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Dynamical Theory

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:
e Critical equation of state.

e Stochastic fluxes, fluctuation-dissipation relations.

e Possible Goldstone modes (chiral field in QCD)

Chiral phase transition: Model G (Rajagopal & Wilzcek)

Possible critical endpoint: Model H (Son & Stephanov)



Digression: Diffusion

Consider a Brownian particle

p(t) = —vpp(t) + ¢(t) (C)¢(t)) = rd(t —t')

drag (dissipation) white noise (fluctuations)

For the particle to eventually thermalize
(p?) = 2mT

drag and noise must be related
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Einstein (Fluctuation-Dissipation)



Hydrodynamic equation for critical mode

Equation of motion for critical mode ¢ (“model H")
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Fluctuation-Dissipation relation
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ensures P|¢p, 7] ~ exp(—F|¢p, 7]/T)
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Numerical realization

Stochastic relaxation equation (“model A")

Oph = —I’?—Z ¢ (C(z, )¢ (2", ")) =TT6(x — 2")o(t — t)

Naive discretization

OF [T
O (At)a3

Noise dominates as At — 0, leads to discretization ambiguities in the

Yt + At) = P(t) + (At) 0 60%) =1

equilibrium distribution.

|ldea: Use Metropolis update

Y (t + At) )+ 2 (At)d p = min(1,e P27)



Numerical realization

Central observation

(Wt + At T) — (¢, T)) = —(At)r%+0((m)2)
([t + At Z) —(t, D)]°) = 2(ATT + 0 ((At)?) .

Metropolis realizes both diffusive and stochastic step. Also

Ply] ~ exp(=SF[Y])

Note: Still have short distance noise; need to adjust bare parameters such
as I', m?, \ to reproduce physical quantities.



Numerical realization: Model H

Model H: Conserving update
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Advection (PB terms) conserves H. On the lattice use “skew” discretized

derivatives
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and project on



Numerical results (critical Navier-Stokes)

Order parameter (3d) Order parameter/velocity field (2d)




Renormalized viscosity

Renormalization of n

“Stickiness of shear waves”
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Relaxation Rate

Order parameter relaxation rate

C(t) = (¢(0)o—k (1))
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Dynamic Scaling:
Crossover from 7r ~ &% at large nr 2(n=0.01) = 3.07

to 7p ~ &3 for small np



Relaxation Rate

Order parameter relaxation rate
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Evolution of higher moments
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Summary and Outlook

Numerical simulation of stochastic fluid dynamics, observed renor-
malization of shear viscosity and dynamical scaling.

Outlook (post BESII reveal): 1) We still want to predict the impact
of a possible CEP on observables. 2) There is a crossover transition
with non-trivial chiral and baryon number susceptibilities. Can we
detect that in the data? 3) What is the impact of fluctuations on

small systems?

For this purpose, we need to extend the present framework to full
(relativistic) fluid dynamics, or couple the simulations to fixed rela-

tivistic background flow (no backreaction).



