



15th Workshop on Critical Point and Onset of Deconfinement, May 20-24, LBNL, Berkeley

# esults from the HADES experiment

## **Anar Rustamov for the HADES Collaboration**



# Phases of strongly interacting matter



P. Braun-Munzinger, A.R., J. Stachel, arXiv:2211.08819 F. Gross et al., arXiv:2212.11107

### What do we know about the QCD phase diagram?

Mainly theory based predictions!



### Experimentally measured

Precise energy dependence of freeze-out parameters

### To be confirmed in experiments

- Existence of a crossover transition
- Existence of a first order phase transition line
- Existence of a critical point



## Outline

- The HADES apparatus
- Penetrating signals
  - Dileptons
- Direct probes of EoS
  - E-by-E fluctuations of proton number
  - Flow measurements
- Detector upgrades
- Summary
- Outlook





# The HADES apparatus

## High Acceptance Di-Electron Spectrometer



A. Rustamov, CPOD 2024, LBNL, Berkeley

## **Specifications**

## Acceptance

- nearly full azimuthal coverage
- polar angle between 18° 85°
  - $\neq$  0.5<sup>0</sup>-7<sup>0</sup> with forward Wall

## PID

- primarily by correlating momentum with velocity
  - also by using dE/dx in ToF and drift chambers
- RICH for electron identification

## Accepted trigger rates

- 16 kHz for Ag-Ag collisions
- 50 kHz for proton beams

## Upgrades

- RICH photon detection plane (with CBM)
- Forward detector (with PANDA)









# Data Campaigns



### **Unique Pion Beam Facility**



A. Rustamov, CPOD 2024, LBNL, Berkeley

### Ion beam

| Date     | Reaction        | $\sqrt{s_{NN}}$ [GeV] |
|----------|-----------------|-----------------------|
| Nov 2002 | C+C             | 2.7                   |
| Aug 2004 | C+C             | 2.32                  |
| Sep 2005 | Ar+KCI (~Ca+Ca) | 2.61                  |
| Apr 2012 | Au+Au           | 2.42                  |
| Mar 2019 | Ag+Ag           | 2.55, 2.42            |
| Mar 2024 | Au+Au           | 2.24                  |

### **Proton (deuteron) beam**

| Date     | Reaction | $\sqrt{s_{NN}}$ [GeV] |
|----------|----------|-----------------------|
| Jan 2004 | p+p      | 2.77                  |
| Apr 2006 | p+p      | 2.42                  |
| Apr 2007 | p+p      | 3.18                  |
| Apr 2007 | d+p      | 2.42                  |
| Sep 2008 | p+Nb     | 3.18                  |
| Feb 2022 | p+p      | 3.46                  |

### **Pion beam**

| Date         | Reaction       | $p_{\pi}$ [GeV/c]   |
|--------------|----------------|---------------------|
| Jul-Sep 2014 | $\pi^-$ + C/PE | 0.66, 0.69, 0.75, 0 |









# **Principal Particle Identification methods**

HADES: Phys.Rev.C 102 (2020) 2, 024914

### **Cut-based approach**



correlation between momentum ( $|\vec{p}|$ ) and velocity ( $|\vec{\beta}|$ )

A. Rustamov, CPOD 2024, LBNL, Berkeley

### **Probabilistic approach (New)**







# **Dilepton sources in a few GeV nuclear interactions**



A. Rustamov, CPOD 2024, LBNL, Berkeley











The HADES data show clear excess radiation over the hadronic cocktail (without  $\rho$ )



## Isolating the excess radiation



### HADES: Nature Physics 15, 1040-1045 (2019)

### A. Rustamov, CPOD 2024, LBNL, Berkeley

(technically yes, via QCD sum rules)







## **Excess radiation, interpretation**

### **Coarse-Grained Transport Simulations**

- setup a 4D space-time cells ( $\Delta x, \Delta y, \Delta z, \Delta t$ )
- $\checkmark$  calculate T and  $\mu_B$  for each cell
- assume that cells are in full equilibrium
- compute the dilepton rate from each cell

$$\frac{d^8 N}{d^4 q d^4 x} = -\frac{\alpha^2 L(M)}{3\pi^3 M_{ee}^2} f^{BE}(q_0, T) Im \Pi_{em}(M_{ee}, q; T)$$

McLerran, Toimela, Phys. Rev. D 31 (1985) 545

 $\checkmark$  use VDM to setup a contact with e.g.,  $\rho$  meson

use in-medium spectral functions ...  $\underline{\rho}$ Ş

HADES: Nature Physics 15, 1040-1045 (2019) S. Endres et al., Phys.Rev.C 92 (2015) 1, 014911 T. Galatyuk et al., Eur.Phys.J.A 52 (2016) 5, 131 Including in-medium spectral functions: R. Rapp, J. Wambach, H. van Hees, Landolt-Bornstein 23 (2010) 134

### A. Rustamov, CPOD 2024, LBNL, Berkeley



Talk by Florian Seck, Fri 24.05

*N*\*(1520)

 $N^{-}$ 



A. Rustamov, CPOD 2024, LBNL, Berkeley

### Fluctuations of conserved charges from event-to-event

### fundamental/direct tools to study phase transitions



A. Rustamov, CPOD 2024, LBNL, Berkeley





# **Proton multiplicity distributions**





**HADES**: Phys.Rev.C 102 (2020) 2, 024914

eff. uncorrected Proton number distributions



quantifying fluctuations with cumulants,  $\kappa_r$ 

 $\stackrel{\scriptstyle\checkmark}{}$  N occurs with probability p(N) (measured)

 $r^{th}$  order central moment:

$$u_r = \sum_N (N - \langle N \rangle)^r p(N)$$

$$\kappa_1 = \langle N \rangle$$
,  $\kappa_2 = \mu_2 = \sigma^2$ ,  $\kappa_3 = \mu_3$ ,  $\kappa_4 = \mu_4 - 3\mu_2^2$ , ...



13

## Energy excitation function of $\kappa_4/\kappa_2$ in central Au-Au collisions

### HADES: Phys.Rev.C 102 (2020) 2, 024914 **STAR**: Phys.Rev.Lett. 126 (2021) 9, 092301







a dip in the excitation function is generic

M. Stephanov, PRL102.032301(2009), PRL107.052301(2011) M.Cheng et al, PRD79.074505(2009)

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

non-monotonic behaviour with a significance of  $3.1\sigma$ relative to Skellam expectation







## Energy excitation function of $\kappa_4/\kappa_2$ in central Au-Au collisions

### HADES: Phys.Rev.C 102 (2020) 2, 024914 **STAR**: Phys.Rev.Lett. 126 (2021) 9, 092301



A. Rustamov, CPOD 2024, LBNL, Berkeley





a dip in the excitation function is generic

M. Stephanov, PRL102.032301(2009), PRL107.052301(2011) M.Cheng et al, PRD79.074505(2009)

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

### non-monotonic behaviour with a significance of $3.1\sigma$ relative to Skellam expectation

CE Baseline: P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141

no statistically significant difference between the data and the canonical baseline (KS test:  $1.2\sigma$ ,  $\chi^2$  test:  $1.5\sigma$ )











## Energy excitation function of $\kappa_3/\kappa_2$ in central Au-Au collisions

### HADES: Phys.Rev.C 102 (2020) 2, 024914 STAR: Phys.Rev.Lett. 126 (2021) 9, 092301



CE Baseline: P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141

- no statistically significant difference between the data and the canonical baseline for  $\sqrt{s_{NN}} > 3 \text{GeV}$
- Iarge difference between the CE baseline and HADES
  - remnants from volume fluctuations?

### New methods to account for volume fluctuations

A.R., R. Holzmann, J. Stroth, NPA 1034 (2023) 122641 R. Holzmann, V. Koch, A. R., J. Stroth, 2403.03598 [nucl-th] (submitted to NPA)

### Talk by Marvin Nabroth, Tue 21.05













## **Innovative idea: Identity Method**





M. Gazdzicki et al., Phys.Rev.C 83 (2011) 054907 M. I. Gorenstein, PRC 84, 024902 (2011) AR, M. I. Gorenstein, PRC 86, 044906 (2012) M. Arslandok, AR, NIM A946, 162622 (2019)

A. Rustamov, CPOD 2024, LBNL, Berkeley

- Input for this event: 3 pions 1 2 3, 2 kaons 4 5 ĕ
- Ş **Probabilities that a given measurement**  $x_i$  is pion or Kaon

New Idea (Identity method): using proxies for particle numbers



provides unique solutions

Ş

- works for any number of particles
- works for higher order pure and mixed moments Ş





## Identity vs cut-based results

## UrQMD Ag+Ag, $\sqrt{s_{NN}}$ = 2.55 GeV, $|y_{cm}|$ < 0.4, 0.4 < $p_T$ < 1.6 GeV/c



consistent results for different efficiency correction methods reasonable agreement between the Identity and cut-based methods





## **Collective effects**

### For a phase transition to happen, interactions are necessary



# delicate balance between transverse expansion and passage time

Cheuk-Yin Wong, PLB 88, 12, 1979 S. Voloshin, Y. Zhang, Z.Phys.C 70 (1996) 665-672

A. Rustamov, CPOD 2024, LBNL, Berkeley

Fourier series of invariant cross section

$$E\frac{d^3N}{d^3\vec{p}} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + 2\sum_{n=1}^{\infty} v_n(p_t, y)\cos(n\phi)\right)$$
$$\phi = (\phi - \Psi_{RP})$$

$$v_n = \langle cos(n\phi) \rangle$$

$$v_{1} = \langle \cos\phi \rangle = \langle p_{x}/p_{t} \rangle$$

$$v_{2} = \langle \cos2\phi \rangle = \langle (p_{x}^{2} - p_{y}^{2})/p_{t}^{2} \rangle = \langle (p_{x}^{2} - p_{y}^{2})/(p_{x}^{2} + p_{y}^{2})/(p_{x$$





19

## Flow measurements of different particle species



A. Rustamov, CPOD 2024, LBNL, Berkeley

HADES: Eur. Phys.J.A 59 (2023) 4, 80

# Systematic measurements of flow coefficients up to $v_4$

### Can be used to constrain EoS



of

nS



# **Sensitivity of flow coefficients to EoS**



A. Rustamov, CPOD 2024, LBNL, Berkeley

### **Constraining EoS**

- JAM (NS3) hard EoS, momentum independent
- Ş **JAM (MD1)** - hard EoS, momentum dependent
- Ş JAM (MD4) - soft EoS, momentum dependent
- UrQMD hard EoS, momentum independent
- **GiBUU** soft EoS Ş
- Ş **Overall trend is reasonably described**
- Quantitatively all models fail to describe the data
  - Most consistent is **JAM (MD4)**



21

## **Elliptic flow of dileptons**



A. Rustamov, CPOD 2024, LBNL, Berkeley

## Penetrating probes, dileptons should not "flow"!

- $\gg M_{ee} < 0.12 \text{ GeV/c}^2$  dominated by pions
  - $\bigvee$  negative  $v_2$ , constant with negative  $v_2$  for pions
- $M_{ee} \ge 0.12 \text{ GeV/c}^2$ 
  - contributions from thermal medium?
    - vanishing values  $v_2$  within uncertainties Ş

### Ongoing

isolating the flow of a parent hadron











# **Detector upgrades (in cooperation with CBM)**

## Upgrade of old RICH photon detector with MAPMT based camera (CBM technology)

- Large number of fired pads per ring
  - Significantly improved lepton identification
  - Excellent conversion rejection
- Noise rejection owing to high precision timing information





VUV mirror radiato shell erenkov otons  $C_{4}H_{10}$ beam tube beamtube hub pokes









# **Detector upgrades (in cooperation with PANDA)**



## **New detector systems**

### **T0 detector based on LGAD technology**

- $\checkmark$  precise  $T_0$  determination, beam monitoring
- $\checkmark$  used in p+p @ T = 4.5 GeV and Au+Au @ T = 0.8 GeV

J. Pietraszko, et al., Eur. Phys. J. A 56, 183 (2020)

### Extending the physics performance towards forward hemisphere (for elementary collisions)

PoS FAIRness2022 (2023) 043

### Forward detector to track charged particles at $1^0 < \theta < 6^0$

- **two** straw trackers and **one** RPC
- $\checkmark$  used in p+p @ T = 4.5 GeV

### **Inner TOF**

- three plastic scintillators per sector
  - improvement of trigger selectivity
  - $\checkmark$  used in p+p @ T = 4.5 GeV





## **Future Prospects**

## February 2022: p+p, T = 4.5 GeV (done)

- baseline for FAIR experiments (and beyond) Ş
- $\Im$  March 2024: Au+Au, T = 0.8A GeV (done)
- Beam energy scan (2025)
  - $\Im$ Au-Au collisions, with projectile kinetic energies: 0.6A, 0.4A, 0.2A GeV
    - (~ 10<sup>9</sup> events for each energy)
    - systematic study of fluctuations and correlation

functions at the high values of  $\mu_R$ 

probing the vicinity of nuclear liquid-gas phase transition

Pion beams for third resonance region (2025)

Ş....



![](_page_24_Picture_17.jpeg)

GSI

## Summary

![](_page_25_Picture_1.jpeg)

- If High statistics data are recorded for A-A, p-A, p-p as well as pion induced collisions
- $\mathbf{M}$  High precision dielectron measurements indicate strong in-medium broadening of the  $\rho$  meson
  - **Mathebolic** Possible hint for partial restoration of chiral symmetry
- $\mathbf{M}$   $\kappa_4$  of proton number is consistent with the canonical baseline
- $\mathbf{M}$   $\kappa_3$  of proton number is significantly below the canonical baseline
  - Application of the Identity method and accounting for volume fluctuations are ongoing
- Systematic and differential measurements of flow coefficients for different particles are performed
  - $\checkmark$  Important for constraining EoS of matter at large  $\mu_B$
- Several new detector systems are installed and already used during data taking

A. Rustamov, CPOD 2024, LBNL, Berkeley

**M** The HADES experiment at GSI/SIS provides unique opportunities to unravel the QCD phase structure

![](_page_25_Picture_13.jpeg)

![](_page_25_Picture_21.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_3.jpeg)

27

![](_page_27_Picture_0.jpeg)

A. Rustamov, CPOD 2024, LBNL, Berkeley

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_11.jpeg)

A. Rustamov, CPOD 2024, LBNL, Berkeley

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_10.jpeg)

## Extracting $\rho$ production amplitudes using pion beams

![](_page_29_Figure_1.jpeg)

HADES: Phys.Rev.C 102 (2020) 2, 024001

A. Rustamov, CPOD 2024, LBNL, Berkeley

Constraining  $\rho$  production amplitudes

$$\pi^- p 
ightarrow n \pi^+ \pi^-$$
 ,  $p_\pi$  = 0.685 GeV/c,  $\sqrt{s_{\pi p}}$  ~ 1.49 G

Bonn-Gatchina Partial Wave Analysis (PWA)

![](_page_29_Picture_8.jpeg)

![](_page_29_Picture_9.jpeg)

![](_page_29_Picture_10.jpeg)

# Strangeness production phenomenology

### Enhancement

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

Energy needed:

QGP:  $2m_s \approx 200 \text{ MeV}$ 

Hadron gas: e.g., NN -> N $\Lambda$ K  $\approx$  670 MeV

J. Rafelski, B. Müller, PRL 48, 1066 (1982) P. Koch, B. Müller, J. Refelski, Phys. Rep. 142, 167 (1986)

A. Rustamov, CPOD 2024, LBNL, Berkeley

![](_page_30_Figure_10.jpeg)

Canonical suppression factor  $F_s = I_s(x)/I_0(x)$ 

 $I_{\rm s}$  - modified Bessel function,  $x \sim V$ 

$$<$$
Mult><sub>CE</sub> =  $F_s$ <sub>GCE</sub>

Hierarchy follows the strangeness content Enhancement decreases with increasing energy

S. Hamieh, K. Redlich, A. Tounsi, PLB 486, 61 (2000)

![](_page_30_Picture_16.jpeg)

GSI)

## **Strangeness centrality dependence**

Universal scaling with centrality

Mult ~ ~ 
$$\left\langle A_{part} \right\rangle^{\alpha}$$

$$\alpha_{Au-Au} = 1.45 \pm 0.06$$

$$\alpha_{Ag-Ag} = 1.47 \pm 0.04$$

![](_page_31_Figure_5.jpeg)

HADES: PLB 793 (2019) 457-463

**HADES**: Preliminary

![](_page_31_Picture_9.jpeg)

## Hypernuclei measurements

 $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$ 

![](_page_32_Figure_2.jpeg)

measured lifetime (262  $\pm$  22<sub>stat</sub>  $\pm$  28<sub>sys</sub> ps) is comparable with that of free  $\Lambda$  (263 ps)

![](_page_32_Figure_6.jpeg)

measured lifetime (222  $\pm$  7<sub>stat</sub>  $\pm$  12<sub>sys</sub> ps) is 4.7  $\sigma$ below compared to free  $\Lambda$  lifetime (263 ps)

![](_page_32_Picture_8.jpeg)

![](_page_32_Picture_9.jpeg)

![](_page_32_Picture_10.jpeg)

![](_page_32_Picture_11.jpeg)

![](_page_32_Picture_12.jpeg)

## **Understanding excess radiation**

![](_page_33_Figure_1.jpeg)

### HADES: Nature Physics 15, 1040-1045 (2019)

Coarse-grained transport simulations, thermal  $\rho$  emission

dilepton rate from a thermlized source (rho meson) at T and

 $dN/dM_{\rho\rho} \sim M_{\rho\rho}^{3/2} exp(-M_{\rho\rho}/T) \longrightarrow T = 71.8 \pm 2.1 \text{ MeV}$ 

### The HADES data suggests a strong $\rho$ broadening

(may) evidence partial restoration of chiral symmetry

S. Endres et al., Phys.Rev.C 92 (2015) 1, 014911 T. Galatyuk et al., Eur.Phys.J.A 52 (2016) 5, 131 Including in-medium spectral functions: R. Rapp, J. Wambach, H. van Hees, Landolt-Bornstein 23 (2010) 134

### Is this measurement connected to Chiral Symmetry Restoration?

technically yes, via e.g., QCD sum rules

$$\frac{1}{\pi} \int_0^\infty ds \frac{\rho(s)}{s - q^2} = \sum_i C_i(q^2) \langle O_i \rangle$$

![](_page_33_Picture_13.jpeg)

![](_page_33_Picture_14.jpeg)

![](_page_33_Picture_15.jpeg)

![](_page_33_Picture_19.jpeg)

## **Electromagnetic transition form factors MFACTORS**

![](_page_34_Figure_1.jpeg)

NA60: Phys.Lett.B 677 (2009) 260-266 C. Terschlusen, S. Leupold, Phys.Lett.B 691 (2010) 191-201

A. Rustamov, CPOD 2024, LBNL, Berkeley

![](_page_34_Figure_4.jpeg)

![](_page_34_Figure_5.jpeg)

### first measurement from HADES

HADES: 2205.15914 [nucl-ex]

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_11.jpeg)

![](_page_34_Picture_14.jpeg)

## **Probing a matter with dileptons**

![](_page_35_Figure_2.jpeg)

### changes in medium - modification in hadron properties

### **Probing hadron properties through their dilepton decays**

- ĕ Advantage
  - penetrating probe (no strong interaction)
    - encodes the properties of medium
      - probes Chiral Symmetry Restoration
- Ş Disadvantage
  - penetrating probe (no strong interaction)
    - measures only time integrated signals
    - small branching ratios (rare probes)

![](_page_35_Picture_15.jpeg)

![](_page_35_Picture_17.jpeg)

# **Critical point discoveries**

### discovered ~ 200 years ago

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

### Cagniard de la Tour (1777-1859)

Ann. Chim. Phys., 21 (1822) 127-132

using steam digester invented by Denis Papin in 1679

```
T_{cn}^{water} = 362 °C (today: 374 °C)
• cp
```

By listening to the system

![](_page_36_Picture_9.jpeg)

A. Rustamov, CPOD 2024, LBNL, Berkeley

### critical opalescence

![](_page_36_Picture_12.jpeg)

### in statistical mechanics (GCE)

![](_page_36_Figure_14.jpeg)

### density fluctuations

A. Einstein, Annalen der Physik, Volume 338, Issue 16, 1910:

![](_page_36_Picture_17.jpeg)

### discovering critical point

### By watching the system

![](_page_36_Picture_20.jpeg)

37

G 55 X