High order fluctuations of conserved charges in the continuum limit [2312.07528]

Szabolcs Borsányi

Wuppertal-Budapest collaboration.

Z. Fodor, J. N. Günther, S. D. Katz, P. Parotto, A. Pásztor, D. Pesznyák, K. K. Szabó and C. H. Wong

Bergische Universität Wuppertal

CPOD 2024, Berkeley

Versions of a QCD phase diagram

Zero μ_B : $T_c(\mu_B)$ crossover [Lattice QCD, Wuppertal-Budapest + BNL-Bielefeld 2006...2020] Low μ_B : transition line [Lattice QCD, Pisa group + Wuppertal-Budapest + BNL-Bielefeld 2015...] Low μ_B : $T_{\rm freeze-out} \approx T_c(\mu_B)$ [Braun-Munzinger, Stachel, Wetterich, nucl-th/0311005] High μ_B : $T_{\rm freeze-out} < T_c(\mu_B)$ [Floerchinger, Wetterich 1202.1671] What can Lattice QCD still do about the phase diagram?

Baryon fluctuations in two scenarios

Stephanov [0809.3450,1104.1627] : Non-monotonic high order fluctuations near a critical end point. Here : fourth cumulant $\langle B^4 \rangle_c$, normalized to the second cumulant $\langle B^2 \rangle_c$

FRG-Lattice assisted LEFT Pawlowski et al. [2101.06035] CEP = (93 MeV, 672 MeV)

Taylor coefficients

Taylor coefficients of the pressure

$$\frac{p(\mu_B)}{T^4} = \frac{p(0)}{T^4} + \frac{1}{2!} \frac{\mu_B^2}{T^2} \chi_2^B(T) + \frac{1}{4!} \frac{\mu_B^4}{T^4} \chi_4^B(T) + \frac{1}{6!} \frac{\mu_B^6}{T^6} \chi_6^B(T) + \dots$$

• These Taylor coefficients are equal to the Grand Canonical fluctuations

$$\left\langle B^{2} \right\rangle - \left\langle B \right\rangle^{2} = rac{1}{VT} rac{\partial^{2} \log Z(V, T, \mu_{B}, \mu_{Q}, \mu_{S})}{\partial {\mu_{B}}^{2}} = \chi_{2}^{B}$$

Higher fluctuations are the Taylor coefficients of lower fluctuations

$$\chi_2^B(\mu_B) = \chi_2^B(\mu_B = 0) + \frac{1}{2!} \frac{\mu_B^2}{T^2} \chi_4^B(\mu_B = 0) + \frac{1}{4!} \frac{\mu_B^4}{T^4} \chi_6^B(\mu_B = 0) + \dots$$

- Taylor coefficients can be used to reveal analytic structure of the thermodynamic potential
 - Repulsive interactions beyond ideal HRG
 - Searching the critical end point
- Hints for chiral O(4) universality

Baryon fluctuations in the literature

Two results without continuum extrapolation

Is χ_6^B positive or negative at $T \approx 150$ MeV? Does QCD agree with HRG at $T \approx 140$ MeV?

How to calculate the χ coefficients?

$$\begin{split} \chi_{200}^{uds} &= +\langle B_u \rangle + \langle A_u A_u \rangle \\ \chi_{400}^{uds} &= +\langle D_u \rangle + 3\langle B_u B_u \rangle - 3\langle B_u \rangle \langle B_u \rangle + 4\langle A_u C_u \rangle \\ &+ \langle A_u A_u A_u A_u \rangle - 3\langle A_u A_u \rangle \langle A_u A_u \rangle + 6\langle A_u A_u B_u \rangle - 6\langle B_u \rangle \langle A_u A_u \rangle \\ \hline \chi_{600}^{uds} &= +\langle F_u \rangle + 10\langle C_u C_u \rangle + 15\langle B_u D_u \rangle + 15\langle B_u B_u B_u \rangle + 6\langle A_u E_u \rangle + 60\langle A_u B_u C_u \rangle + 15\langle A_u A_u D_u \rangle \\ &+ 45\langle A_u A_u B_u B_u \rangle + 20\langle A_u A_u A_u C_u \rangle + 15\langle A_u A_u A_u B_u \rangle + \langle A_u A_u A_u A_u A_u A_u \rangle - 15\langle D_u \rangle \langle B_u \rangle \\ &- 15\langle D_u \rangle \langle A_u A_u \rangle - 45\langle B_u \rangle \langle B_u B_u \rangle - 60\langle B_u \rangle \langle A_u C_u \rangle - 90\langle B_u \rangle \langle A_u A_u B_u \rangle \\ &- 15\langle B_u \rangle \langle A_u A_u A_u A_u \rangle + 30\langle B_u \rangle \langle B_u \rangle \langle B_u \rangle + 90\langle B_u \rangle \langle A_u A_u \rangle \\ &+ 90\langle B_u \rangle \langle A_u A_u \rangle + 30\langle A_u A_u \rangle \langle A_u A_u \rangle \langle A_u A_u \rangle \end{split}$$

 $\chi_{800}^{uds} = 79 \text{ terms} \dots$

A, B, C,... are defined as $[\det M(\mu_u)]^{1/4} = [\det M(0)]^{1/4} (1 + A_u \mu_u + \frac{B_u}{2!} \mu_u^2 + \frac{C_u}{3!} \mu_u^3 + ...)$ Data analysis uses computer generated code.

Sign problem in the Taylor coefficients

Volume dependence near a critical point

Thermodynamics with the 4HEX action

■ 4 steps of HEX smearing + DBW2 gauge action

- Physical point defined by $m_{\pi}/f_{\pi} = 1.0337$, $m_s/m_{\text{light}} = 27.63$
- m_{light} tuned in the *a* range: 0.22...0.072 fm
- Thermodynamics runs: cca 50–100 k configurations / ensemble 10 Temperatures 130...205 MeV 3 lattice spacings $16^3 \times 8$, $20^3 \times 10$, $24^3 \times 12$ 6.0

Taste breaking (smaller is better)

show relative quadratic discretization error on M_{π}^2

(HISQ: thanks to Peter Petreckzy)

4HEX continuum extrapolations

Baryon Taylor coefficients

Strangeness neutral Taylor coefficients

What is strangeness neutrality?

We extrapolate : $B(\mu_B, \mu_S, T) = S(\mu_B, \mu_S, T)$

Strangeness neutrality means that we solve for μ_S at any μ_B and T

 $S(\mu_B,\mu_S,T)\equiv 0$

That requires a tuning of $\mu_S = \mu_S^*(\mu_B, T)$. [For simplicity $\mu_Q \equiv 0$.]

$$\mu_{S}^{*}(\mu_{B}, T) = s_{1}(T)\mu_{B} + s_{3}(T)\mu_{B}^{3} + s_{5}(T)\mu_{B}^{5} + \dots$$

One obtains $s_1(T)$, $s_3(T)$ and $s_5(T)$ from the standard Taylor coefficients

[HotQCD 1208.1220; 1701.04325]

4HEX results:

[MeV]

190 200

170

High order coefficients

Baryon Taylor coefficients

Strangeness neutral Taylor coefficients

12/23

Comparison with literature

4stout data (imaginary μ_B , 48³ × 12 lattice) : [Wuppertal-Budapest, 1805.04445] HISQ data: ($\mu_B = 0$, 32³ × 8 lattice, inexact charge conservation) [BNL-Bielefeld, 2202.09184,2212.09043] 4HEX result ($\mu_B = 0$, 16³ × 8, 20³ × 10, 24³ × 12 lattices) [Wuppertal-Budapest, 2312.07528]

Pressure excess

We calculate using continuum extrapolated coefficients (in a modest volume LT = 2)

$$\frac{p(T,\mu_B)}{T^4} - \frac{p(T,0)}{T^4} \approx \frac{p_0}{2!} \frac{\mu_B^2}{T^2} + \frac{p_0}{4!} \frac{\mu_B^4}{T^4} + \frac{p_0}{6!} \frac{\mu_B^6}{T^6} + \frac{p_0}{8!} \frac{\mu_B^8}{T^8}$$

Status of $16^3 \times 8$ simulations

m n (10

100

m n () n

Baryon cumulant ratios

15 / 23

Search for Lee-Yang zeros

The poles of the rational function

$$\chi_2(T,\hat{\mu}_B) \approx \frac{A_0 + A_1\hat{\mu}_B^2}{1 + B_1\hat{\mu}_B^2 + B_2\hat{\mu}_B^2} \stackrel{!}{=} \chi_2(T,0) + \frac{\hat{\mu}_B^2}{2!}\chi_4(T,0) + \frac{\hat{\mu}_B^4}{4!}\chi_6(T,0) + \frac{\hat{\mu}_B^4}{6!}\chi_8(T,0)$$

might reveal Lee-Yang zeros. Real Lee-Yang zeros indicate real tansitions.

i) Small temperatures could be more conclusive but require higher orders.ii) Results come with large systematics (fit range dependence)

Strangeness fluctuations

T [MeV]

T [MeV]

Strangeness susceptibility extrapolations

Strangeness susceptibility extrapolations

NNLO expansion on a $16^3\times 8$ lattice

$$\begin{split} \chi_{2}^{\mathsf{S}}(T,\mu_{B}) &\approx \quad \chi_{2}^{\mathsf{S}}(T,0) + \frac{\mu_{B}^{2}}{2T^{2}}\chi_{22}^{B\mathsf{S}}(T,0) \\ &+ \frac{\mu_{B}^{4}}{24T^{4}}\chi_{42}^{B\mathsf{S}}(T,0) + \frac{\mu_{B}^{6}}{720T^{6}}\chi_{62}^{B\mathsf{S}}(T,0) \end{split}$$

Real μ_B

Imaginary μ_B

Conclusions

High order fluctuations from lattice is an expensive endeavour

- Earlier (2018) we exploited analiticity in the (imaginary) chemical potential to substantially cut costs on 48³ × 12 lattices *two years of INCITE access*
- Today I presented continuum extrapolated fluctuations in a smaller volume (LT = 2) thanks to the 4HEX discretization using a fraction of resources $\frac{1}{2}$ years in Jülich
 - Cut-off effects are significant (staggered fermions) New action (4HEX) permits continuum extrapolation from $N_t = 8,10$ and 12.
 - Large volume kills the signal (as expected in the presence of a sign problem); small volume could already show hints for criticality
- From very high statistics ensembles (an other ¹/₂ years in Jülich + 2 weeks on LUMI) one can attempt to extrapolate to so far unattainable parts of the phase diagram. (today only on coarse lattices)

backup

$\chi_2^{S}(\mu_B)$ extrapolation

$$\chi_{2}^{S}(T,\mu_{B}) \approx \chi_{2}^{S}(T,0) + \frac{\mu_{B}^{2}}{2T^{2}}\chi_{22}^{BS}(T,0) + \frac{\mu_{B}^{4}}{24T^{4}}\chi_{42}^{BS}(T,0) + \frac{\mu_{B}^{6}}{720T^{6}}\chi_{62}^{BS}(T,0)$$

Testing continuum limits with the 4HEX action

4HEX staggered action with strongly reduced taste breaking. Let's look at those fluctuations e.g. chanrge, that is sensitive to it.

Continuum extrapolation T = 145 MeV with large volume up to $N_t = 16$

4STOUT: Wuppertal-Budapest (2013–2023[Wuppertal-Budapest [1507.04627]] HISQ: BNL-Bielefeld (2011–...)[HotQCD [2107.10011]] 4HEX: Wuppertal-Budapest (2022–...) [Wuppertal-Budapest QM2022]