓ Multiple measurements with ALICE show unique QGP behavior \rightarrow can be performed at lower energies to probe the onset of deconfinement.
- ✓ ALICE data are becoming hugely discriminating for hadronization mechanisms

Challenges

- ✓ Lack of multiple experimental signatures for cross-over phase transition
- ✓ EM probes of QGP properties can be revealing but often background-dominated

Summary of ALICE endeavors at $\mu_B \sim 0$

Achievements

- ✓ Multiple measurements with ALICE show unique QGP behavior → can be performed at lower energies to probe the onset of deconfinement.
- ✓ ALICE data are becoming hugely discriminating for hadronization mechanisms

Challenges

✓ Lack of multiple experimental signatures for cross-over phase transition
 ✓ EM probes of QGP properties can be revealing but often background-dominated

Opportunities

- \checkmark ALICE 3 ideal detector to test the realization of QGP phase transition
- ✓ Unprecedented acceptance in momenta and particle identification will test much more e.g. thermalization of heavy quarks

