NuclearScience Computing Centerat CCNU

Lattice and Magnetic Field

Heng-Tong Ding Central China Normal University

Baryon electric charge correlation as a Magnetometer of QCD HTD, J.-B. Gu, A. Kumar, S.-T. Li, J.-H. Liu, Phys. Rev. Lett. 132 (2024) 201903, and work in progress

The 15th workshop on the Critical Point and Onset of Deconfinement May 20-24, 2024 @ Berkeley, CA

A QCD CEP in very strong magnetic fields

M. D'Elia et al., Phys.Rev.D 105 (2022) 3, 034511

No sign problem in LQCD simulations with eB

A crossover transition exists still at eB=4 GeV²

A first order phase transition observed at eB=9 GeV²

There should exist a CEP at $4 \text{ GeV}^2 < eB < 9 \text{ GeV}^2$

4 GeV² ~ 2 × 10²⁰ Gauss ~ 200 M_{π}²

Magnetic field created in the early stage of HIC

Bali, Endrodi, Piemonte, JHEP 07 (2020) 183

RHIC: $eB \sim 5M_{\pi}^2$ t=0: LHC: $eB \sim 70M_{\pi}^2$

T> 155 MeV: Paramagnetic T<155 MeV: Diamagnetic

LQCD results on

LQCD results on difference to electromagnetic

Parallel: ↑

 $eB\uparrow$

Whether imprints of a strong magnetic field exist in the final stage of heavy-ion collisions?

Chiral magnetic effect

See recent reviews e.g. D.E. Kharzeev and J. Liao, Nature Rev. Phys. 3(2021)55

\mathbf{M} Axial U(1) anomaly

HTD, Li, Mukherjee, Tomiya, Wang & Zhang, PRL 126 (2021) 082001 HTD, Huang, Mukherjee & Petreczky, PRL 131 (2023) 161903 Kaczmarek, Shanker & Sharma, PRD108 (2023) 094501 Alexandru, Bonano, D'Elia & Horvath, arXiv:2404.12298

Strong magnetic field

• • • • • •

See also in e.g. Bali et al., Phys.Rev.D86(2012)071502

HTD, S.-T. Li, A. Tomiya, X.-D. Wang and Y. Zhang, PRD 126 (2021) 082001

See quenched LQCD results in Bali et al., PRD 97 (2018) 034505, Luschevskaya et al., NPB 898 (2015) 627

See also in e.g. Bali et al., Phys.Rev.D86(2012)071502

See quenched LQCD results in Bali et al., PRD 97 (2018) 034505, Luschevskaya et al., NPB 898 (2015) 627

Taylor expansion of the QCD pressure:

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Fixed Taylor expansion coefficients at $\mu=0$ are computable in LQCD

$$\hat{\chi}_{ijk}^{uds} = \frac{\partial^{i+j+k} p/T^4}{\partial \left(\mu_u/T\right)^i \partial \left(\mu_d/T\right)^j \partial \left(\mu_d/T\right)^j \partial \left(\mu_d/T\right)^j}$$
$$\hat{\chi}_{ijk}^{BQS} = \frac{\partial^{i+j+k} p/T^4}{\partial \left(\mu_B/T\right)^i \partial \left(\mu_Q/T\right)^j \partial \left(\mu_d/T\right)^j}$$

At $eB \neq 0$ a lot more could be explored

- Bhattacharyya et al., EPL115(2016)62003
- **PNJL:** W.-J. Fu, Phys. Rev. D 88 (2013) 014009

Fluctuations of net baryon number (B), electric charge (Q) and strangeness (S)

Allton et al., Phys.Rev. D66 (2002) 074507 Gavai & Gupta et al., Phys.Rev. D68 (2003) 034506

> See talks of S. Borsanyi and C. Schmidt on Tue

HRG: Kadam et al., JPG 47 (2020) 125106, Ferreira et al., PRD 98(2018)034003, Fukushima and Hidaka, PRL117 (2016)102301

Lattice setup

HISQ/tree action, line of constant physics adopted from the HotQCD collaboration

Solution Magnetic field strength: $eB = 6\pi/N_s^2 * N_b * a^{-1}$ with $N_b = 1,2,3,4,6,12,16,24$, i.e. $eB \lesssim 0.8 \text{ GeV}^2 \sim 45 \text{m}_{\pi}^2$

Temperature ranges from ~145 MeV to ~166 MeV

 \checkmark Lattice sizes: 32³x8 and 48³x12, with additional 64³x16 at one single value of *eB*

S NuclearScience Computing CenteratCCNU

Lattice data on $N_{\tau} = 8$ and 12 lattices

Continuum estimate v.s. continuum limit

Isospin symmetry breaking at nonzero magnetic field

At
$$eB=0$$
, $\chi_2^u = \chi_2^d$,
 $2\chi_{11}^{QS} - \chi_{11}^{BS} = \chi_2^S$, $2\chi_{11}^{BQ} - \chi_{11}^{BS} = \chi_2^S$

 B_{2}

HTD, J.-B. Gu, A. Kumar, S.-T. Li, J.-H. Liu, PRL 132 (2024) 201903

Net electric charge fluctuations at T=145 MeV

7 *eB*/M_π² 8 0.14

• In HRG: Thermal pressure arising from charged hadrons in strong magnetic fields

Fukushima & Hidaka, PRL 16'

$$\frac{P_c}{T^4} = \frac{|q_i|B}{2\pi^2 T^3} \sum_{s_z=-s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_0 \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} K_1 \left(\frac{\pi}{2\pi^2 T^3} \sum_{s_z=-s_i}^{s_i} \frac{1}{|q_i|} B(l+1/2-s_z)\right)$$
• Diagonal fluctuations from HRG

HTD, Li, Shi & Wang, EPJA 21'

$$\chi_2^X = \frac{B}{2\pi^2 T^3} \sum_i |q_i| X_i^2 \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} f(\varepsilon_0)$$
$$f(\varepsilon_0) = \varepsilon_0 \sum_{n=1}^{\infty} (\pm 1)^{n+1} n \operatorname{K}_1\left(\frac{n\varepsilon_0}{T}\right)$$

Net baryon number fluctuations at T=145 MeV

HTD, J.-B. Gu, A. Kumar, S.-T. Li, J.-H. Liu, PRL 132 (2024) 201903

7 *eB*/M_π² 8 0.14

• In HRG: Thermal pressure arising from charged hadrons in strong magnetic fields Fukushima & Hidaka, PRL 16'

$$\frac{P_c}{T^4} = \frac{|q_i|B}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_0 \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{n=1}^{\infty} (\pm 1)^{n+1} \frac{e^{n\mu_i/T}}{n} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{s_z = -s_i}^{\infty} (\pm 1)^{n+1} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{s_z = -s_i}^{\infty} (\pm 1)^{n+1} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{s_z = -s_i}^{\infty} (\pm 1)^{n+1} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \varepsilon_l \sum_{s_z = -s_i}^{\infty} (\pm 1)^{n+1} \mathcal{K}_1 \left(\frac{1}{2\pi^2 T^3} \sum_{s_z = -s_i}^{s_i} \sum_{s_z = -s_i}^{s_i} \sum_{s_z = -s_i}^{s_i} \varepsilon_l \sum_{s_z =$$

- $\chi_2^{\rm B}$ receives contributions also from neutral baryons
- •HRG, where neutral baryons are assumed to be unaffected by *eB*, undershoots the LQCD results

Baryon electric charge correlation at T=145 MeV

HTD, J.-B. Gu, A. Kumar, S.-T. Li, J.-H. Liu, PRL 132 (2024) 201903

 χ_{11}^{BQ} : Magnetometer of QCD

Most of the eB-dependence comes from doubly charged Delta baryons

 $\Delta^{++} \rightarrow p + \pi^+$

Doubly charged Delta baryons: not-measurable in HIC experiments

QCD transition temperature in nonzero magnetic fields

 T_{pc} determined as the peak location of chiral susceptibility

Negligible *eB*-independence at $eB \leq 0.16 \; \mathrm{GeV^2}$

Baryon electric charge correlation along the transition line

HTD, J.-B. Gu, A. Kumar, S.-T. Li, J.-H. Liu, PRL 132 (2024) 201903

At $eB \leq M_{\pi}^2$: consistent with unity

At $eB \simeq 8M_{\pi}^2$: ~2 !

X(eB)/X(eB=0) : Rcp like observable

Baryon electric charge correlation along the transition line

HTD, J.-B. Gu, A. Kumar, S.-T. Li, J.-H. Liu, PRL 132 (2024) 201903

Memory carried by the decays of Δ^{++} :

$$\Delta^{++} \to p + \pi^{+}$$

$$\sum_{R} B^{l}_{R} Q^{m}_{R} S^{n}_{R} I^{R}_{p} \to \sum_{i \in \text{stable}} \sum_{R} (P_{R \to i})^{p} B^{l}_{i} Q^{m}_{i} S^{n}_{i} I^{R}_{p}$$

- net-B approximated by \tilde{p}
- net-Q approximated by Q^{PID} : $\tilde{\pi}^+, \tilde{K}^+, \tilde{p}$

See procedures to construct the proxy using HRG at *eB*=0, Bellwied et al., Phys. Rev. D 101 (2020) 034506

Electric charge chemical potential over baryon chemical potential

ALICE, arXiv: 2311.13332

 $= \mu_0 / \mu_B$ can be obtained from the thermal fits to particle yields

 $\neq \mu_0/\mu_B$ is also connected to fluctuations of B,Q,S $\mu_{\rm Q}/\mu_{\rm B} = q_1 + q_3 \mu_{\rm R}^2 + \mathcal{O}(\mu_{\rm R}^4)$ $q_{1} = \frac{r(\chi_{2}^{B}\chi_{2}^{S} - \chi_{11}^{BS}\chi_{11}^{BS}) - (\chi_{11}^{BQ}\chi_{2}^{S} - \chi_{11}^{BS}\chi_{11}^{QS})}{(\chi_{2}^{Q}\chi_{2}^{S} - \chi_{11}^{QS}\chi_{11}^{QS}) - r(\chi_{11}^{BQ}\chi_{2}^{S} - \chi_{11}^{BS}\chi_{11}^{QS})}$ $r = n_{\rm O}/n_{\rm B}$ HotQCD, PRL 109 (2012) 192302

μ_0/μ_B in nonzero magnetic fields $\mu_{\rm Q}/\mu_{\rm B} = q_1 + q_3\mu_{\rm B}^2 + \mathcal{O}(\mu_{\rm R}^4)$

μ_0/μ_B in different collision systems

The breaking down of HRG in very strong magnetic fields

HTD, J.-B. Gu et al., work in progress

Baryon number fluctuations in very strong magnetic fields

HTD, J.-B. Gu et al., work in progress

Results from effective theory and model studies

W.-J. Fu, Phys. Rev. D 88 (2013) 014009

The inverse magnetic catalysis is missing

K. Fukushima and Y. Hidaka , Phys. Rev. Lett. 117 (2016) 102301

At eB=0.25 GeV², HRG overshoots the LQCD data

Centrality dependences in HIC

Ilya Fokin, ALICE, Quark Matter 2023

HTD, J.-B. Gu, A. Kumar, S.-T. Li, J.-H. Liu, PRL 132 (2024) 201903

Summary

- A first lattice QCD computation of fluctuations of B, Q, S in nonzero magnetic fields
- QCD baselines for effective theories and model studies
- \checkmark Probes to detect imprints of magnetic fields in HIC: χ_{11}^{BQ} measured from proxy and μ_Q/μ_B obtained from thermal fits to particle yields in HIC

Double ratios

$$\sigma_{Q^{\text{PID}},p}^{1,1} = \sum_{R} \left(P_{R \to \tilde{p}} \right) \left(P_{R \to Q^{\text{PID}}} \right) I_{R}^{\text{BQ}} + I_{\tilde{p}}^{\text{BQ}}$$

$$\chi_{11}^{XY} = \frac{B}{2\pi^{2}T^{3}} \sum_{i} \left| q_{i} \right| X_{i}Y_{i} \sum_{s_{z}=-s_{i}}^{s_{i}} \sum_{l=0}^{\infty} f\left(\varepsilon_{0}\right) \equiv I_{i}^{\text{BQ}}, \quad f\left(\varepsilon_{0}\right) = \varepsilon_{0} \sum_{n=1}^{\infty} (\pm 1)^{n+1} n \text{ K}_{1}\left(\frac{n\varepsilon_{0}}{T}\right)$$

- $P_{R \to \tilde{i}} = P_{R \to i} P_{R \to \bar{i}}$: difference of P between the particle *j* and its antiparticle \bar{j}
- $P_{R \to O^{\text{PID}}} = P_{R \to \tilde{D}} + P_{R \to \tilde{K}} + P_{R \to \tilde{\pi}}$
- $P_{R \to j} = \sum N_{R \to j}^{\alpha} n_{j,\alpha}^{R}$: the average number of particle *j* produced by each particle R after the entire decay chain
 - •N^{α}_{$R \rightarrow i$}: the branching ratio of decay channel α

Construction of the proxy $\sigma_{O^{\text{PID}},p}^{1,1}$ for χ_{11}^{BQ}

arXiv: 2312.08860

• $n_{i,\alpha}^R$: the number of stable particle *j* produced from this decay channel

T_{pc} in strong magnetic fields

 μ_0/μ_B

