

CPOD 2024 - 15th Workshop on Critical Point and Onset of Deconfinement

Kaon Femtoscopy at High Baryon Density Region

Li'Ang Zhang

for the STAR Collaboration

Central China Normal University

In part supported by

Office of Science

- 1. Motivation
- 2. STAR Fixed Target Setup and Analysis Technique
- 3. Kaon Femtoscopy in Au + Au Collisions at $\sqrt{s_{\text{NN}}} = 3.0, 3.2, 3.5, 3.9$ and 4.5 GeV
 - 1 Correlation Functions
 - 2 Particle Emitting Source Parameters and the $m_{
 m T}$ scaling
 - ③ Strangeness Abundance Asymmetry in Kaon

4. Summary

Motivation – Femtoscopy

L.A. Zhang, CCNU, CPOD 2024, May 20-24 2024, LBNL, USA

star marker(*) represent the pair rest frame

Motivation – Methodology

Assumptions:

- Equal-time approximation
 - > Pair wave function: $\Psi\left(\vec{k}^*, \vec{r}^*, t\right) \rightarrow \Psi\left(\vec{k}^*, \vec{r}^*\right)$
- Gaussian source assumption
 - > Single particle source: $s(x_i, p_i) = \delta(t)e^{-\frac{r^2}{2r_0^2}}$

Pair source (radius R_G):
$$S_G(\vec{r}^*) = e^{-\frac{\vec{r}^{*2}}{4R_G^2}} / (4\pi R_G^2)^{3/2}$$

- Smoothness approximation for source function
 - $\bullet Sinyukov-Bowler^{[1]}$ approach used for $K^+\mathchar`- K^+$ and $\pi^+\mathchar`- \pi^+$ CF

$$CF(q_{inv}) = N[(1 - \lambda) + K_{coul}(q_{inv}, R_G)\lambda(e^{[-R_G^2 q_{inv}^2]} + 1)$$

Coulomb interaction part **QS part**

• N: normalize factor; λ : correlation strength

• Lednický-Lyuboshitz (L-L)^[2] approach used for K_S^0 - K_S^0 CF $CF(q) = 1 + \lambda \left(e^{\left[-R_G^2 q_{inv}^2\right]} + \frac{QS \text{ part}}{+} \right)^2$ Strong interaction part $\frac{1-\epsilon^2}{2} \left[\left| \frac{f(k^*)}{r_G} \right|^2 + \frac{4Re[f(k^*)]}{\sqrt{\pi}R_G} F_1(q_{inv}R_G) - \frac{2Im[f(k^*)]}{R_G} F_2(q_{inv}R_G) \right]$

Kaon abundance asymmetry

$$f(k^*): \text{ scattering amplitude:}$$

$$f(k^*) = \frac{1}{2} [f_0(k^*) + f_1(k^*)], f_I(k^*) = \frac{\gamma_r}{m_r - s - i\gamma_r k^* - i\gamma_r' k_r^*}$$

	m_{f_0}	$\gamma_{f_0 K \overline{K}}$	$\gamma_{f_0\pi\pi}$	m_{a_0}	$\gamma_{a_0 K \overline{K}}$	γ a ₀ πη
Antonelli ^[3]	0.973	2.763	0.5283	0.985	0.4038	0.3711

- K⁰_S-K⁰_S state is made up of a combination of K⁰-K⁰ (K

 ⁰-K

 ⁰) and K⁰-K

 ⁰ state
- With K⁰_S-K⁰_S CF, Kaon abundance asymmetry can be extracted

[1] Phys. Lett. B, 432(3-4), 248-257 (1998)

[2] J.Nucl.Phys. 35, 770 (1982)[3] eConfC020620, THAT06 (2002)

STAR Fixed Target Setup

Energy $\sqrt{s_{ m NN}}$	Ybeam	μ_B	Events		
3.0 GeV	-1.05	750 MeV	260 M		
3.2 GeV	-1.13	699 MeV	200 M		
3.5 GeV	-1.20	670 MeV	120 M		
3.9 GeV	-1.37	633 MeV	120 M		
4.5 GeV	-1.52	590 MeV	110 M		
•••••					

L.A. Zhang, CCNU, CPOD 2024, May 20-24 2024, LBNL, USA

STAR Detector

Time Projection Chamber (TPC)

- Charged particle tracking
- Momentum reconstruction
- Particle Identification
- Pseudorapidity coverage -2.0 < η < 0 (for fix target)

barrel Time-of-Flight (bTOF)

- Particle Identification
- Pseudorapidity coverage -1.5 < η < 0 (for fix target)

end-cap Time-of-Flight (eTOF)

- Particle Identification
- Pseudorapidity coverage -2.2 < η < -1.5 (for fix target)

Analysis detail – PID, Reconstruction

3.9 GeV Au + Au Collisions at RHIC

[•] TPC (dE/dx) and TOF (β) for charged pion and kaon particle identification

- K⁺ PID: TPC+bTOF (+eTOF for $\sqrt{s_{\text{NN}}}$ = 3.5 GeV and above)
- π^{\pm} PID: TPC (+bTOF for high momentum track)
- K_S^0 hadrons are reconstructed using invariant mass method: $K_S^0 \rightarrow \pi^+ \pi^-$
- K⁰_S combinatorial backgrounds are reconstructed by the rotation method

STAR

Analysis detail – Correlation Function 8/17

STAR

Analysis detail – Purity Correction

- 1. Use the side band candidates estimate the background: \widetilde{K}^0_S
- 2. Calculate CF for each component: $K_S^0 \tilde{K}_S^0$, $\tilde{K}_S^0 \tilde{K}_S^0$
- 3. Take average of left and right side band CF
- 4. Estimate the contribution for each part
 - 1 Purity of K_S^0 : ~90%
 - 2 Pair Purity of K_S^0 - K_S^0 : ~80%
- 5. Extract the pure CF

 $C(q_{inv}) - 1 = \omega_{Pair Purity} [C_{pure}(q_{inv}) - 1] + (1 - \omega_{Pair Purity}) [C_{BKG}(q_{inv}) - 1]$

Analysis detail – Track Splitting and Merging 10/17

Merging effect

- Longitudinal angle difference $\Delta \theta$ or $\Delta \eta$
- Azimuth angle difference $\Delta \phi^*$
- 2D cuts for $\Delta \theta$ and $\Delta \phi^*$ to remove merging effect Kaon:

 $|\Delta \theta| > 0.02$ or $|\Delta \phi^*| > 0.05$ Pion:

 $|\Delta \eta| > 0.04 \text{ or } |\Delta \phi^*| > 0.06$

Analysis detail – Acceptance

- KF Particle package is used for the strange hadron for K⁰_S reconstruction
- Good coverage from beam-rapidity to mid-rapidity for π^{\pm} , K⁺ and K⁰_S

L.A. Zhang, CCNU, CPOD 2024, May 20-24 2024, LBNL, USA

- Analysis acceptance window:
 - π^{\pm} : -1.0 < y < 0, 0.15 < p_T < 1.0 (GeV/c)
 - K^+ : -1.0 < y < 0, 0.4 < p_T < 1.2 (GeV/c)
 - K^+ : -1.0 < y < 0, 0.2 < p_T < 1.8 (GeV/c)

Results – Correlation Functions

Invariant Relative Momentum q_{inv} (GeV/c)

- Particle emitting source parameters (R_G , λ) and abundance asymmetry (ϵ) can be extracted
- For K⁰_S L-L model fitting, four difference scattering amplitude parameters^[1,2,3,4] compared, and consistent with each other
- UrQMD + CRAB calculation reproduce the results

L.A. Zhang, CCNU, CPOD 2024, May 20-24 2024, LBNL, USA

12/17

Results – Correlation Functions

- Particle emitting source parameters (R_G , λ) and abundance asymmetry (ϵ) can be extracted
- For K⁰_S L-L model fitting, four difference scattering amplitude parameters^[1,2,3,4] compared, and consistent with each other
- Model calculation reproduce the results
- Charged kaon consistent with neutral kaon after subtracting the Coulomb effect

[1] eConfC020620, THAT06 (2002)[3] Phys. Rev. D 68, 014006 (2003)[2] Phys. Rev. D 63, 094007 (2001)[4] Nucl. Phys. B 121, 514-530 (1977)

13/17

L.A. Zhang, CCNU, CPOD 2024, May 20-24 2024, LBNL, USA

Results – R_G and λ

No clear energy dependence was observed for both source radii and correlation strength, and UrQMD + CRAB calculations reproduce the results

14/17

 Kaon correlation strength larger than pion's, implying less impact from resonance decay

Results – $m_{\rm T}$ **Scaling**

- Source size of kaons don't follow m_Tscaling of pions'
- Kaon source size smaller than pions' trend
- Implying no equilibrium amongst pions and kaons at high baryon density region

L.A. Zhang, CCNU, CPOD 2024, May 20-24 2024, LBNL, USA

Results – Abundance Asymmetry

16/1/

Summary

- 1) First systematic measurements of kaon correlation functions in Au+Au collisions at high baryon density with STAR detector;
- 2) Source parameters (source size R_G and correlation strength λ) are extracted for both charged- and neutral-kaons and they are consistent within uncertainties;
- 3) Within the energy range $\sqrt{s_{\rm NN}}$ = 3.0 4.5 GeV:
 - (i) No clear energy dependence was observed in R_G , while the K_S^0 abundance asymmetry parameter ϵ is close to unity at the lower FXT energies and is decreasing as a function of the collision energy;
 - (ii) Kaons' source parameter R_G do not follow the m_T -scaling determined from pions', implying no equilibrium between kaons and pions in the high baryon density medium.

Thanks for your attention !

Back up

L.A. Zhang, CCNU, CPOD 2024, May 20-24 2024, LBNL, USA

Analysis detail – Systematics

$K_{S}^{0} - K_{S}^{0}$ CF systematic source

- Track quality: NHitsFit 1.
- K_{S}^{0} Reconstruction: χ^{2}_{Topo} , χ^{2}_{NDF} , $\chi^{2}_{primary}$, 2. mass window
- Momentum resolution effect (embedding) 3.
- CF calculation: Side band region, 4. background estimate method, fitting range, normalize range

Barlow check^[1] to reduce the statistical fluctuation

STAR

$K^+ - K^+$ CF systematic source

- Track quality: NHitsFit, DCA 1.
- PID: TOF mass square, $n\sigma_{K}$ 2.
- 3. Track splitting & merging: splitting level, $|\Delta \phi^*|, |\Delta \theta|$
- Momentum resolution effect (embedding) 4.
- CF calculation: Fitting range 5. Barlow check^[1] to reduce the statistical

Au+Au @ 3.9 GeV, Centrality: 0-60%

0.15

0.2

y (-1.0, 0.0) p_(0.4, 1.2) GeV/c

0.1

relative momentum q

fluctuation

0.05

0.03

0.02

0.01

0

$\pi^+ - \pi^+$ CF systematic source

- Track quality: NHitsFit, DCA 1.
- Track splitting & merging: splitting level, 2. $|\Delta \phi^*|, |\Delta \theta|$

Barlow check^[1] to reduce the statistical fluctuation

L.A. Zhang, CCNU, CPOD 2024, May 20-24 2024, LBNL, USA

^[1] arXiv:hep-ex/0207026v1