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lines) and QM-HRG (solid lines) in the baryon sector are as large as 40%
while they are negligible in the meson sector. This reflects that the experi-
mentally known meson spectrum is more complete than the baryon spectrum.

In the open charm meson sector, the well established excitations cover a
mass range of about 700 MeV above the ground state D, Ds-mesons. In the
charmed baryon sector much less is known, for instance, experimentally well
known excitations of Ξc range up to 350 MeV above the ground state and in
the doubly strange charmed baryon sector only two Ωc states separated by
100 MeV are well established.

As a consequence of the limited knowledge of the charmed baryon spec-
trum compared to the open charm meson spectrum, the ratio of partial pres-
sures in the baryon and meson sectors differs strongly between the PDG-HRG
and the QM-HRG. This is shown in Fig. 1 (top). Significant differences be-
tween the QM-HRG-3 and PDG-HRG results also indicate that almost half of
the enhanced contributions actually comes from additional charmed baryons
that are lighter than the heaviest PDG state. Similar conclusions can be
drawn when analyzing partial pressures in the strange-charmed hadron sec-
tor or the electrically charged charmed hadron sectors.

3. Calculation of charm fluctuations in (2+1)-flavor lattice QCD

In order to detect changes in the relevant degrees of freedom that are the
carriers of charm quantum numbers at low and high temperatures as well as
to study their properties we calculate dimensionless generalized susceptibili-
ties of conserved charges,

χBQSC
klmn =

∂(k+l+m+n)[P (µ̂B, µ̂Q, µ̂S, µ̂C)/T 4]
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m
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Here P denotes the total pressure of the system. In the following we also
use the convention to drop a superscript in χBQSC

klmn when the corresponding
subscript is zero.

For our analysis of net charm fluctuations we use gauge field configu-
rations generated with the highly improved staggered quark (HISQ) action
[29]. Use of the HISQ action in the charm sectors includes the so-called ε-term
and thus makes our calculations free of tree-level order (amc)4 discretization
errors [29], where mc is the bare charm quark mass in units of the lattice
spacing. These dynamical (2+1)-flavor QCD calculations have been carried
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FIG. 1. Event-by-event net-proton number distributions for head-on
(0-5% central) Au+Au collisions for nine

p
sNN values measured by

STAR. The distributions are normalized to the total number of events
at each

p
sNN. The statistical uncertainties are smaller than the sym-

bol sizes and the lines are shown to guide the eye. The distributions
in this figure are not corrected for proton and anti-proton detection
efficiency. The deviation of the distribution for

p
sNN = 54.4 GeV

from the general energy dependence trend is understood to be due to
the reconstruction efficiency of protons and anti-protons being dif-
ferent compared to other energies.

inverse hyperbolic tangent of the component of speed parallel
to the beam direction in units of the speed of light. The pre-
cise measurement of dE/dx with a resolution of 7% in Au+Au
collisions allows for a clear identification of protons up to 800
MeV/c in transverse momentum (pT). The identification for
larger pT (up to 2 GeV/c, with purity above 97%) is made by
a Time Of Flight detector (TOF) [34] having a timing resolu-
tion of better than 100 ps. A minimum pT threshold of 400
MeV/c and a maximum distance of closest approach to the
collision vertex of 1 cm for each p( p̄) candidate track is used
to suppress contamination from secondaries and other back-
grounds [15, 35]. This pT acceptance accounts for approx-
imately 80% of the total p + p̄ multiplicity at mid-rapidity.
This is a significant improvement from the results previously
reported [35] which only had the p + p̄ measured using the
TPC. The observation of non-monotonic variation of the kur-
tosis times variance (ks2) with energy is much more signif-
icant with the increased acceptance. For the rapidity depen-
dence of the observable see Supplemental Material [34].

Figure 1 shows the event-by-event net-proton (Np �Np̄ =
DNp) distributions obtained by measuring the number of pro-
tons (Np) and anti-protons (Np̄) at mid-rapidity (|y| < 0.5) in
the transverse momentum range 0.4 < pT (GeV/c)< 2.0 for
Au+Au collisions at various

p
sNN. To study the shape of

the event-by-event net-proton distribution in detail, cumulants
(Cn) of various orders are calculated, where C1 = M, C2 = s2,
C3 = Ss3 and C4 = ks4.

Figure 2 shows the net-proton cumulants (Cn) as a func-
tion of

p
sNN for central and peripheral (see Supplemental

Material [34] for a magnified version). Au+Au collisions.
The cumulants are corrected for the multiplicity variations
arising due to finite impact parameter range for the measure-
ments [7]. These corrections suppress the volume fluctuations
considerably [7, 36]. A different volume fluctuation correc-
tion method [37] has been applied to the 0-5% central Au+Au
collision data and the results were found to be consistent with
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FIG. 2. Cumulants (Cn) of the net-proton distributions for central
(0-5%) and peripheral (70-80%) Au+Au collisions as a function of
collision energy. The transverse momentum (pT) range for the mea-
surements is from 0.4 to 2 GeV/c and the rapidity (y) range is -0.5 <
y < 0.5.

those shown in Fig 2 . The cumulants are also corrected for
finite track reconstruction efficiencies of the TPC and TOF
detectors. This is done by assuming a binomial response of
the two detectors [35, 38]. A cross-check using a different
method based on unfolding [34] of the distributions for central
Au+Au collisions at

p
sNN = 200 GeV has been found to give

values consistent with the cumulants shown in Fig. 2. Further,
the efficiency correction method used has been verified in a
Monte Carlo calculation. Typical values for the efficiencies
in the TPC (TOF-matching) for the momentum range stud-
ied in 0-5% central Au+Au collisions at

p
sNN = 7.7 GeV are

83%(72%) and 81%(70%) for the protons and anti-protons,
respectively. The corresponding efficiencies for

p
sNN = 200

GeV collisions are 62%(69%) and 60%(68%) for the protons
and anti-protons, respectively. The statistical uncertainties
are obtained using both a bootstrap approach [28, 38] and
the Delta theorem [28, 38, 39] method. The systematic un-
certainties are estimated by varying the experimental require-
ments to reconstruct p ( p̄) in the TPC and TOF. These require-
ments include the distance of the proton and anti-proton tracks
from the primary vertex position, track quality reflected by the
number of TPC space points used in the track reconstruction,
the particle identification criteria passing certain selection cri-
teria, and the uncertainties in estimating the reconstruction ef-
ficiencies. The systematic uncertainties at different collision
energies are uncorrelated.

The large values of C3 and C4 for central Au+Au collisions
show that the distributions have non-Gaussian shapes, a possi-
ble indication of enhanced fluctuations arising from a possible
critical point [11, 22]. The corresponding values for periph-

STAR	Collaboration,	Phys.	Rev.	Lett.	126,	092301
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(0-5% central) Au+Au collisions for nine

p
sNN values measured by

STAR. The distributions are normalized to the total number of events
at each

p
sNN. The statistical uncertainties are smaller than the sym-

bol sizes and the lines are shown to guide the eye. The distributions
in this figure are not corrected for proton and anti-proton detection
efficiency. The deviation of the distribution for

p
sNN = 54.4 GeV

from the general energy dependence trend is understood to be due to
the reconstruction efficiency of protons and anti-protons being dif-
ferent compared to other energies.
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The cumulants are corrected for the multiplicity variations
arising due to finite impact parameter range for the measure-
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surements is from 0.4 to 2 GeV/c and the rapidity (y) range is -0.5 <
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those shown in Fig 2 . The cumulants are also corrected for
finite track reconstruction efficiencies of the TPC and TOF
detectors. This is done by assuming a binomial response of
the two detectors [35, 38]. A cross-check using a different
method based on unfolding [34] of the distributions for central
Au+Au collisions at

p
sNN = 200 GeV has been found to give

values consistent with the cumulants shown in Fig. 2. Further,
the efficiency correction method used has been verified in a
Monte Carlo calculation. Typical values for the efficiencies
in the TPC (TOF-matching) for the momentum range stud-
ied in 0-5% central Au+Au collisions at

p
sNN = 7.7 GeV are

83%(72%) and 81%(70%) for the protons and anti-protons,
respectively. The corresponding efficiencies for

p
sNN = 200

GeV collisions are 62%(69%) and 60%(68%) for the protons
and anti-protons, respectively. The statistical uncertainties
are obtained using both a bootstrap approach [28, 38] and
the Delta theorem [28, 38, 39] method. The systematic un-
certainties are estimated by varying the experimental require-
ments to reconstruct p ( p̄) in the TPC and TOF. These require-
ments include the distance of the proton and anti-proton tracks
from the primary vertex position, track quality reflected by the
number of TPC space points used in the track reconstruction,
the particle identification criteria passing certain selection cri-
teria, and the uncertainties in estimating the reconstruction ef-
ficiencies. The systematic uncertainties at different collision
energies are uncorrelated.

The large values of C3 and C4 for central Au+Au collisions
show that the distributions have non-Gaussian shapes, a possi-
ble indication of enhanced fluctuations arising from a possible
critical point [11, 22]. The corresponding values for periph-
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Ø Experimental	challenges:	Particle	identification,	efficiency	correction,	effect	of	event	pileup,	
volume	fluctuations	…

Ø Theoretical/phenomenological	challenges:	Effect	of	resonances,	charge	conservation,	effect	of	
magnetic	field,	cluster	formation,	baryon	annihilation,	excluded	volume	…
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Ø How	do	we	measure	cumulants	of	conserved	charges?

Ø How	do	we	interpret	the	results?

Ø What	have	we	learned	so	far	from	2nd order	cumulants?
Ø Net-[𝜋, 𝐾, 𝑝, Λ, Ξ]	and	cross-cumulants	and	correlations

Ø What	to	expect	from	future?	

Ø Experimental	challenges:	Particle	identification,	efficiency	correction,	effect	of	event	pileup,	
volume	fluctuations	…

Ø Theoretical/phenomenological	challenges:	Effect	of	resonances,	charge	conservation,	effect	of	
magnetic	field,	cluster	formation,	baryon	annihilation,	excluded	volume	…



How	do	we	measure	cumulants?	
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Cut-based	approach	(track	counting)	and	Identity	method	(probability	counting)
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ωπ
(1) =1,   ωπ

(2) ≅ 0.6,   ωπ
(3) = 0,   ωπ

(4) = 0  ⇒  Wπ =1.6 ≠ Nπ

Cut-based	approach	(track	counting)	and	Identity	method	(probability	counting)

A.	Rustamov,	M.	Gazdzicki,	M.	I.	Gorenstein,	PRC	86,	044906	(2012),	PRC	84,	024902	(2011)
A.	Rustamov,	M.	Arslandok,	Nucl.	Instrum.	A946	(2019)	162622}
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Analysis technique

Ø Cut	based	approach	
• Use	additional	detector	information	or	reject	a	given	phase	space	bin
• Challenge:	efficiency	correction	and	contamination

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Easier	to	correct	inefficiencies
• Ideal	approach	for	low	momentum	(p<2	GeV/c)

>?@ =	ABC D?@

SQM,	11.06.2019

Cut	based vs	Identity	method

𝑁:; =	A=> 𝑊:;

Identity	method	vs	cut-based	approach
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FIG. 1. Event-by-event net-proton number distributions for head-on
(0-5% central) Au+Au collisions for nine

p
sNN values measured by

STAR. The distributions are normalized to the total number of events
at each

p
sNN. The statistical uncertainties are smaller than the sym-

bol sizes and the lines are shown to guide the eye. The distributions
in this figure are not corrected for proton and anti-proton detection
efficiency. The deviation of the distribution for

p
sNN = 54.4 GeV

from the general energy dependence trend is understood to be due to
the reconstruction efficiency of protons and anti-protons being dif-
ferent compared to other energies.

inverse hyperbolic tangent of the component of speed parallel
to the beam direction in units of the speed of light. The pre-
cise measurement of dE/dx with a resolution of 7% in Au+Au
collisions allows for a clear identification of protons up to 800
MeV/c in transverse momentum (pT). The identification for
larger pT (up to 2 GeV/c, with purity above 97%) is made by
a Time Of Flight detector (TOF) [34] having a timing resolu-
tion of better than 100 ps. A minimum pT threshold of 400
MeV/c and a maximum distance of closest approach to the
collision vertex of 1 cm for each p( p̄) candidate track is used
to suppress contamination from secondaries and other back-
grounds [15, 35]. This pT acceptance accounts for approx-
imately 80% of the total p + p̄ multiplicity at mid-rapidity.
This is a significant improvement from the results previously
reported [35] which only had the p + p̄ measured using the
TPC. The observation of non-monotonic variation of the kur-
tosis times variance (ks2) with energy is much more signif-
icant with the increased acceptance. For the rapidity depen-
dence of the observable see Supplemental Material [34].

Figure 1 shows the event-by-event net-proton (Np �Np̄ =
DNp) distributions obtained by measuring the number of pro-
tons (Np) and anti-protons (Np̄) at mid-rapidity (|y| < 0.5) in
the transverse momentum range 0.4 < pT (GeV/c)< 2.0 for
Au+Au collisions at various

p
sNN. To study the shape of

the event-by-event net-proton distribution in detail, cumulants
(Cn) of various orders are calculated, where C1 = M, C2 = s2,
C3 = Ss3 and C4 = ks4.

Figure 2 shows the net-proton cumulants (Cn) as a func-
tion of

p
sNN for central and peripheral (see Supplemental

Material [34] for a magnified version). Au+Au collisions.
The cumulants are corrected for the multiplicity variations
arising due to finite impact parameter range for the measure-
ments [7]. These corrections suppress the volume fluctuations
considerably [7, 36]. A different volume fluctuation correc-
tion method [37] has been applied to the 0-5% central Au+Au
collision data and the results were found to be consistent with
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FIG. 2. Cumulants (Cn) of the net-proton distributions for central
(0-5%) and peripheral (70-80%) Au+Au collisions as a function of
collision energy. The transverse momentum (pT) range for the mea-
surements is from 0.4 to 2 GeV/c and the rapidity (y) range is -0.5 <
y < 0.5.

those shown in Fig 2 . The cumulants are also corrected for
finite track reconstruction efficiencies of the TPC and TOF
detectors. This is done by assuming a binomial response of
the two detectors [35, 38]. A cross-check using a different
method based on unfolding [34] of the distributions for central
Au+Au collisions at

p
sNN = 200 GeV has been found to give

values consistent with the cumulants shown in Fig. 2. Further,
the efficiency correction method used has been verified in a
Monte Carlo calculation. Typical values for the efficiencies
in the TPC (TOF-matching) for the momentum range stud-
ied in 0-5% central Au+Au collisions at

p
sNN = 7.7 GeV are

83%(72%) and 81%(70%) for the protons and anti-protons,
respectively. The corresponding efficiencies for

p
sNN = 200

GeV collisions are 62%(69%) and 60%(68%) for the protons
and anti-protons, respectively. The statistical uncertainties
are obtained using both a bootstrap approach [28, 38] and
the Delta theorem [28, 38, 39] method. The systematic un-
certainties are estimated by varying the experimental require-
ments to reconstruct p ( p̄) in the TPC and TOF. These require-
ments include the distance of the proton and anti-proton tracks
from the primary vertex position, track quality reflected by the
number of TPC space points used in the track reconstruction,
the particle identification criteria passing certain selection cri-
teria, and the uncertainties in estimating the reconstruction ef-
ficiencies. The systematic uncertainties at different collision
energies are uncorrelated.

The large values of C3 and C4 for central Au+Au collisions
show that the distributions have non-Gaussian shapes, a possi-
ble indication of enhanced fluctuations arising from a possible
critical point [11, 22]. The corresponding values for periph-

𝑁:;

Cost	off	efficiency!	
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To	keep	in	mind!
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Source	of	the	deviation?

• Baryon	number	conservation
• Volume	fluctuations	
• Resonance	decays
• Initial-state	fluctuations
• …
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after the big bang. It is now believed that these large scale fluctuations origi-
nate in small quantum fluctuations present during the inflationary epoch. Dur-
ing the rapid expansion of the universe in this epoch, these quantum fluctua-
tions were stretched to size scales much larger than those that were causally
connected in the post-inflationary era when the universe was expanding in a
state close to thermal equilibrium. Therefore such super horizon scale fluctu-
ations cannot be much affected by the sub-horizon scale processes allowable
in the post-inflationary thermal universe. This explains why CMB measure-
ments provide extremely valuable information about the inflationary epoch of
the universe, despite the fact that the CMB radiation was produced long after
(tCMB ∼ 4 · 105 years) the primordial fluctuations that are responsible for its
features (tinflation ∼ 10−33 seconds).

There is a concrete analog of such super-horizon fluctuations in the matter
produced in high energy hadronic collisions such as heavy ion collisions at RHIC,
as illustrated in fig. 1. In this figure, we represent the “event horizons” as seen

detection

freeze out

latest correlation

A B

z 

t

Figure 1: The red and green cones are the location of the events in causal
relationship with the particles A and B respectively. Their intersection is the
location in space-time of the events that may correlate the particles A and B.

from the last rescattering of two particles A and B on the freeze-out surface.
These are the red and green cones pointing to the past. Any event that has a
causal influence on the particles A or B must take place inside the corresponding
event horizon. Any event that induces a correlation between the particles A and
B must lie in the overlap of their event horizons. Therefore, if the particles A
and B have rapidities y

A
and y

B
, the processes that caused their correlations

must have occurred before the time1

τ ≤ τfreeze out e−
1
2
|y

A
−y

B
| . (1)

1We assume here that a particle detected with momentum rapidity y originates from a point
of space-time rapidity η ≈ y on the freeze-out surface. This is a consequence of the boost
invariance of the collision (at high energy), and of the fact that the local thermal motion
spreads the rapidities by at most one unit in rapidity.

2

3

What	can	we	study	in	ALICE	3?

Mesut	Arslandok,	Yale	University

1)	Correlation	length	of	B,	S	and	C

ALICE	3	Review,	22.10.2021
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2Dumitru,	Gelis,	McLerran,	Venugopalan
Nucl.	Phys.	A810	(2008)	91

Late	correlations	short	range,	only	
early	correlations	

can	be	long	range	in	rapidity	

Only	early	correlations	can	be	long	range	in	rapidity	Source	of	the	deviation?

• Baryon	number	conservation
• Volume	fluctuations	
• Resonance	decays
• Initial-state	fluctuations
• …

A.	Dumitru,	F.	Gelis,	L.	McLerran,	and	R.	Venugopalan,	Nucl.	Phys.	A	810	(2008)	91
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Ø Net-𝝅	and	net-K are	strongly	dominated	by	resonance	contributions	
Ø Net-[p,	Λ, 𝚵]	are	free	from	resonance	contributions

Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration

different fractions of events containing pile-up. The uncertainties associated with the detection efficien-167

cies of the (anti)protons are also investigated by varying the detection efficiencies by an amount of ±2%168

for protons and antiprotons separately. The resulting systematic variation is less than 0.2% and 1.5%169

for the second- and third-order cumulants, respectively. Other sources of systematic uncertainty are esti-170

mated by varying the event and track selection criteria, resulting in a maximum uncertainty of less than171

1%. The final total systematic uncertainty is obtained by adding in quadrature the individual maximum172

systematic deviations from these three groups of independent contributions. For the third-order cumu-173

lants, it varies between less than 0.5% for the most peripheral collisions and a maximum of 3% for the174

most central collisions for the pseudorapidity interval of Dh = 1.6.175

3 Results176

As potential candidates for conservation of electric charge and strangeness, results are reported for the177

pseudorapidity interval dependence of the second-order cumulants of net-pions and net-kaons produced178

in central Pb–Pb collisions.179
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Figure 3: Pseudorapidity interval dependence of the second-order cumulants of net-pions (left) and net-kaons
(right) normalized to the means (see text). The ALICE data are shown as solid black circles while the blue solid and
dashed lines indicate the results from HIJING [45] model calculations with and without resonance contributions,
respectively. The error bars represent statistical uncertainties and the boxes around the data points represent the
total systematic uncertainties.

The observations in these channels are quite striking because they shed light on resonance decay con-180

tributions to fluctuations in Pb–Pb collisions at the LHC. Figure 3 shows the pseudorapidity interval181

dependence of the normalized second-order cumulants of net-pions and net-kaons compared with the182

results from HIJING [45] with and without resonance contributions. A significant effect of resonances,183

e.g., r ! p+p� and f ! K+K�, is clearly visible in both cases. In fact, the decay of resonances into184

oppositely charged pion or kaon pairs drastically reduces the fluctuations and dominates the second-185

order cumulants of the respective net distributions. Therefore, to study the genuine electric charge and186

strangeness fluctuations, first a quantitative understanding of the resonance contributions is essential. On187

the other hand, there are no resonances that decay into pp with a sizeable branching ratio, therefore net-188

proton fluctuations are not obscured by this effect. It has been argued in the literature [46] that net-proton189

fluctuations are good proxies for net-baryon fluctuations, in particular for
p

sNN >10 GeV. Also, total190

electric-charge conservation is expected to have a negligible impact on the net-proton fluctuation mea-191

surements, since the electric charge is mostly carried by the charged pions, which are the most abundant192

species at LHC energies. The statistically independent Poisson limit for net-baryon distributions is the193

Skellam distribution, which is defined as the probability distribution of the difference of two random194

6

Net-𝝅 Net-K
ALICE,	Phys.	Lett.	B	844	(2023)	137545

Resonance	decays
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Baryon	annihilation

O.	Savchuk,	V.	Vovchenko,	V.	Koch,	J.	Steinheimer,	H.	Stoecker
Phys.	Lett.	B	827,	136983	(2022)
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Studying magnetic fields with 
net-proton fluctuations with ALICE
Ilya Fokin for the ALICE Collaboration 

Universität Heidelberg, Germany, fokin@physi.uni-heidelberg.de

• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 

 

κn

Fluctuations and lattice QCD

• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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CE baseline

correlations between B − B̄

Baseline

• Probabilistic way of calculating moments of multiplicity distributions [6] 

→  Avoids problem of misidentification 

• Probability distribution functions obtained from fits of the dE/dx distributions 

• PID contamination at large momenta estimated using templates from MC

Identity method

• First measurement of net-proton cumulants above p = 2 GeV/c 

• Similar proton number in both acceptances in central collisions: same baseline 

• Low momenta: weak centrality dependence (due to radial flow?) 

• High momenta: significant increase towards peripheral collisions!

Second order cumulants

• Time Projection Chamber (TPC): tracking and particle identification via 

specific energy loss dE/dx 

• Time-Of-Flight (TOF): 
proton selection for 

p ≥ 1.5 GeV/c 
• V0 scintillators: 

centrality determination 

from 0% (most central) to 

90% (peripheral) 

• 110M Pb–Pb collisions 
at 5.02 TeV recorded in 2018

Detector and dataset
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 

Conclusions

Net-proton fluctuations as a magnetometer for heavy-ion collisions?

Can we measure the magnetic field produced in peripheral collisions?

[1] M. Cheng et al., Phys.Rev. D79 (2009) 074505 

[2] M. Kitazawa, M. Asakawa, Phys.Rev. C86(2012) 024904 

[3] H.-T. Ding et al., arXiv:2208.07285 

[4] A. Rustamov EPJ Web Conf. 276 (2023) 01007 

[5] P. Braun-Munzinger, A. Rustamov, J. Stachel, in preparation. 

[6] M. Gazdzicki et al., Phys.Rev. C83(2011) 054907

References

<latexit sha1_base64="GlqcpvJWSA9tgLytUN/w5XOQc+8="></latexit>

^2 (> � Ø>) = h> + Ø>i

Ø Measured	values	depend	on	the	fraction	of	(anti-)protons	in	the	acceptance	
Ø (Global)	local	baryon	number	conservation:	unlike-sign	correlations	
Ø (Anti-)proton	clusters:	like-sign	correlations

HRG	baseline
in	GCE

P.	Braun-Munzinger,	K.	Redlich,	A.	Rustamov,	J.	Stachel,	arXiv:2312.15534v1

Baryon	number	conservation	vs	“cluster”	formation

21Mesut	Arslandok,	Heidelberg	(PI)

Baryon	number	conservation

αacceptance factor 
0 0.5 1

 > B
+n B

< 
n

)B
(B

-
2κ

0

0.5

1
 

 (global)∞ = corr yΔ

 = 10corr yΔ

 = 5corr yΔ

 = 2.5corr yΔ

 

 (global)∞ = corr yΔ

 = 10corr yΔ

 = 5corr yΔ

 = 2.5corr yΔ

 

 (global)∞ = corr yΔ

 = 10corr yΔ

 = 5corr yΔ

 = 2.5corr yΔ

 

 (global)∞ = corr yΔ

 = 10corr yΔ

 = 5corr yΔ

 = 2.5corr yΔ

ηΔ
0.5 1 1.5

 > p
+n p

< 
n

)p
(p

 - 
2κ

0.9

1

1.1
ALICE Preliminary

 (global)∞ = 
corr

 yΔbaryon conserv. 
 = 5

corr
 yΔbaryon conserv. 

 = 2
corr

 yΔbaryon conserv. 

HIJING

Figure 1. Left panel: the normalized values of 2(B�B̄), for di↵erent values of�ycorr, as a function

of accepted fraction of baryons. The red solid symbols, represented by �ycorr = 1, actually

correspond to �ycorr = 100, and are consistent with the global baryon number conservation.

(cf. Eq.(4) of [10]). Right panel: comparison of the results with the ALICE data. Within the

experimental uncertainties, the data are best described by global baryon number conservation

(�ycorr = 1) but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Interestingly, the blue solid line, representing

the results of the HIJING generator, underestimates the experimental data and is described by the

local baryon number conservation with �ycorr = 2.

where IB denotes the modified Bessel function, �B,B̄ are fugacities and zB,B̄ stand for sin-

gle particle partition functions of baryons and anti-baryons respectively. The � function in

Eq. (3) guarantees that, in each event, the net number of baryons is fixed, i.e, net-baryons

do not fluctuate from event-to-event. In order to get finite fluctuations for net-baryons, dis-

tributions of baryons and anti-baryons have to be folded with the experimental acceptance.

III. LOCAL CONSERVATION LAWS

In [10–13] e↵ects of global conservation laws on fluctuations of conserved charges were

addressed. In our previous work the energy dependence of cumulants of net-protons, reported

by STAR for Au+Au collisions, is consistently described above
p
sNN = 11.5 GeV under

the assumption of global baryon number conservation and fluctuations in the number of

participating nucleons [10]. Here, using the same algorithm, we investigate contributions

4
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from local baryon number conservation [14]. We first sample the number of baryons NB and

anti-baryons NB̄ from the probability distributions encoded in the CE partition function

(cf. Eq. 3). To this end, we simulated 107 events with hNBi = hNB̄i = 50 for baryons and

anti-baryons respectively.2 Next, using the shape of the charged particle pseudo-rapidity

distribution as measured by ALICE [15] and assuming that, at LHC energy, baryons follow

the same shape as charged particles, we introduce finite acceptance e↵ect. In doing so we

first generate a baryon of rapidity yB, and a corresponding anti-baryon if its rapidity yB̄

satisfies the condition:

|yB̄ � yB| <
�ycorr

2
. (4)

We note that, in this representation, global baryon number conservation corresponds to

�ycorr = 1. The results for the normalized values of 2(B � B̄) are presented in the left

panel of Fig. 1 as a function of the accepted fraction of baryons ↵ for di↵erent values of

�ycorr. Here, ↵ is defined as the ratio of baryons inside the acceptance to the number of

baryons in full phase space. As expected, the magnitude of normalized net-baryon num-

ber fluctuations decreases with decreasing �ycorr. The red solid symbols, corresponding to

�ycorr = 1, are actually computed for �ycorr = 100, and are consistent with Eq.(4) of [10],

derived for global baryon number conservation. In the right panel of Fig. 1 we compare

our results for di↵erent �ycorr to the experimental measurements of the second cumulant

of net-protons, as reported by the ALICE collaboration [7]. For this purpose, we use the

acceptance fraction ↵, corresponding to each �⌘ in the right panel of Fig. 1 (cf. [7]) and

determined the value of 2(p � p̄)/ < np + np̄ > from the left panel of Fig. 1. Within the

experimental uncertainties, the data are best described by global baryon number conserva-

tion but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Apparently, e↵ects due to local baryon

number conservation are small in second cumulants of net-protons.

Interestingly, predictions using the HIJING [16, 17] generator, presented in the right panel

of Fig. 1, clearly underestimate the experimental data. On the other hand, our calculation

with �ycorr = 2 is consistent with the HIJING results. This implies that the correlations

between protons and anti-protons in the rapidity space obtained from HIJING are too strong

ranged, not consistent with the experimental results.

2 We verified that the presented results are not sensitive to the specific values of hNBi and hNB̄i.

5

also be strongly reduced [22] and consequently, net baryons will be distributed according

to the di↵erence of two independent Poisson distributions, the Skellam distribution. This

statement is analytically proven below. On the other hand, by enlarging the acceptance, in

order to catch dynamical fluctuations, correlations due to baryon number conservation will

be significant. The aim of this section is to estimate the contribution from the conservation

laws and subtract it from the measured fluctuation signals.

In order to get a quantitative estimate for what means ”large” acceptance we will model

the finite acceptance with the binomial distribution.

We first define the acceptance factor for baryons as the ratio of mean number of detected

baryons hNacc
B i to the number of baryons in the full phase space hN4⇡

B i:

↵ =
hNacc

B i
hN4⇡

B i . (29)

Furthermore, we assume the same acceptance factor for anti-baryons. Given the number

of baryons NB in the full phase space, the probability of measuring nB baryons in the

acceptance is

B (nB;NB,↵) =
NB!

nB! (NB � nB)!
↵nB (1� ↵)NB�nB , (30)

If the number of baryons in 4⇡ are distributed according to some probability distribution

P (NB) the corresponding multiplicity distribution in the acceptance will then be

P (nB) =
X

NB

B(nB;NB,↵)P (NB). (31)

The moments of the measured baryon distributions can be then calculated

hnBi =
1X

nB=0

nBP (nB) = ↵ hNBi , (32)

⌦
n2
B

↵
=

1X

nB=0

n2
BP (nB) = ↵2

⌦
N2

B

↵
+ ↵(1� ↵) hNBi . (33)

In a similar way corresponding moments for the anti-baryons can be derived:

hnB̄i =
1X

nB̄=0

nB̄P (nB̄) = ↵ hNB̄i , (34)

20

Ø Baryon	number	conservation	imposes	subtle	correlations	

WWND,	02.03.2020



9Mesut	Arslandok,	Yale	UniversityCPOD,	22.05.2024

 
 

Studying magnetic fields with 
net-proton fluctuations with ALICE
Ilya Fokin for the ALICE Collaboration 

Universität Heidelberg, Germany, fokin@physi.uni-heidelberg.de

• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 

 

κn

Fluctuations and lattice QCD

• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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CE baseline

correlations between B − B̄

Baseline

• Probabilistic way of calculating moments of multiplicity distributions [6] 

→  Avoids problem of misidentification 

• Probability distribution functions obtained from fits of the dE/dx distributions 

• PID contamination at large momenta estimated using templates from MC

Identity method

• First measurement of net-proton cumulants above p = 2 GeV/c 

• Similar proton number in both acceptances in central collisions: same baseline 

• Low momenta: weak centrality dependence (due to radial flow?) 

• High momenta: significant increase towards peripheral collisions!

Second order cumulants

• Time Projection Chamber (TPC): tracking and particle identification via 

specific energy loss dE/dx 

• Time-Of-Flight (TOF): 
proton selection for 

p ≥ 1.5 GeV/c 
• V0 scintillators: 

centrality determination 

from 0% (most central) to 

90% (peripheral) 

• 110M Pb–Pb collisions 
at 5.02 TeV recorded in 2018

Detector and dataset
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 

Conclusions

Net-proton fluctuations as a magnetometer for heavy-ion collisions?

Can we measure the magnetic field produced in peripheral collisions?
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Figure 1. Left panel: the normalized values of 2(B�B̄), for di↵erent values of�ycorr, as a function

of accepted fraction of baryons. The red solid symbols, represented by �ycorr = 1, actually

correspond to �ycorr = 100, and are consistent with the global baryon number conservation.

(cf. Eq.(4) of [10]). Right panel: comparison of the results with the ALICE data. Within the

experimental uncertainties, the data are best described by global baryon number conservation

(�ycorr = 1) but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Interestingly, the blue solid line, representing

the results of the HIJING generator, underestimates the experimental data and is described by the

local baryon number conservation with �ycorr = 2.

where IB denotes the modified Bessel function, �B,B̄ are fugacities and zB,B̄ stand for sin-

gle particle partition functions of baryons and anti-baryons respectively. The � function in

Eq. (3) guarantees that, in each event, the net number of baryons is fixed, i.e, net-baryons

do not fluctuate from event-to-event. In order to get finite fluctuations for net-baryons, dis-

tributions of baryons and anti-baryons have to be folded with the experimental acceptance.

III. LOCAL CONSERVATION LAWS

In [10–13] e↵ects of global conservation laws on fluctuations of conserved charges were

addressed. In our previous work the energy dependence of cumulants of net-protons, reported

by STAR for Au+Au collisions, is consistently described above
p
sNN = 11.5 GeV under

the assumption of global baryon number conservation and fluctuations in the number of

participating nucleons [10]. Here, using the same algorithm, we investigate contributions

4
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from local baryon number conservation [14]. We first sample the number of baryons NB and

anti-baryons NB̄ from the probability distributions encoded in the CE partition function

(cf. Eq. 3). To this end, we simulated 107 events with hNBi = hNB̄i = 50 for baryons and

anti-baryons respectively.2 Next, using the shape of the charged particle pseudo-rapidity

distribution as measured by ALICE [15] and assuming that, at LHC energy, baryons follow

the same shape as charged particles, we introduce finite acceptance e↵ect. In doing so we

first generate a baryon of rapidity yB, and a corresponding anti-baryon if its rapidity yB̄

satisfies the condition:

|yB̄ � yB| <
�ycorr

2
. (4)

We note that, in this representation, global baryon number conservation corresponds to

�ycorr = 1. The results for the normalized values of 2(B � B̄) are presented in the left

panel of Fig. 1 as a function of the accepted fraction of baryons ↵ for di↵erent values of

�ycorr. Here, ↵ is defined as the ratio of baryons inside the acceptance to the number of

baryons in full phase space. As expected, the magnitude of normalized net-baryon num-

ber fluctuations decreases with decreasing �ycorr. The red solid symbols, corresponding to

�ycorr = 1, are actually computed for �ycorr = 100, and are consistent with Eq.(4) of [10],

derived for global baryon number conservation. In the right panel of Fig. 1 we compare

our results for di↵erent �ycorr to the experimental measurements of the second cumulant

of net-protons, as reported by the ALICE collaboration [7]. For this purpose, we use the

acceptance fraction ↵, corresponding to each �⌘ in the right panel of Fig. 1 (cf. [7]) and

determined the value of 2(p � p̄)/ < np + np̄ > from the left panel of Fig. 1. Within the

experimental uncertainties, the data are best described by global baryon number conserva-

tion but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Apparently, e↵ects due to local baryon

number conservation are small in second cumulants of net-protons.

Interestingly, predictions using the HIJING [16, 17] generator, presented in the right panel

of Fig. 1, clearly underestimate the experimental data. On the other hand, our calculation

with �ycorr = 2 is consistent with the HIJING results. This implies that the correlations

between protons and anti-protons in the rapidity space obtained from HIJING are too strong

ranged, not consistent with the experimental results.

2 We verified that the presented results are not sensitive to the specific values of hNBi and hNB̄i.

5

also be strongly reduced [22] and consequently, net baryons will be distributed according

to the di↵erence of two independent Poisson distributions, the Skellam distribution. This

statement is analytically proven below. On the other hand, by enlarging the acceptance, in

order to catch dynamical fluctuations, correlations due to baryon number conservation will

be significant. The aim of this section is to estimate the contribution from the conservation

laws and subtract it from the measured fluctuation signals.

In order to get a quantitative estimate for what means ”large” acceptance we will model

the finite acceptance with the binomial distribution.

We first define the acceptance factor for baryons as the ratio of mean number of detected

baryons hNacc
B i to the number of baryons in the full phase space hN4⇡

B i:

↵ =
hNacc

B i
hN4⇡

B i . (29)

Furthermore, we assume the same acceptance factor for anti-baryons. Given the number

of baryons NB in the full phase space, the probability of measuring nB baryons in the

acceptance is

B (nB;NB,↵) =
NB!

nB! (NB � nB)!
↵nB (1� ↵)NB�nB , (30)

If the number of baryons in 4⇡ are distributed according to some probability distribution

P (NB) the corresponding multiplicity distribution in the acceptance will then be

P (nB) =
X

NB

B(nB;NB,↵)P (NB). (31)

The moments of the measured baryon distributions can be then calculated

hnBi =
1X

nB=0

nBP (nB) = ↵ hNBi , (32)

⌦
n2
B

↵
=

1X

nB=0

n2
BP (nB) = ↵2

⌦
N2

B

↵
+ ↵(1� ↵) hNBi . (33)

In a similar way corresponding moments for the anti-baryons can be derived:

hnB̄i =
1X

nB̄=0

nB̄P (nB̄) = ↵ hNB̄i , (34)
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2nd order	cumulants	of	net-p

Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration

variables, each generated from statistically independent Poisson distributions [47, 48]. For net protons,195

the nth-order cumulants of the Skellam distribution are given by196

kSkellam
n

(p�p) = hpi+(�1)nhpi, (2)

where hpi and hpi are the mean values of the proton and antiproton multiplicity distributions, respec-197

tively. That means that even-order cumulants of the Skellam distribution of the net protons are just198

the sum of the mean numbers of protons and antiprotons. At LHC energies, these numbers are equal199

within 1% [49], and therefore the normalized cumulants of the Skellam distribution with respect to its200

second-order cumulant are zero for odd cumulants and unity for even cumulants. At Tpc [5, 6], both the201

predictions based on LQCD and the HRG [4] model agree with the Skellam baseline up to the third-order202

cumulants of the net protons, reflecting independent Poissonian fluctuations. The LQCD prediction [50],203

including the effect of dynamical quarks, shows a significant deviation from the Skellam baseline for the204

fourth- and higher-order cumulants, while the standard HRG does not contain such effects and deviations205

from the Skellam baseline are only due to baryon number conservation [51]. Fluctuations of conserved206

charges are meaningful only within a limited phase space. They vanish in the full phase space, in order207

to obey the conservation laws, and asymptotically approach the Poisson limit for very small acceptance,208

where dynamical correlations are suppressed [41]. Therefore, the fluctuations of net-baryons are studied209

in the framework of the Grand Canonical Ensemble, where the net-baryon number is conserved only on210

average. Accordingly, the analysis is performed differentially as a function of the collision centrality, the211

pseudorapidity interval, Dh = 0.2 to 1.6, and for two different momentum ranges, 0.6–1.5 GeV/c and212

0.6–2.0 GeV/c. It should be noted that the determination of centrality and the net-proton analysis are213

based on measurements in different pseudorapidity intervals to avoid trivial effects due to autocorrela-214

tions [18].215
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Figure 4: (Color online) Centrality (left) and pseudorapidity interval (right) dependence of the normalized second-
order cumulants of net protons. The ALICE data are shown by black and red markers for

p
sNN = 2.76 and

5.02 TeV, respectively, while the colored shaded areas indicate the results from HIJING [45] and EPOS [52] model
calculations at

p
sNN = 5.02 TeV. The Skellam baseline is shown by the horizontal dashed black line. In the right

panel the expectation from global baryon number conservation is shown as a pink band and the dashed colored
lines represent the predictions of the model with local baryon number conservation [22].

Figure 4 shows the measured centrality and pseudorapidity dependence of the normalized second-order216

cumulants of the net protons in Pb–Pb collisions for the two collision energies. The 5.02 TeV data ap-217

pear to be somewhat lower, however the two data sets agree within systematic uncertainties. It should be218

noted that the systematic uncertainties exhibit a large degree of correlation from bin to bin, but between219

the two collision energies are essentially uncorrelated due to the different running conditions (collision220
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2nd order	cumulants	of	net-p

Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration

variables, each generated from statistically independent Poisson distributions [47, 48]. For net protons,195

the nth-order cumulants of the Skellam distribution are given by196

kSkellam
n

(p�p) = hpi+(�1)nhpi, (2)

where hpi and hpi are the mean values of the proton and antiproton multiplicity distributions, respec-197

tively. That means that even-order cumulants of the Skellam distribution of the net protons are just198

the sum of the mean numbers of protons and antiprotons. At LHC energies, these numbers are equal199

within 1% [49], and therefore the normalized cumulants of the Skellam distribution with respect to its200

second-order cumulant are zero for odd cumulants and unity for even cumulants. At Tpc [5, 6], both the201

predictions based on LQCD and the HRG [4] model agree with the Skellam baseline up to the third-order202

cumulants of the net protons, reflecting independent Poissonian fluctuations. The LQCD prediction [50],203

including the effect of dynamical quarks, shows a significant deviation from the Skellam baseline for the204

fourth- and higher-order cumulants, while the standard HRG does not contain such effects and deviations205

from the Skellam baseline are only due to baryon number conservation [51]. Fluctuations of conserved206

charges are meaningful only within a limited phase space. They vanish in the full phase space, in order207

to obey the conservation laws, and asymptotically approach the Poisson limit for very small acceptance,208

where dynamical correlations are suppressed [41]. Therefore, the fluctuations of net-baryons are studied209

in the framework of the Grand Canonical Ensemble, where the net-baryon number is conserved only on210

average. Accordingly, the analysis is performed differentially as a function of the collision centrality, the211

pseudorapidity interval, Dh = 0.2 to 1.6, and for two different momentum ranges, 0.6–1.5 GeV/c and212

0.6–2.0 GeV/c. It should be noted that the determination of centrality and the net-proton analysis are213

based on measurements in different pseudorapidity intervals to avoid trivial effects due to autocorrela-214

tions [18].215
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Figure 4: (Color online) Centrality (left) and pseudorapidity interval (right) dependence of the normalized second-
order cumulants of net protons. The ALICE data are shown by black and red markers for

p
sNN = 2.76 and

5.02 TeV, respectively, while the colored shaded areas indicate the results from HIJING [45] and EPOS [52] model
calculations at

p
sNN = 5.02 TeV. The Skellam baseline is shown by the horizontal dashed black line. In the right

panel the expectation from global baryon number conservation is shown as a pink band and the dashed colored
lines represent the predictions of the model with local baryon number conservation [22].

Figure 4 shows the measured centrality and pseudorapidity dependence of the normalized second-order216

cumulants of the net protons in Pb–Pb collisions for the two collision energies. The 5.02 TeV data ap-217

pear to be somewhat lower, however the two data sets agree within systematic uncertainties. It should be218

noted that the systematic uncertainties exhibit a large degree of correlation from bin to bin, but between219

the two collision energies are essentially uncorrelated due to the different running conditions (collision220
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Figure 1. Left panel: the normalized values of 2(B�B̄), for di↵erent values of�ycorr, as a function

of accepted fraction of baryons. The red solid symbols, represented by �ycorr = 1, actually

correspond to �ycorr = 100, and are consistent with the global baryon number conservation.

(cf. Eq.(4) of [10]). Right panel: comparison of the results with the ALICE data. Within the

experimental uncertainties, the data are best described by global baryon number conservation

(�ycorr = 1) but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Interestingly, the blue solid line, representing

the results of the HIJING generator, underestimates the experimental data and is described by the

local baryon number conservation with �ycorr = 2.

where IB denotes the modified Bessel function, �B,B̄ are fugacities and zB,B̄ stand for sin-

gle particle partition functions of baryons and anti-baryons respectively. The � function in

Eq. (3) guarantees that, in each event, the net number of baryons is fixed, i.e, net-baryons

do not fluctuate from event-to-event. In order to get finite fluctuations for net-baryons, dis-

tributions of baryons and anti-baryons have to be folded with the experimental acceptance.

III. LOCAL CONSERVATION LAWS

In [10–13] e↵ects of global conservation laws on fluctuations of conserved charges were

addressed. In our previous work the energy dependence of cumulants of net-protons, reported

by STAR for Au+Au collisions, is consistently described above
p
sNN = 11.5 GeV under

the assumption of global baryon number conservation and fluctuations in the number of

participating nucleons [10]. Here, using the same algorithm, we investigate contributions

4
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from local baryon number conservation [14]. We first sample the number of baryons NB and

anti-baryons NB̄ from the probability distributions encoded in the CE partition function

(cf. Eq. 3). To this end, we simulated 107 events with hNBi = hNB̄i = 50 for baryons and

anti-baryons respectively.2 Next, using the shape of the charged particle pseudo-rapidity

distribution as measured by ALICE [15] and assuming that, at LHC energy, baryons follow

the same shape as charged particles, we introduce finite acceptance e↵ect. In doing so we

first generate a baryon of rapidity yB, and a corresponding anti-baryon if its rapidity yB̄

satisfies the condition:

|yB̄ � yB| <
�ycorr

2
. (4)

We note that, in this representation, global baryon number conservation corresponds to

�ycorr = 1. The results for the normalized values of 2(B � B̄) are presented in the left

panel of Fig. 1 as a function of the accepted fraction of baryons ↵ for di↵erent values of

�ycorr. Here, ↵ is defined as the ratio of baryons inside the acceptance to the number of

baryons in full phase space. As expected, the magnitude of normalized net-baryon num-

ber fluctuations decreases with decreasing �ycorr. The red solid symbols, corresponding to

�ycorr = 1, are actually computed for �ycorr = 100, and are consistent with Eq.(4) of [10],

derived for global baryon number conservation. In the right panel of Fig. 1 we compare

our results for di↵erent �ycorr to the experimental measurements of the second cumulant

of net-protons, as reported by the ALICE collaboration [7]. For this purpose, we use the

acceptance fraction ↵, corresponding to each �⌘ in the right panel of Fig. 1 (cf. [7]) and

determined the value of 2(p � p̄)/ < np + np̄ > from the left panel of Fig. 1. Within the

experimental uncertainties, the data are best described by global baryon number conserva-

tion but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Apparently, e↵ects due to local baryon

number conservation are small in second cumulants of net-protons.

Interestingly, predictions using the HIJING [16, 17] generator, presented in the right panel

of Fig. 1, clearly underestimate the experimental data. On the other hand, our calculation

with �ycorr = 2 is consistent with the HIJING results. This implies that the correlations

between protons and anti-protons in the rapidity space obtained from HIJING are too strong

ranged, not consistent with the experimental results.

2 We verified that the presented results are not sensitive to the specific values of hNBi and hNB̄i.

5

also be strongly reduced [22] and consequently, net baryons will be distributed according

to the di↵erence of two independent Poisson distributions, the Skellam distribution. This

statement is analytically proven below. On the other hand, by enlarging the acceptance, in

order to catch dynamical fluctuations, correlations due to baryon number conservation will

be significant. The aim of this section is to estimate the contribution from the conservation

laws and subtract it from the measured fluctuation signals.

In order to get a quantitative estimate for what means ”large” acceptance we will model

the finite acceptance with the binomial distribution.

We first define the acceptance factor for baryons as the ratio of mean number of detected

baryons hNacc
B i to the number of baryons in the full phase space hN4⇡

B i:

↵ =
hNacc

B i
hN4⇡

B i . (29)

Furthermore, we assume the same acceptance factor for anti-baryons. Given the number

of baryons NB in the full phase space, the probability of measuring nB baryons in the

acceptance is

B (nB;NB,↵) =
NB!

nB! (NB � nB)!
↵nB (1� ↵)NB�nB , (30)

If the number of baryons in 4⇡ are distributed according to some probability distribution

P (NB) the corresponding multiplicity distribution in the acceptance will then be

P (nB) =
X

NB

B(nB;NB,↵)P (NB). (31)

The moments of the measured baryon distributions can be then calculated

hnBi =
1X

nB=0

nBP (nB) = ↵ hNBi , (32)

⌦
n2
B

↵
=

1X

nB=0

n2
BP (nB) = ↵2

⌦
N2

B

↵
+ ↵(1� ↵) hNBi . (33)

In a similar way corresponding moments for the anti-baryons can be derived:

hnB̄i =
1X

nB̄=0

nB̄P (nB̄) = ↵ hNB̄i , (34)
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2nd order	cumulants	of	net-p

Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration

variables, each generated from statistically independent Poisson distributions [47, 48]. For net protons,195

the nth-order cumulants of the Skellam distribution are given by196

kSkellam
n

(p�p) = hpi+(�1)nhpi, (2)

where hpi and hpi are the mean values of the proton and antiproton multiplicity distributions, respec-197

tively. That means that even-order cumulants of the Skellam distribution of the net protons are just198

the sum of the mean numbers of protons and antiprotons. At LHC energies, these numbers are equal199

within 1% [49], and therefore the normalized cumulants of the Skellam distribution with respect to its200

second-order cumulant are zero for odd cumulants and unity for even cumulants. At Tpc [5, 6], both the201

predictions based on LQCD and the HRG [4] model agree with the Skellam baseline up to the third-order202

cumulants of the net protons, reflecting independent Poissonian fluctuations. The LQCD prediction [50],203

including the effect of dynamical quarks, shows a significant deviation from the Skellam baseline for the204

fourth- and higher-order cumulants, while the standard HRG does not contain such effects and deviations205

from the Skellam baseline are only due to baryon number conservation [51]. Fluctuations of conserved206

charges are meaningful only within a limited phase space. They vanish in the full phase space, in order207

to obey the conservation laws, and asymptotically approach the Poisson limit for very small acceptance,208

where dynamical correlations are suppressed [41]. Therefore, the fluctuations of net-baryons are studied209

in the framework of the Grand Canonical Ensemble, where the net-baryon number is conserved only on210

average. Accordingly, the analysis is performed differentially as a function of the collision centrality, the211

pseudorapidity interval, Dh = 0.2 to 1.6, and for two different momentum ranges, 0.6–1.5 GeV/c and212

0.6–2.0 GeV/c. It should be noted that the determination of centrality and the net-proton analysis are213

based on measurements in different pseudorapidity intervals to avoid trivial effects due to autocorrela-214

tions [18].215
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Figure 4: (Color online) Centrality (left) and pseudorapidity interval (right) dependence of the normalized second-
order cumulants of net protons. The ALICE data are shown by black and red markers for

p
sNN = 2.76 and

5.02 TeV, respectively, while the colored shaded areas indicate the results from HIJING [45] and EPOS [52] model
calculations at

p
sNN = 5.02 TeV. The Skellam baseline is shown by the horizontal dashed black line. In the right

panel the expectation from global baryon number conservation is shown as a pink band and the dashed colored
lines represent the predictions of the model with local baryon number conservation [22].

Figure 4 shows the measured centrality and pseudorapidity dependence of the normalized second-order216

cumulants of the net protons in Pb–Pb collisions for the two collision energies. The 5.02 TeV data ap-217

pear to be somewhat lower, however the two data sets agree within systematic uncertainties. It should be218

noted that the systematic uncertainties exhibit a large degree of correlation from bin to bin, but between219

the two collision energies are essentially uncorrelated due to the different running conditions (collision220
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Figure 1. Left panel: the normalized values of 2(B�B̄), for di↵erent values of�ycorr, as a function

of accepted fraction of baryons. The red solid symbols, represented by �ycorr = 1, actually

correspond to �ycorr = 100, and are consistent with the global baryon number conservation.

(cf. Eq.(4) of [10]). Right panel: comparison of the results with the ALICE data. Within the

experimental uncertainties, the data are best described by global baryon number conservation

(�ycorr = 1) but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Interestingly, the blue solid line, representing

the results of the HIJING generator, underestimates the experimental data and is described by the

local baryon number conservation with �ycorr = 2.

where IB denotes the modified Bessel function, �B,B̄ are fugacities and zB,B̄ stand for sin-

gle particle partition functions of baryons and anti-baryons respectively. The � function in

Eq. (3) guarantees that, in each event, the net number of baryons is fixed, i.e, net-baryons

do not fluctuate from event-to-event. In order to get finite fluctuations for net-baryons, dis-

tributions of baryons and anti-baryons have to be folded with the experimental acceptance.

III. LOCAL CONSERVATION LAWS

In [10–13] e↵ects of global conservation laws on fluctuations of conserved charges were

addressed. In our previous work the energy dependence of cumulants of net-protons, reported

by STAR for Au+Au collisions, is consistently described above
p
sNN = 11.5 GeV under

the assumption of global baryon number conservation and fluctuations in the number of

participating nucleons [10]. Here, using the same algorithm, we investigate contributions

4
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from local baryon number conservation [14]. We first sample the number of baryons NB and

anti-baryons NB̄ from the probability distributions encoded in the CE partition function

(cf. Eq. 3). To this end, we simulated 107 events with hNBi = hNB̄i = 50 for baryons and

anti-baryons respectively.2 Next, using the shape of the charged particle pseudo-rapidity

distribution as measured by ALICE [15] and assuming that, at LHC energy, baryons follow

the same shape as charged particles, we introduce finite acceptance e↵ect. In doing so we

first generate a baryon of rapidity yB, and a corresponding anti-baryon if its rapidity yB̄

satisfies the condition:

|yB̄ � yB| <
�ycorr

2
. (4)

We note that, in this representation, global baryon number conservation corresponds to

�ycorr = 1. The results for the normalized values of 2(B � B̄) are presented in the left

panel of Fig. 1 as a function of the accepted fraction of baryons ↵ for di↵erent values of

�ycorr. Here, ↵ is defined as the ratio of baryons inside the acceptance to the number of

baryons in full phase space. As expected, the magnitude of normalized net-baryon num-

ber fluctuations decreases with decreasing �ycorr. The red solid symbols, corresponding to

�ycorr = 1, are actually computed for �ycorr = 100, and are consistent with Eq.(4) of [10],

derived for global baryon number conservation. In the right panel of Fig. 1 we compare

our results for di↵erent �ycorr to the experimental measurements of the second cumulant

of net-protons, as reported by the ALICE collaboration [7]. For this purpose, we use the

acceptance fraction ↵, corresponding to each �⌘ in the right panel of Fig. 1 (cf. [7]) and

determined the value of 2(p � p̄)/ < np + np̄ > from the left panel of Fig. 1. Within the

experimental uncertainties, the data are best described by global baryon number conserva-

tion but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Apparently, e↵ects due to local baryon

number conservation are small in second cumulants of net-protons.

Interestingly, predictions using the HIJING [16, 17] generator, presented in the right panel

of Fig. 1, clearly underestimate the experimental data. On the other hand, our calculation

with �ycorr = 2 is consistent with the HIJING results. This implies that the correlations

between protons and anti-protons in the rapidity space obtained from HIJING are too strong

ranged, not consistent with the experimental results.

2 We verified that the presented results are not sensitive to the specific values of hNBi and hNB̄i.

5

also be strongly reduced [22] and consequently, net baryons will be distributed according

to the di↵erence of two independent Poisson distributions, the Skellam distribution. This

statement is analytically proven below. On the other hand, by enlarging the acceptance, in

order to catch dynamical fluctuations, correlations due to baryon number conservation will

be significant. The aim of this section is to estimate the contribution from the conservation

laws and subtract it from the measured fluctuation signals.

In order to get a quantitative estimate for what means ”large” acceptance we will model

the finite acceptance with the binomial distribution.

We first define the acceptance factor for baryons as the ratio of mean number of detected

baryons hNacc
B i to the number of baryons in the full phase space hN4⇡

B i:

↵ =
hNacc

B i
hN4⇡

B i . (29)

Furthermore, we assume the same acceptance factor for anti-baryons. Given the number

of baryons NB in the full phase space, the probability of measuring nB baryons in the

acceptance is

B (nB;NB,↵) =
NB!

nB! (NB � nB)!
↵nB (1� ↵)NB�nB , (30)

If the number of baryons in 4⇡ are distributed according to some probability distribution

P (NB) the corresponding multiplicity distribution in the acceptance will then be

P (nB) =
X

NB

B(nB;NB,↵)P (NB). (31)

The moments of the measured baryon distributions can be then calculated

hnBi =
1X

nB=0

nBP (nB) = ↵ hNBi , (32)

⌦
n2
B

↵
=

1X

nB=0

n2
BP (nB) = ↵2

⌦
N2

B

↵
+ ↵(1� ↵) hNBi . (33)

In a similar way corresponding moments for the anti-baryons can be derived:

hnB̄i =
1X

nB̄=0

nB̄P (nB̄) = ↵ hNB̄i , (34)
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Canonical	statistical	model	 Lund	string	fragmentation	(PYTHIA)	

Hadronization models

5Quark Matter 2023 – Houston, September 5th, 2023mario.ciacco@cern.ch

R. Nayak et al., Phys. Rev. D 100, 074023 (2019)

→ Both models describe the ratio of yields to charged π
→ How are fundamental conservation laws treated by the two mechanisms?

Lund string fragmentation (PYTHIA)Canonical statistical model
V. Vovchenko et al., Phys. Rev. C 100, 054906 (2019)
R.	N

ayak
et	al.,	Phys.	Rev.	D	100,	074023	(2019)

First	order	moments:
Thermal	model	with	𝜇G ≈ 0 and	T ≈ 150 − 160MeV	and	

PYHTIA	with	“RH	on	and	CR”	on	does	well	at	lower	multiplicities

CLEYMANS, LO, REDLICH, AND SHARMA PHYSICAL REVIEW C 103, 014904 (2021)

FIG. 6. The upper panel shows the radius (red points) as ex-
tracted from fits to p-p collisions at 7 TeV as a function of the
charged hadron multiplicity in midrapidity region using the SCE
model with T = 160 MeV and γs = 1. The black points in the upper
figure show the values of the canonical radius. The lower panel
shows the volume VA = 4/3πR3 as a function of the charged particle
multiplicity for two values of the chemical freezeout temperature,
red points were obtained from T = 160 MeV, blue points are for
T = 156.5 MeV.

The volume is slightly larger for T = 156.5 MeV than for
T = 160 MeV so as to compensate for the smaller particle
densities. A possible form for the canonical volume is given
by

VC = 8.87 + 2.64 × dNch

dη
for T = 160 MeV,

VC = 12.32 + 3.02 × dNch

dη
for T = 156.5 MeV. (24)

These parametrizations are shown in Fig. 6 as lines and have
been used in all our model comparisons to data. All numbers
in Eqs. (23) and (24) are in units of [fm3]. We emphasize that
the parametrizations of the volumes given in Eqs. (23) and
(24) are purely empirical. It is indeed interesting to see a linear
dependence (in dN/dη) of the acceptance volume, which to a
good accuracy is also independent of the collision system.

To appreciate the quality of the SCE model description of
ALICE data illustrated in Fig. 5(right), we show in Fig. 7 the
ratio of data and the model results. It can be seen that the
model prediction agrees quite well with the data up to two
standard deviations for all dNch/dη. The data on pion yields
are always slightly above the calculated points while the kaons
are always below. This has implications for the kaon to pion
ratio discussed further below. This illustrates the pitfalls of
showing ratios in the thermal model. It is better to compare
directly yields.

FIG. 7. Data relative to model calculations. The upper panel
shows the protons in blue, the pions in red, the kaons in green. The
lower panel shows the $ in black, the % in magenta, and the & in
purple.

The strangeness suppression effect and its CSE model
description are particularly transparent when removing an
overall linear dependence of particle yields on the fireball
volume VA. This isachieved by plotting the ratio of strange
particle and pion yields, as shown in Fig. 8. This ratio
has been discussed prominently by the ALICE collaboration
[52] where a comparison with other model calculations was
presented. The SCE model introduced here compares very
favorably to the ones discussed in [52]. The underestimation
of the pion yield is responsible for the larger discrepancy in
the kaon to pion ratio as seen in Fig. 7.
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FIG. 8. Ratios of yields of strange particles to pions versus
charged particle multiplicity. The SCE model results were obtained
using VA "= VC as explained in the text.
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Reminder:	Strangeness	enhancement/suppression
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2nd order	cumulants	of	Net-Ξ &	Net- Ξ − net-K	correlations	
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Ø Canonical	picture	describes	the	data	with correlation	volume	of	about	3dV/dy
→ Indication	of	large	volume	(early	production)	for	strangeness	(as	in	case	of	baryon	number)
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Ø Canonical	picture	describes	the	data	with correlation	volume	of	about	3dV/dy
→ Indication	of	large	volume	(early	production)	for	strangeness	(as	in	case	of	baryon	number)

Ø Event	generators	based	on	string	fragmentation	fails	for	the	second	order

2nd order	cumulants	of	Net-Ξ &	Net- Ξ − net-K	correlations	
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2nd order	cumulants	of	Net-Λ

Ø Canonical	picture	describes	the	data	with
correlation	volume	of	about	3dV/dy
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2nd order	cumulants	of	Net-Λ

Ø Canonical	picture	describes	the	data	with
correlation	volume	of	about	3dV/dy

How	about	off-diagonal	cumulants?	
Observables

3

Proxies:
➔ Charge (Q): K, π, p
➔ Baryon (B):  p
➔ Strangeness (S): K

➔ Due to the limitation in detecting all baryons and strange hadrons experimentally, net-proton (p) and net-kaon (K) 
are considered as proxies for the net-baryon and net-strangeness. 

B = no. of baryons – no. of anti-baryons
S = no. of strange particles – no. of anti-strange particle
Q = no. of pos. charged particle – no. of neg. charged paritcle

➔ The susceptibilities are related to the cumulants (σ) of the event-by-event distribution of the associated conserved 
charges.

Proxies:		Charge:	K,	π,	p	|	Baryon:	p	|	Strangeness:	K	

Observables

3

Proxies:
➔ Charge (Q): K, π, p
➔ Baryon (B):  p
➔ Strangeness (S): K

➔ Due to the limitation in detecting all baryons and strange hadrons experimentally, net-proton (p) and net-kaon (K) 
are considered as proxies for the net-baryon and net-strangeness. 

B = no. of baryons – no. of anti-baryons
S = no. of strange particles – no. of anti-strange particle
Q = no. of pos. charged particle – no. of neg. charged paritcle

➔ The susceptibilities are related to the cumulants (σ) of the event-by-event distribution of the associated conserved 
charges.
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Cross	cumulants	in	view	of	correlation	volume

Mesut	Arslandok,	Yale	University

Q	− K p	− K Q	− p

Ø Q,	B	and	S	conserved	within	a	correlation	volume
V.	Vovchenko et	al.,	Phys.	Rev.	C	100,	054906	(2019)

Ø Simultaneous	description	leads	to	Vc =	~2.64dV/dy	!!!

CPOD,	22.05.2024
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Ø Monotonic	decrease	of	the	correlations	with	increasing	energy
o How	much	of	this	because	of	conservation?
o What	are	the	other	possible	contributions?		

CPOD,	22.05.2024

Q	− K p	− K Q	− p

Cross	cumulants:	energy	dependence
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Cross	cumulants:	Volume	independent	normalization

Mesut	Arslandok,	Yale	University

Ø Sensitivity	to	VC is	gone	but	there	is	a	deviation	
→What	is	the	underlying	physics?	

Q	− p Q	− K

CPOD,	22.05.2024
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Light	nuclei	production	in	view	of	correlation	volume

Ø Simple	coalescence		Z.	Fecková	et	al.,	PRC	93,	054906	(2016)	
• Model	A:	correlated	nucleons	
• Model	B:	independent	nucleons	

Ø Improved	coalescence		K.-J.	Sun	et	al.,	PLB,	840,	137864	(2023)	
• MUSIC	+	UrQMD	+	Coalescence:	No	initial	correlation	

between	protons	and	neutrons	
Ø Canonical	Statistical	Model	V.	Vovchenko	et	al.,	PLB	785,	(2018)	171	

• Correlation	volume,	Vc	

Ø Different	correlation	volume	than	for	B	and	S
Ø Stay	tuned	for	SQM	→ d)ΔΛ correlations

ALICE,	PRL	131	(2023)	041901

● Correlation

20Quark Matter 2023 – Houston, September 5th, 2023mario.ciacco@cern.ch

Antideuteron-antiproton correlation in Pb–Pb

Phys. Rev. Lett. 131, 
041901 (2023)

● Significant anticorrelation

● Negative correlation in CSM, model B 
and MUSIC+UrQMD+Coal
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Pushing	2nd net-p	to	the	limits	with	Identity	Method
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Studying magnetic fields with 
net-proton fluctuations with ALICE
Ilya Fokin for the ALICE Collaboration 

Universität Heidelberg, Germany, fokin@physi.uni-heidelberg.de

• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 

 

κn

Fluctuations and lattice QCD

• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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CE baseline

correlations between B − B̄

Baseline

• Probabilistic way of calculating moments of multiplicity distributions [6] 

→  Avoids problem of misidentification 

• Probability distribution functions obtained from fits of the dE/dx distributions 

• PID contamination at large momenta estimated using templates from MC

Identity method

• First measurement of net-proton cumulants above p = 2 GeV/c 

• Similar proton number in both acceptances in central collisions: same baseline 

• Low momenta: weak centrality dependence (due to radial flow?) 

• High momenta: significant increase towards peripheral collisions!

Second order cumulants

• Time Projection Chamber (TPC): tracking and particle identification via 

specific energy loss dE/dx 

• Time-Of-Flight (TOF): 
proton selection for 

p ≥ 1.5 GeV/c 
• V0 scintillators: 

centrality determination 

from 0% (most central) to 

90% (peripheral) 

• 110M Pb–Pb collisions 
at 5.02 TeV recorded in 2018

Detector and dataset
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 

Conclusions

Net-proton fluctuations as a magnetometer for heavy-ion collisions?

Can we measure the magnetic field produced in peripheral collisions?

[1] M. Cheng et al., Phys.Rev. D79 (2009) 074505 

[2] M. Kitazawa, M. Asakawa, Phys.Rev. C86(2012) 024904 

[3] H.-T. Ding et al., arXiv:2208.07285 
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Pushing	2nd net-p	to	the	limits

More	peripheral	and larger	momentum
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• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 
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Fluctuations and lattice QCD

• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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• PID contamination at large momenta estimated using templates from MC

Identity method

• First measurement of net-proton cumulants above p = 2 GeV/c 

• Similar proton number in both acceptances in central collisions: same baseline 

• Low momenta: weak centrality dependence (due to radial flow?) 

• High momenta: significant increase towards peripheral collisions!

Second order cumulants

• Time Projection Chamber (TPC): tracking and particle identification via 

specific energy loss dE/dx 

• Time-Of-Flight (TOF): 
proton selection for 

p ≥ 1.5 GeV/c 
• V0 scintillators: 
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 

Conclusions

Net-proton fluctuations as a magnetometer for heavy-ion collisions?

Can we measure the magnetic field produced in peripheral collisions?
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• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 
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Fluctuations and lattice QCD

• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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• Probability distribution functions obtained from fits of the dE/dx distributions 

• PID contamination at large momenta estimated using templates from MC

Identity method

• First measurement of net-proton cumulants above p = 2 GeV/c 

• Similar proton number in both acceptances in central collisions: same baseline 

• Low momenta: weak centrality dependence (due to radial flow?) 

• High momenta: significant increase towards peripheral collisions!

Second order cumulants

• Time Projection Chamber (TPC): tracking and particle identification via 

specific energy loss dE/dx 

• Time-Of-Flight (TOF): 
proton selection for 

p ≥ 1.5 GeV/c 
• V0 scintillators: 

centrality determination 

from 0% (most central) to 

90% (peripheral) 

• 110M Pb–Pb collisions 
at 5.02 TeV recorded in 2018
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 

Conclusions

Net-proton fluctuations as a magnetometer for heavy-ion collisions?

Can we measure the magnetic field produced in peripheral collisions?
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• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 
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• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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distribution of the net-proton number is given by 
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• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 

 

κn

Fluctuations and lattice QCD

• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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• PID contamination at large momenta estimated using templates from MC

Identity method

• First measurement of net-proton cumulants above p = 2 GeV/c 

• Similar proton number in both acceptances in central collisions: same baseline 

• Low momenta: weak centrality dependence (due to radial flow?) 

• High momenta: significant increase towards peripheral collisions!

Second order cumulants

• Time Projection Chamber (TPC): tracking and particle identification via 

specific energy loss dE/dx 

• Time-Of-Flight (TOF): 
proton selection for 
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centrality determination 
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90% (peripheral) 
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 

Conclusions
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 
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• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 
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09 ü High	statistics									→ O	(109)	billion	events

ü Large	acceptance			→ |η|<	4

ü High	PID	purity →		0.3	<	p <	10	GeV/c

ü High	efficiency								→	 ~95%	

ü Excellent	vertexing	→ O	(3µm)	resolution

128 ALICE Collaboration

Figure 78: The ALICE3 detector installed inside the L3 magnet yoke. The left figure shows the
detector layout with a solenoid and a dedicated dipole magnet for the FCT. The right figure shows
the detector layout with a solenoid and two dipoles integrated in the main magnet system.

Figure 79: Superconducting magnet system: Solenoid (left) and solenoid + dipoles (right).

ters are given in Tab. 7. The baseline configuration consists of a solenoid coil over the full length
of 7.5 m with additional windings at the coil ends that represent 50% higher current density. The
second configuration has a central solenoid of 2 m length with a dipole magnet on either side.
The main motivation for the dipole system is improved momentum spectroscopy in the rapid-
ity range 2 < h < 4. Having the solenoid and the dipoles at the same radius inside the same
cylindrical volume allows easy installation and maintenance of the detectors without the need of
displacing parts of the magnet system. It also allows us to treat the forces between dipoles and
solenoid inside the cold mass, which avoids difficulties with thermal contacts.

Both magnets provide a solenoid field of up to 2 T and therefore a field integral of up to 2 T m at
low values of h . Along the beam axis, i.e. at high values of h , the dipoles provide a field inte-
gral of 1 T m, with a peak field of ⇠0.5 T. Figure 80 shows the field map of the solenoid+dipole
magnet system in a vertical plane through the beam axis, together with the expected performance
of both magnet systems. For muons of pT = 1GeV/c, i.e. at the multiple scattering limit, the
solenoid provides a momentum resolution between 0.6 and 1% up to h = 2 and the resolution
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ALICE	1-2 ALICE	3
barrel ALICE	3

Barrel	+	forward

Ø More	differential	and	high	precision	to	disentangle:
Thermal	blurring,	Initial-state	fluctuations,	baryon	annihilation,	
excluded	volume	effects,	baryon	number		conservation	…

2nd order	cumulants	of	net-p	in	ALICE	3

Ø High	PID	purity	and	efficiency	within	
a	larger	acceptance
(0.3	<	p	<	10	GeV/c,	|𝜂|<4)
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• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 
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Fluctuations and lattice QCD

• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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• Probabilistic way of calculating moments of multiplicity distributions [6] 

→  Avoids problem of misidentification 

• Probability distribution functions obtained from fits of the dE/dx distributions 

• PID contamination at large momenta estimated using templates from MC

Identity method

• First measurement of net-proton cumulants above p = 2 GeV/c 

• Similar proton number in both acceptances in central collisions: same baseline 

• Low momenta: weak centrality dependence (due to radial flow?) 

• High momenta: significant increase towards peripheral collisions!

Second order cumulants

• Time Projection Chamber (TPC): tracking and particle identification via 

specific energy loss dE/dx 

• Time-Of-Flight (TOF): 
proton selection for 

p ≥ 1.5 GeV/c 
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centrality determination 
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90% (peripheral) 
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 

Conclusions

Net-proton fluctuations as a magnetometer for heavy-ion collisions?

Can we measure the magnetic field produced in peripheral collisions?
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Ø String	fragmentation	fails	at	the	second	order	net-[p,Λ,Ξ]	

Ø Large	Vc (≈ 3	dV/dy )	but	still	not	fully	global
o What	is	the	source	of	“locality”?
o How	large	is	the	contribution	from	annihilation	etc.?

Ø Slightly smaller	Vc for	net-Q	than	net-[p,𝚲,𝚵]
o Assumption	in	the	implementation	of	the	Vc and/or	unprecise	description	of	resonances	in	FIST?
o Contribution	from	other	hadronisation	mechanisms?	Hard	vs	soft?	Coalescence?	…

Ø Larger	momentum	range	→ interesting	centrality	dependence
o Magnetic	field?	What	do	pp	collisions	say?	
o Cluster	formation?

Ø What	impact	do	these	effects	have	on	the	higher-order	cumulants?
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• Fluctuations are a powerful tool to study QCD phase diagram 

• Cumulants  are related to thermodynamic susceptibilities which can be 

calculated from first principles in lattice QCD (LQCD) [1] 

• Proton number is used as a proxy for baryon number [2] 

• LQCD: larger susceptibilities in the presence of large magnetic fields [3] 

 

κn

Fluctuations and lattice QCD

• Considering only statistical fluctuations, the second order cumulant of the 

distribution of the net-proton number is given by 

• Deviations from this baseline may arise from 

• local baryon number conservation: unlike-sign correlations 

• (anti-)proton clusters: like-sign correlations [4,5] 

• Measured values depend on the fraction of (anti-)protons in the acceptance
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Baseline

• Probabilistic way of calculating moments of multiplicity distributions [6] 

→  Avoids problem of misidentification 

• Probability distribution functions obtained from fits of the dE/dx distributions 

• PID contamination at large momenta estimated using templates from MC

Identity method

• First measurement of net-proton cumulants above p = 2 GeV/c 

• Similar proton number in both acceptances in central collisions: same baseline 

• Low momenta: weak centrality dependence (due to radial flow?) 

• High momenta: significant increase towards peripheral collisions!

Second order cumulants

• Time Projection Chamber (TPC): tracking and particle identification via 

specific energy loss dE/dx 

• Time-Of-Flight (TOF): 
proton selection for 

p ≥ 1.5 GeV/c 
• V0 scintillators: 

centrality determination 

from 0% (most central) to 

90% (peripheral) 

• 110M Pb–Pb collisions 
at 5.02 TeV recorded in 2018

Detector and dataset
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• Trend at peripheral collisions for high momentum protons is consistent with 

LQCD expectation with strong magnetic field  

• Can also be qualitatively explained by p–p and p–p correlations 

Conclusions

Net-proton fluctuations as a magnetometer for heavy-ion collisions?

Can we measure the magnetic field produced in peripheral collisions?
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Ø String	fragmentation	fails	at	the	second	order	net-[p,Λ,Ξ]	

Ø Large	Vc (≈ 3	dV/dy )	but	still	not	fully	global
o What	is	the	source	of	“locality”?
o How	large	is	the	contribution	from	annihilation	etc.?

Ø Slightly smaller	Vc for	net-Q	than	net-[p,𝚲,𝚵]
o Assumption	in	the	implementation	of	the	Vc and/or	unprecise	description	of	resonances	in	FIST?
o Contribution	from	other	hadronisation	mechanisms?	Hard	vs	soft?	Coalescence?	…

Ø Larger	momentum	range	→ interesting	centrality	dependence
o Magnetic	field?	What	do	pp	collisions	say?	
o Cluster	formation?

Ø What	impact	do	these	effects	have	on	the	higher-order	cumulants?

A	lot	to	do	but	future	is	very	bright!
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Example	case:	𝜇& ≈ 0

Ø Baseline:	Difference	between	two	independent	Poissonian	distributions	(Skellam	distr.)
⟹	𝜿𝐧/𝜿𝟐 is	0	(n	odd)	or	1	(n	even)

Ø Holy	grail:	Critical	behavior	as	from	6th order
⟹	4th order	~30%,	6th order	~150%

3

For	a	thermal	system	in	a	fixed	volume	V	within	the	Grand	Canonical	Ensemble
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Higher	orders	
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Slight	deviation	from	the	binomial	efficiency	loss
• Event	and	track	selection
• TPC	dE/dx calibration	in	particular	for	the	events	with	pileup

M.	Arslandok,	E.	Hellbär,	M.	Ivanov,	R.H.	Münzer	and	J.	Wiechula,	Particles 2022,	5(1),	84-95

• Realistic	detector	simulation	

Binomiality of	the	detector	response	is	important	for	the	efficiency	correction

Efficiency	correctionNet-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration
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Figure 1: (Left) Correlation between the reconstructed (Nrec
p ) and the generated (Ngen

p ) number of protons for the
most central Pb–Pb collisions simulated using the HIJING model [45]. (Right) Distribution of reconstructed proton
number for a fixed value of N

gen
p = 36, where the fit demonstrates the deviation from a binomial efficiency loss.

MC closure test, particles are generated, including certain correlations such as the effect of baryon num-153

ber conservation, and reconstructed after they have passed through the detector simulated with GEANT4.154

Then the efficiency correction is applied, and the generated and corrected observables are compared. The155

comparison is shown in Fig. 2 for the second- and third-order cumulant ratios of the net-proton distribu-156

tion. The efficiency-corrected results obtained from the MC reconstructed data are in agreement with the157

results obtained from the MC generated data.158
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Figure 2: HIJING model [45] based calculations of the normalized second-order cumulants of net protons as a
function of pseudorapidity window (Dh) (left) and ratio of third- to second-order cumulants (right) of net protons
as a function of collision centrality at

p
sNN = 5.02 TeV. The results at the generated and reconstructed level are

shown by the green closed and open circles, respectively. The error bars represent statistical uncertainties. The
results after efficiency correction assuming binomial efficiency losses [41–43] are shown by black open squares.

The statistical uncertainties assigned to the reconstructed cumulants were determined using the sub-159

sample method as described in Ref. [27]. The fits to the measured dE/dx distributions, which are the160

only inputs to the IM, are the dominant source of systematic uncertainty in the ratios of the cumulants,161

for both second and third order. The observed maximum deviation between fit variations [27] is 0.6%162

and 0.8% for the normalized second-order cumulants within the momentum intervals of 0.6–1.5 GeV/c163

and 0.6–2.0 GeV/c, respectively, and 4% for the ratio of third- to second-order cumulants in the momen-164

tum interval 0.6–1.5 GeV/c. The impact of possible imperfections in the dE/dx correction procedure165

mentioned above is also included in this systematic uncertainty estimate by analyzing the data retaining166

5

ALICE,	Phys.	Lett.	B	844	(2023)	137545



25Mesut	Arslandok,	Yale	UniversityCPOD,	22.05.2024

Efficiency	correction	with	binomial	assumption:	
T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Phys.	Rev.	C	95,	064912	(2017)

Adam	Bzdak,	Volker	Koch,	Phys.	Rev.	C86,	044904	(2012)

Very	good	closure	despite	the	slight	deviation	from	binomial	loss

Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration
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function of pseudorapidity window (Dh) (left) and ratio of third- to second-order cumulants (right) of net protons
as a function of collision centrality at

p
sNN = 5.02 TeV. The results at the generated and reconstructed level are

shown by the green closed and open circles, respectively. The error bars represent statistical uncertainties. The
results after efficiency correction assuming binomial efficiency losses [41–43] are shown by black open squares.

The statistical uncertainties assigned to the reconstructed cumulants were determined using the sub-159

sample method as described in Ref. [27]. The fits to the measured dE/dx distributions, which are the160

only inputs to the IM, are the dominant source of systematic uncertainty in the ratios of the cumulants,161

for both second and third order. The observed maximum deviation between fit variations [27] is 0.6%162

and 0.8% for the normalized second-order cumulants within the momentum intervals of 0.6–1.5 GeV/c163

and 0.6–2.0 GeV/c, respectively, and 4% for the ratio of third- to second-order cumulants in the momen-164

tum interval 0.6–1.5 GeV/c. The impact of possible imperfections in the dE/dx correction procedure165

mentioned above is also included in this systematic uncertainty estimate by analyzing the data retaining166
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ALICE,	Phys.	Lett.	B	844	(2023)	137545

Efficiency	correction



Main	detectors	used:
Ø Inner	Tracking	System	(ITS)	

→	Tracking	and	vertexing	
Ø Time	Projection	Chamber	(TPC)

→	Tracking	and	Particle	Identification	(PID)
Ø Time Of Flight (TOF)	

→	Tracking	and	PID
Ø V0

→	Centrality	determination

Data	Set:
Ø 𝑠dd� =	5.02	TeV,	~78	M	events
Ø 𝑠dd� =	2.76	TeV,	~13	M	events

A Large	Ion	Collider	Experiment

26Mesut	Arslandok,	Yale	UniversityCPOD,	22.05.2024
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12Mesut	Arslandok,	Heidelberg	(PI)

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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use additional detector information
or reject a given phase space bin

( challenge: efficiency correction )

gives folded multiplicity distribution
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single event example : 3 protons, 2 kaons

Identity method approach
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Analysis technique

Ø Cut	based	approach	
• Use	additional	detector	information	or	reject	a	given	phase	space	bin
• Challenge:	efficiency	correction	and	contamination

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Easier	to	correct	inefficiencies
• Ideal	approach	for	low	momentum	(p<2	GeV/c)

>?@ =	ABC D?@

SQM,	11.06.2019

Cut	based vs	Identity	method

𝑁:; =	A=> 𝑊:;

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Maximal	efficiency	&	no	PID contamination	

Ø Cut	based	approach	
• Additional	detector	||	reject	a	given	phase	space
• Low	efficiency	& PID contamination

TOF	cut	boundary

Eff.	for	TPC+TOF+ITS

Identity	method	vs	cut-based	approach

Eff.	for	TPC+ITS

Identity	method

Cut-based
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Phase	transition
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7.1 QGP 247
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Figure 1: Primordial and total (anti-)particle yields, normalized to the
spin degeneracy, as a function of mass calculated with the SHMC for
Pb–Pb collisions at

p
sNN = 2.76 TeV and compared to data. See text

for details.

of charm quarks leads to a fugacity in the SHM for
charmed hadrons [4] which is, however, not a free pa-
rameter but determined by the measured charm cross
section. Charm quarks are not confined inside the QGP,
thermalize within the QGP and hadronize at the QCD
phase boundary into open and hidden charm hadrons.
This SHM for charmed hadrons (SHMC) provides an
excellent description of charmonium production [5–7]
without any new parameters and represents compelling
evidence, as demonstrated in Figure 1, for this new pro-
duction mechanism. A more detailed account of the
SHMC is given below.

Furthermore, a large degree of thermalization is ob-
served in the spectra and the elliptic flow of D-mesons
and their decay electrons [8, 9]. A number of re-
cent measurements have established the SHMC process
(sometimes dubbed ‘(re)generation’) as the dominant
production mechanism of J/ in heavy-ion collisions at
LHC energies [10–13]. It is therefore appealing and im-
portant to extend the intriguing results of J/ production
beyond yields to particle spectra and to more complex
charmonium as well as open charm states to further in-
vestigate the SHMC mechanism. In the present publica-
tion we focus on charmonium states. Predictions for the
open charm sector will be the subject of a future publi-
cation.

Loosely bound states such as  (2S) and, more dra-
matically, the potential tetra-quark charmonium state
X(3872) are of particular interest. Its observation by
the Belle collaboration [14] and the subsequent confir-
mation by the CDF [15], D0 [16], and BaBar [17] col-

laborations showed that it is a narrow charmonium-like
resonance and the close vicinity of the particle mass to
the D0D̄⇤0 production threshold suggests that the parti-
cle could be a charm meson molecule with a very small
binding energy [18]. At the LHC, the state X(3872) was
first observed by the LHCb collaboration [19], which
later also determined [20, 21] its quantum numbers,
JPC = 1++.

In addition to the X(3872), the  (2S) is a natural
choice when expanding the studies on the SHMC mech-
anism beyond the J/ .

In this letter, we present calculations for the yields
and transverse momentum spectra of the charmonium
states J/ ,  (2S), and X(3872) for heavy-ion collisions
at
p

sNN = 5 TeV. Results will be presented for the cur-
rent collision system Pb–Pb and, in the case of X(3872),
also for Kr–Kr collisions where much larger luminosi-
ties are possible at the LHC.

2. Heavy quarks in the statistical hadronization

model

In the SHMC it is assumed that charm quarks2 are
produced in initial hard scatterings and that during the
QGP phase the number of (anti-)charm quarks is con-
served, i.e. the thermal production or annihilation are
negligible at LHC energies [5]. The color charge of
charm quarks is screened by the color-dense medium
for T & TCF = 156.5 MeV and they do not form color-
less bound states in the fireball volume V , where µB is
consistent with zero for LHC energies, as determined
by thermal fits, see [2]. The quarks thermalize in the
QGP before the hadronization and rapid freeze-out at
the phase boundary.

The (anti-)charm hadron densities computed in
canonical statistical mechanics, nth

X , are anchored to the
number of produced cc̄ pairs, Ncc̄, by a balance equation

Ncc̄ =
1
2

gcV

0
BBBBB@
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i

nth
Di
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+ · · ·

1
CCCCCA

+g2
cV
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BBBBB@
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i
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 i
+ nth

�i
+ · · ·

1
CCCCCA + · · · ,

(1)

where the quantity Ncc̄ is interpolated via FONLL [22,
23] from charm cross-section measurements [24–27] in
the corresponding rapidity region. Shadowing is taken
into account when calculating Ncc̄ for nucleus-nucleus

2In this letter we focus on charmonium, although the studies can
be extended to any hadron species including charm and/or beauty con-
tent.

2

Fig. 7.1.8 Primordial and total (anti-)particle yields, nor-
malized to the spin degeneracy, as calculated within the
SHMc [2159].

be compared to the crossover chiral phase transition
line as computed in lQCD (blue band). From LHC en-
ergies down to about p

sNN = 12 GeV, i.e., over the
entire range covered by lQCD, there is a remarkable
agreement between Tchem and the pseudo-critical tem-
perature for the chiral cross over transition Tpc. We note
that, along this phase boundary, the energy density
computed (for 2 quark flavors) from the values of Tchem

and µB exhibits a nearly constant value of ✏crit ⇡ 0.46
GeV/fm3.

The finding that the hadro-chemical freeze-out tem-
perature is very close to Tpc has a fundamental con-
sequence: because of the very rapid temperature and
density change across the phase transition and the re-
sulting low hadron densities in the fireball combined
with its size, the produced hadrons cease to interact in-
elastically within a narrow temperature interval [2165]
after hadron formation.

This is very different from particle freeze-out in the
early universe where for temperatures T > 10MeV even
the mean free path for neutrinos is much smaller than
its size, see section 22.3 of [476].

For large values of baryon chemical potential, ex-
perimental data for hadron-chemical freeze-out exist
but the phase structure of strongly interacting matter
remains uncertain; various model calculations suggest
the appearance of a line of first order phase transition,
which in combination with the crossover transition at
smaller values of µB , would imply the existence of a
critical end point (CEP) in the QCD phase diagram as
indicated in Fig. 7.1.9. The experimental discovery of
the CEP would mark a major break-through in our un-
derstanding of the QCD phase structure. The location
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Fig. 7.1.9 Phase diagram of strongly interacting matter. The
red symbols correspond to chemical-freezeout parameters, tem-
perature Tchem and baryon chemical potential µB determined
from experimental hadron yields [2159, 2163, 2164]. The blue
band represents the results of lQCD computations of the chiral
phase boundary [448, 451]. Also shown are a conjectured line
of first order phase transition with a critical end point as well
as the nuclear liquid-gas phase boundary.

of the CEP is most likely in the region µB > 470 MeV,
based mostly on results from lQCD. Searching for the
CEP is the subject of a very active research program, at
RHIC and the future FAIR facility at GSI. The impor-
tance of this research is underlined by the realization
that we have currently no experimental evidence for
the order of the chiral phase transition at any value of
baryon chemical potential.

Important further information on the phase struc-
ture of QCD matter is expected by measuring, in ad-
dition to the first moments of hadron production data,
also higher moments as such data can be directly con-
nected to the QCD partition function via conserved
charge number susceptibilities in the Grand Canonical
Ensemble (GCE) [2166, 2167]. For a thermal system of
volume V and temperature T the susceptibilities in the
GCE are defined as the coefficients in the Maclaurin
series of the reduced pressure P̂ = P (T, V, ~µ)/T 4

�q
n ⌘ @nP̂

@µ̂n
q

=
1

V T 3

@nlnZ(V, T, ~µ)

@µ̂n
q

=
n(Nq)

V T 3
, (7.1.2)

where ~µ = {µB , µQ, µS} is the chemical potential vec-
tor that is introduced to conserve, on average, baryon
number, electric charge and strangeness. Here, µ̂q =
µq/T is the reduced chemical potential for the con-
served charges q 2 {B,Q, S}. The partition function
Z(V, T, ~µ) encodes the Equation of State (EoS) of the

P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel,	e-Print:	2211.08819

QCD	phase	diagram
(Strong	interaction)

Ferromagnetic	phase	transition
(Electro-magnetic	interaction)
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Future	of	ALICE

Mesut	Arslandok,	Yale	UniversityCPOD,	22.05.2024

ALICE,	CERN
-LHCC-2022-009

ü High	statistics									→ O	(109)	billion	events
ü Large	acceptance			→ |η|<	4
ü High	PID	purity →		0.3	<	pT <	10	GeV/c
ü High	efficiency								→	 ~95%	
ü Excellent	vertexing	→ O	(3µm)	resolution

ALICE	3	(beyond	early	2030s)ALICE	2	(2022-2030)

18/05/2021        EP-ESE Seminar - Torsten Alt 11

The future

ü Continuous	readout:	
→ ~	50kHz Pb−Pb	min.	bias
→~ 5	pileup	events	within	the	TPC

ü Improved	vertexing	
ü High	tracking	efficiency	at	low	pT

128 ALICE Collaboration

Figure 78: The ALICE3 detector installed inside the L3 magnet yoke. The left figure shows the
detector layout with a solenoid and a dedicated dipole magnet for the FCT. The right figure shows
the detector layout with a solenoid and two dipoles integrated in the main magnet system.

Figure 79: Superconducting magnet system: Solenoid (left) and solenoid + dipoles (right).

ters are given in Tab. 7. The baseline configuration consists of a solenoid coil over the full length
of 7.5 m with additional windings at the coil ends that represent 50% higher current density. The
second configuration has a central solenoid of 2 m length with a dipole magnet on either side.
The main motivation for the dipole system is improved momentum spectroscopy in the rapid-
ity range 2 < h < 4. Having the solenoid and the dipoles at the same radius inside the same
cylindrical volume allows easy installation and maintenance of the detectors without the need of
displacing parts of the magnet system. It also allows us to treat the forces between dipoles and
solenoid inside the cold mass, which avoids difficulties with thermal contacts.

Both magnets provide a solenoid field of up to 2 T and therefore a field integral of up to 2 T m at
low values of h . Along the beam axis, i.e. at high values of h , the dipoles provide a field inte-
gral of 1 T m, with a peak field of ⇠0.5 T. Figure 80 shows the field map of the solenoid+dipole
magnet system in a vertical plane through the beam axis, together with the expected performance
of both magnet systems. For muons of pT = 1GeV/c, i.e. at the multiple scattering limit, the
solenoid provides a momentum resolution between 0.6 and 1% up to h = 2 and the resolution
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Ø Simulation	of	the	Critical	Fluctuations	(CF)	is	based	on	PQM	model
G.	A.	Almasi,	B.	Friman,	and	K.	Redlich,	Phys.	Rev.D96	(2017),	014027

Ø ALICE	2:	
→More	than	5	billion	central	Pb-Pb	collisions	is	required	

Ø ALICE	3:	
→ x3	larger	statistics: >4𝜎 significance	with	ALICE	2	acceptance

xxx ALICE Collaboration

Phase transitions in strongly interacting matter can be addressed by investigating the response of the7

system to external perturbations via measurements of fluctuations of conserved charges in heavy ion8

collisions, see e.g. refs. [1, 2]. Such measurements can provide information on critical behavior near9

the phase boundary between quark-gluon plasma and hadronic matter. The fluctuations can be directly10

related to generalized susceptibilities computed in lattice QCD (lQCD). Specifically, the susceptibilities11

are obtained from the derivatives of the pressure with respect to the chemical potentials corresponding to12

the conserved charges. The relevant charges are conserved quantum numbers such as electric charge Q,13

baryon number B, strangeness S, charm C and so on. At vanishing chemical potential, i.e., precisely the14

conditions probed at the LHC, these susceptibilities can be computed in lQCD.15

For instance, a measurement of higher moments (or cumulants1) of net-baryon number measured in16

nuclear collisions in the experimental acceptance of, e.g., ALICE can be directly related to theoretical17

predictions from lQCD or from more phenomenological models of the chiral phase transition. This is18

important because due to the small current masses of up and down quarks, one can probe critical phenom-19

ena at LHC energies [4]. Indeed, recent lQCD calculations exhibit a rather strong signal for the existence20

of a pseudo-critical temperature at about 156 MeV [5, 6] and this temperature is in agreement with the21

chemical freeze-out temperature extracted [7] by the analysis of hadron multiplicities. Already the mag-22

nitude of the fourth order cumulants of net-baryon number fluctuations obtained from lQCD calculations23

is significantly below the expectation from Poissonian fluctuations of baryons and antibaryons. Critical24

fluctuations due to the vicinity of the cross over line to a 2nd order phase transition of O(4) universality25

at vanishing u, d quark masses are expected to strongly modify the 6th and higher order cumulants of the26

net-baryon distribution [8].27
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Figure 1: (Color online) Simulated values of k6/k2 as a function of the generated number of events. The full
symbols represent results obtained with the double Gaussian approach adjusted to reproduce critical fluctuations
(CF) predicted in the PQM model [8].

1The cumulants, kn, of net-baryon number, DNB = NB �NB̄, are defined as the coefficients in the Maclaurin series of the
logarithm of the characteristic function of DNB [3].

2

ALICE,	CERN-LHCC-2022-009

Criticality	search	in	ALICE	2	and	3
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What	kind	of	a	system	we	are	talking	about?	

Grand	canonical	ensemble where	particles	are	in	a	thermal	equilibrium
• Energy	(E)	and	number	of	particles	(N)	are	not	conserved	in	each	microstate	
• EOS	can	be	represented	by	a	surface	in	the	state	space	spanned	by	P,	V	and	T	
• Conservation	laws	are	applied	on	average
• Chemical	potential	(𝝁𝑩),	Volume	(V) and	Temperature	(T) are	constant
• For	a	given	state	Ej and	Nj grand	canonical	partition	function

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.

∆" > ∆"$%&: conservations dominate
∆" < ∆"$%&: dynamical fluctuations may disappear,

(approaching  Poisson limit)
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Fluctuations, Ensemble averaging 

A. Rustamov, ISOQUANT  seminar, January 20, Heidelberg  

Ergodicity	hypothesis:	Averaging	over	time	is	equivalent	to	the	
averaging	over	ensembles.	
Ensemble	 is	 an	 idealisation	 consisting	 of	 a	 large	 number	 of	
mental	 copies	 0f	 a	 system,	 considered	 all	 at	 once,	 each	
represents	a	possible	state	that	the	real	system!	

Grand	Canonical	Ensemble	

probability	of	a	given	state		with	Ej	and	Nj	
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Thermodynamic	susceptibilities

the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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the cumulants of the fluctuations of the baryon charge N are related to the derivatives of the pressure:16
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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2.2. TEMPERATURE 19

4 - For thermodynamic systems A, B, and C it holds that, if TA > TB and TB > TC ,

then TA > TC .

5 - If the systems A and B are in thermal contact, while the joint system A ⇤ B is

isolated, then, in equilibrium, TA = TB = TA�B.

6 - Consider two separate thermodynamic systems A and B, with TA < TB. After

putting them in contact, the temperature of the system A⇤B will be TA < TA�B <

TB.

Thermometer : any physical property of a system that behaves monotonically with T

can be used to construct a thermometer to measure temperature T . For instance, Hg

(volume), gas thermometer (pressure), resistance thermometer (electrical resistance).

2.2.1 Thermal equilibrium and transformations

Thermal equilibrium: from our experience we know that a macroscopic system generally

relaxes to a stationary state after a short time. This stationary state is called a state of

thermal equilibrium.

Equation of state. If a system is in thermal equilibrium, the thermodynamic variables

are not independent of one another, but constrained by the so-called equation of state of

the form:

f(P, V, T ) = 0 , (2.1)

where f is a characteristic function of the system under study.

Example: the equation of state of a classical ideal gas (a real gas in the limit of low

density and high temperature) is

f(P, V, T ) = PV ⌅NkBT ,

where T is the ideal gas temperature measured in Kelvin (K), and kB = 1.381◊10
⇥16

erg/K is the Boltzmann constant.

The equation of state (2.1) leaves two independent variables out of the original three.

Geometrical representation. The equation of

state (2.1) can be represented by a surface in the state

space spanned by P , V , and T . All equilibrium states

must be on this surface. f is a continuous, di⇥eren-
tiable function, except at some special points.

Thermodynamic transformation. A change in the external conditions changes the

equilibrium state of the system. This transformation of the equilibrium state is called a

thermodynamic transformation or process. For instance, application of external pressure

causes the volume of the body to decrease. Thermodynamic transformations are classified
as

Chapter 10

Grand canonical ensemble

10.1 Grand canonical partition function

The grand canonical ensemble is a generalization of the canonical ensemble where the
restriction to a definite number of particles is removed. This is a realistic representation
when then the total number of particles in a macroscopic system cannot be fixed.

Heat and particle reservoir. Consider a sys-
tem A1 in a heat and particle reservoir A2. The
two systems are in equilibrium with the thermal
equilibrium.

– Thermal equilibrium results form the ex-
change of heat. The two temperature are
then equal: T = T1 = T2

– The equilibrium with respect to particle
exchange leads to identical chemical poten-
tials: µ = µ1 = µ2.

Energy and particle conservation. We assume that the system A2 is much larger
than the system A1, i.e., that

E2 � E1, N2 � N1 ,

with
N1 +N2 = N = const. E1 + E2 = E = const.

where N and E are the particle number and the energy of the total system A = A1 +A2.

Hamilton function. The overall Hamilton function is defined as the sum of the Hamilton
functions of A1 and A2:

H(q, p) = H1(q(1), p(1), N1) +H2(q(2), p(2), N2) .

For the above assumption to be valid, we neglect interactions among particles in A1 and
A2:

H12 = 0 .
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the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD

eV p(T,µ)/T = Z =
X

states i

⌧
i
����e�

1
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.
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Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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contributions arising from the singular part of the QCD partition function Z(V, T ), or more precisely from the free
energy density, f = −TV −1 lnZ(V, T ). A recent analysis of scaling properties of the chiral condensate, performed
with the p4 action on coarse lattices, showed that critical behavior in the vicinity of the chiral phase transition is well
described by O(N) scaling relations [64] which give a good description even in the physical quark mass regime.
In the vicinity of the chiral phase transition, the free energy density may be expressed as a sum of a singular and

a regular part,

f = −
T

V
lnZ ≡ fsing(t, h) + freg(T,ml,ms) . (6)

Here t and h are dimensionless couplings that control deviations from criticality. They are related to the temperature
T and the light quark mass ml, which couples to the symmetry breaking (magnetic) field, as

t =
1

t0

T − T 0
c

T 0
c

, h =
1

h0
H , H =

ml

ms
, (7)

where T 0
c denotes the chiral phase transition temperature, i.e., the transition temperature at H = 0. The scaling

variables t, h are normalized by two parameters t0 and h0, which are unique to QCD and similar to the low energy
constants in the chiral Lagrangian. These need to be determined together with T 0

c . In the continuum limit, all three
parameters are uniquely defined, but depend on the value of the strange quark mass.
The singular contribution to the free energy density is a homogeneous function of the two variables t and h. Its

invariance under scale transformations can be used to express it in terms of a single scaling variable

z = t/h1/βδ =
1

t0

T − T 0
c

T 0
c

(

h0

H

)1/βδ

=
1

z0

T − T 0
c

T 0
c

(

1

H

)1/βδ

(8)

where β and δ are the critical exponents of the O(N) universality class and z0 = t0/h
1/βδ
0 . Thus, the dimensionless

free energy density f̃ ≡ f/T 4 can be written as

f̃(T,ml,ms) = h1+1/δfs(z) + fr(T,H,ms) , (9)

where the regular term fr gives rise to scaling violations. This regular term can be expanded in a Taylor series around
(t, h) = (0, 0). In all subsequent discussions, we analyze the data keeping ms in Eq. (9) fixed at the physical value
along the LCP. Therefore, the dependence on ms will, henceforth, be dropped.
We also note that the reduced temperature t may depend on other couplings in the QCD Lagrangian which do not

explicitly break chiral symmetry. In particular, it depends on light and strange quark chemical potentials µq, which
in leading order enter only quadratically,

t =
1

t0





T − T 0
c

T 0
c

+
∑

q=l,s

κq
(µq

T

)2
+ κls

µl

T

µs

T



 . (10)

Derivatives of the partition function with respect to µq are used to define the quark number susceptibilities.
The above scaling form of the free energy density is the starting point of a discussion of scaling properties of most

observables used to characterize the QCD phase transition. We will use this scaling Ansatz to test to what extent
various thermodynamic quantities remain sensitive to universal features of the chiral phase transition at nonzero
quark masses when chiral symmetry is explicitly broken and the singular behavior is replaced by a rapid crossover
characterized by pseudocritical temperatures (which we label Tc) rather than a critical temperature.
A good probe of the chiral behavior is the 2-flavor light quark chiral condensate

〈ψ̄ψ〉nf=2
l =

T

V

∂ lnZ

∂ml
. (11)

Following the notation of Ref. [64], we introduce the dimensionless order parameter Mb,

Mb ≡
ms〈ψ̄ψ〉

nf=2
l

T 4
. (12)

Multiplication by the strange quark mass removes the need for multiplicative renormalization constants; however, Mb

does require additive renormalization. For a scaling analysis in h at a fixed value of the cutoff, this constant plays no
role. Near T 0

c , Mb is given by a scaling function fG(z)

Mb(T,H) = h1/δfG(t/h
1/βδ) + fM,reg(T,H) , (13)

Free	energy	density
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“The	disconnected	part	of	the	light	quark	susceptibility	
describes	the	fluctuations	in	the	light	quark	condensate”	

2-flavor	light	quark	chiral	condensate	

11

and a regular function fM,reg(T,H) that gives rise to scaling violations. We consider only the leading order Taylor
expansion of fM,reg(T,H) in H and quadratic in t,

fM,reg(T,H) = at(T )H

=

(

a0 + a1
T − T 0

c

T 0
c

+ a2

(

T − T 0
c

T 0
c

)2
)

H (14)

with parameters a0, a1 and a2 to be determined. The singular function fG is well studied in three dimensional spin
models and has been parametrized for the O(2) and O(4) symmetry groups [65–68]. Also, the exponents β, γ, δ and
ν used here are taken from Table 2 in Ref. [68].
Response functions, derived from the light quark chiral condensate, are sensitive to critical behavior in the chiral

limit. In particular, the derivative of 〈ψ̄ψ〉nf=2
l with respect to the quark masses gives the chiral susceptibility

χm,l =
∂

∂ml
〈ψ̄ψ〉nf=2

l . (15)

The scaling behavior of the light quark susceptibility, using Eq. (13), is

χm,l

T 2
=

T 2

m2
s

(

1

h0
h1/δ−1fχ(z) +

∂fM,reg(T,H)

∂H

)

,

with fχ(z) =
1

δ
[fG(z)−

z

β
f ′
G(z)]. (16)

The function fχ has a maximum at some value of the scaling variable z = zp. For small values of h this defines the
location of the pseudocritical temperature Tc as the maximum in the scaling function fG(z). Approaching the critical
point along h with z fixed, e.g., z = 0 or z = zp, χm,l diverges in the chiral limit as

χm,l ∼ m1/δ−1
l . (17)

Similarly, the mixed susceptibility

χt,l = −
T

V

∂2

∂ml∂t
lnZ , (18)

also has a peak at some pseudocritical temperature and diverges in the chiral limit as

χt,l ∼ m(β−1)/βδ
l . (19)

One can calculate χt,l either by taking the derivative of 〈ψ̄ψ〉 with respect to T or by taking the second derivative
with respect to µl, i.e., by calculating the coefficient of the second order Taylor expansion for the chiral condensate
as a function of µl/T [69]. The derivative of 〈ψ̄ψ〉 with respect to T is the expectation value of the chiral condensate
times the energy density, which is difficult to calculate in lattice simulations, as additional information on temperature
derivatives of temporal and spatial cutoff parameters is needed. Taylor expansion coefficients, on the other hand, are
well defined and have been calculated previously, although their calculation is computationally intensive. This mixed
susceptibility has been used to determine the curvature of the chiral transition line for small values of the baryon
chemical potential [69].
Other thermodynamic observables analyzed in this paper are the light and strange quark number susceptibilities

defined as

χq

T 2
=

1

V T 3

∂2 lnZ

∂(µq/T )2
, q = l, s . (20)

These are also sensitive to the singular part of the free energy since the reduced temperature t depends on the quark
chemical potentials as indicated in Eq. (10). However, unlike the temperature derivative of the chiral condensate, i.e.,
the mixed susceptibility χt,l, the temperature derivative of the light quark number susceptibility does not diverge in
the chiral limit. Its slope at T 0

c is given by

∂χq

∂T
∼ cr +A±

∣

∣

∣

∣

T − T 0
c

T 0
c

∣

∣

∣

∣

−α

, (21)
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3rd order	cumulants	of	net-p

Ø Data	agree	with	Skellam	baseline	“0”	→ μB	is	very	close	to	0 (ALICE	Collaboration,	arXiv:2311.13332v2)
Ø EPOS	and	HIJING	deviate	from	”0”

• They	conserve	global	charge but	𝐩/𝐩q deviates	from	unity:	1.025±0.004	(EPOS),	1.008±0.002	(HIJING)
• Volume	fluctuations for	2nd and	3rd order	cumulants	are	not	negligible

Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration

vanish under these conditions also if baryon number conservation is included, see Refs. [51, 56]. Also in281

LQCD [57] the odd cumulants vanish.282

In Fig. 7, the third-order cumulant measurements are also compared with HIJING and EPOS model283

calculation results. Both models include baryon number conservation but, as mentioned above, the net-284

proton number is positive within the current experimental acceptance. Therefore, the resulting third-order285

cumulants for all centrality and pseudorapidity difference intervals shift toward positive values and are286

affected by the volume fluctuations [18] visible in the 10–20% centrality interval, where the centrality287

range doubles (left panel). The agreement of the experimental third-order cumulants with a value of zero288

is a confirmation that the average number of protons and antiprotons is the same at LHC energies and289

that the systematic uncertainties for these measurements are under good control.290
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Figure 7: (Color online) Centrality (left) and pseudorapidity interval (right) dependence of the ratio of third- to
second-order cumulants for net protons at

p
sNN = 5.02 TeV. The ALICE data are shown by red markers, while

the colored shaded bands represent the results from HIJING [45] and EPOS [52] model calculations.

4 Conclusions291

In summary, net-proton cumulant measurements up to third order and net-pion and net-kaon second-order292

cumulant measurements are reported. The technical challenges related to data analysis, in particular ef-293

ficiency correction and event pile-up, could be overcome as discussed in detail. Resonance contributions294

prove to be challenging in the study of fluctuations of the net-electric charge and the net-strangeness. A295

deviation of about 4% from the Skellam baseline is observed for the second-order net-proton cumulants296

for the widest Dh interval. Investigation of this deviation in light of baryon number conservation led to297

the conclusion that the 2010 data from ALICE [26] indicate the presence of long-range rapidity corre-298

lations between protons and antiprotons originating from the early phase of the collision. This finding299

is corroborated by the present analysis including the higher luminosity 2015 data with significantly dif-300

ferent experimental conditions. Results of calculations using the HIJING generator, based on the Lund301

string model, reflect a much smaller correlation length of one unit of rapidity. This observed discrepancy302

calls into question the mechanism implemented in the Lund string model for the production of baryons.303

After accounting for the effect of baryon number conservation, the data from ALICE are consistent with304

LQCD expectations up to the third-order cumulants of the net protons. The finding of third-order net-305

proton cumulants consistent with zero with a precision of better than 4% is promising for the analysis of306

the higher-order cumulants during the operation of LHC with increased Pb–Pb luminosity [58] starting307

in 2022 and for the future heavy-ion detector planned for the early 2030s [59].308
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Importance	of	acceptance

24 

Technical details 

A. Rustamov, EMMI workshop on fluctuations, China, Wuhan, 10-13 October, 2017 
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2nd order	cumulants	of	net-p:	Acceptance	dependence	

Ø Consistent	with	the	baryon	number	conservation	picture		
• Increase	in	fraction	of	accepted	p, p) ->	stronger	constraint	of	fluctuations	due	to	baryon	number	conservation

Ø EPOS	&	HIJING	show	this	drop	qualitatively

Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration
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Figure 5: (Color online) Centrality (left) and pseudorapidity interval (right) dependence of the normalized second-
order cumulants of net protons for

p
sNN = 5.02 TeV and two momentum intervals for the protons. The ALICE

data are shown by red and blue markers for 0.6 < p < 1.5 GeV/c and 0.6 < p < 2.0 GeV/c, respectively. The
colored shaded areas indicate the results from the HIJING [45] and EPOS [52] model calculations. In the right
panel, in addition, the dashed colored lines represent the predictions from the model with local baryon number
conservation with Dycorr = 5 [22].

due to antiproton absorption in the detector material and, to a smaller degree, by a proton knock-out con-269

tribution. Understanding and controlling the particle detection efficiency is one of the major technical270

challenges in the measurement of higher-order cumulants, since the efficiency enters into the analytical271

formula of the correction with the corresponding high power [41–43]. This affects both statistical and272

systematic uncertainties of the corrected data. Therefore, the final results depend crucially on a very273

accurate determination of the proton and antiproton efficiencies. Note that the efficiency correction ap-274

proximately doubles the statistical uncertainties, as also noted in Ref. [55]. The experimentally achieved275

overall precision is better than 4% for the most central collisions and much smaller for more peripheral276

collisions.277
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Figure 6: Centrality (left) and pseudorapidity interval (right) dependence of the ratio of third- to second-order
cumulants for net protons at

p
sNN = 5.02 TeV before (open markers) and after (closed markers) efficiency correc-

tion.

After efficiency correction, the data agree with the zero baseline within the experimental uncertainties,278

which is consistent with expectations from the HRG model. Note that in the HRG model all odd cumu-279

lants vanish at LHC energy, where the number of baryons and antibaryons agree. The odd cumulants280
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2nd order	cumulants	in	full	phase	space
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Experimental approach
measurement of fluctuations of other baryons
to improve understanding of net-baryon baseline
to study correlated baryon-strangeness fluctuations

Phenomenological approach

due to isospin randomization at !"" > 10&'(

in this case net-baryon fluctuations can be easily 
obtained from corresponding net-proton measurements

℘ *+, *+̅; */, * 0/ = ℘ */, * 0/ 2 *+; */, 3 2 *+̅; * 0/, 3̅

3 = ⁄*+ */ 3̅ = ⁄*+̅ * 0/

3 = 3̅ = 0.5; 7 = 7̅ = 10

A. Rustamov, 28.03.2019

11

0 0.5 1
 fractionp4

0

2

4

62k

protons
baryons
Kitazawa et al.

protons
baryons
Kitazawa et al.

0 0.5 1
 fractionp4

0

0.5

1

(S
ke

lla
m

)
2k

2k

protons
baryons
Kitazawa et al.

protons
baryons
Kitazawa et al.

Feed down contributions

event generator used from:
P. Braun-Munzinger, A. R.,  J. Stachel, NPA 982 (2019) 307-310

M. Kitazawa, and M. Asakawa, Phys. Rev. C86 (2012) 

Experimental approach
measurement of fluctuations of other baryons
to improve understanding of net-baryon baseline
to study correlated baryon-strangeness fluctuations

Phenomenological approach

due to isospin randomization at !"" > 10&'(
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Ø Net-baryon	vs	Net-p
Ø Due	to	isospin	randomization at	 𝑠dd� >	10	GeV	net-baryon	fluctuations	

can	be	easily	obtained	from	corresponding	net-proton	measurements	
M.	Kitazawa,	and	M.	Asakawa,	Phys.	Rev.	C86	(2012)
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Fig. 1. Left Panel: Produced number of charged particles versus the impact parameter. Right Panel: Produced number 
of charged particles versus the number of wounded nucleons. For a given value of the impact parameter the number of 
wounded nucleons and binary collisions are calculated with a Glauber Monte Carlo simulation based on the approach 
described in [14]. Next, using a two-component model, charged particles are produced assuming a Negative Binomial 
Distribution with parameters extracted by the same procedure as used in the ALICE experiment.

centrality selection approaches used in the ALICE experiment, where the measured multiplici-
ties (signal amplitudes in VZEROs) are fitted with those obtained from a Glauber Monte Carlo 
simulation (for details see [14]).

Technically, following a two-component model [15,16], in which one decomposes nucleus–
nucleus collisions into soft and hard interactions, we first calculate the number of ancestors

Nancestors = f NW + (1 − f )Ncoll , (25)

where NW and Ncoll are the number of wounded nucleons and binary collisions, simulated in 
each Glauber Monte Carlo event for a given value of the impact parameter [17] and f = 0.801
is taken from [14].

Next, from each ancestor we generate particles from a Negative Binomial Distribution (NBD), 
defined by the probability distribution

Pµ,k(n) = !(n + k)

!(n + 1)!(k)

(µ

k

)n (µ

k
+ 1

)−(n+k)
, (26)

where µ is the mean multiplicity of particles emitted from each ancestor and k controls the 
width of the NBD. Numerical values of the parameters, µ = 29.3 and k = 1.6, are taken from the 
ALICE paper [14].

Two-dimensional scatter plots representing the dependence on b and NW of the produced 
number of charged particles are presented in the left and the right panel of Fig. 1, respectively. 
The centrality classes, selected by applying sharp cuts on the number of produced charged parti-
cles (y axis), are represented by the dashed horizontal lines. As seen from the scatter plots in the 
Fig. 1, where each dot represents one single event, the impact parameter as well as the number of 
wounded nucleons fluctuate from event-to-event, thus generating a distribution. To demonstrate 
this explicitly we present, in Fig. 2, distributions of wounded nucleons for 3 different centrality 
classes.

For the 5% most central collisions we observe that the distribution is asymmetric and has a tail 
towards lower values of wounded nucleons. This is caused by the fact that the number of wounded 
nucleons cannot exceed two times the mass number of the colliding nuclei, i.e. 416, in the case of 
Pb + Pb collisions. As a consequence, higher cumulants of the distribution of wounded nucle-
ons acquire large values for this centrality bin. This, in turn, distorts the experimentally measured 

P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel
NPA	960	(2017)	114–130
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Volume	fluctuations:	TOY	model	at	LHC
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Volume	fluctuations:	TOY	model	at	RHIC
126 P. Braun-Munzinger et al. / Nuclear Physics A 960 (2017) 114–130

Fig. 10. Second (left panel) and third (right panel) cumulants of net-protons for Au+Au collisions at √sNN = 39 GeV. 
Red points correspond to keeping the number of wounded nucleons fixed, while for black points the fluctuations of 
wounded nucleons are included. The black lines are calculated using eqs. (22) and (23). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Left panel: Fourth cumulants of net-protons for Au+Au Collisions at √sNN = 39 GeV. Right panel: Ratio of 
fourth and second cumulants. Red points correspond to fixed number of wounded nucleons while, for the black points, the 
fluctuations of wounded nucleons are included. The black lines are calculated using eqs. (22) and (24). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of the auto-correlation problem survives, even if one excludes protons and antiprotons from the 
data used for centrality determination.

Like in case of protons at 
√

sNN = 2.76 TeV (see the left panel of Fig. 6), we observe small 
effects of the participant fluctuations for the most central bin in Fig. 9. As explained above, 
this stems from the negative values of κ3(NW) and κ4(NW). However, this also depends on the 
mean number of particles or net-particles. To show this explicitly we present, in Figs. 10 and 11, 
cumulants of net-protons for Au+Au collisions at 

√
sNN = 39 GeV. Mean values of protons 

and antiprotons are taken from [20]. For the second cumulants of net-protons we observe quite 
small contributions from participant fluctuations. However, for the third and fourth cumulants 
these contributions are significant. Moreover, even for the most central bin κ4(p − p̄)/κ2(p − p̄)

deviates from unity if participant fluctuations are included.

5. Global conservation laws

In this section we will demonstrate a procedure for selecting an “optimized” acceptance for 
fluctuation analysis. For clarity we will focus on net-baryon fluctuations, though our approach 
is valid for any conserved charges. We remind at this point that critical net-particle fluctuations 
are predicted within the Grand Canonical Ensemble (GCE) formulation of thermodynamics. In 
this formulation, the net-baryon number is not conserved in each micro-state, hence it fluctuates. 
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of the auto-correlation problem survives, even if one excludes protons and antiprotons from the 
data used for centrality determination.

Like in case of protons at 
√

sNN = 2.76 TeV (see the left panel of Fig. 6), we observe small 
effects of the participant fluctuations for the most central bin in Fig. 9. As explained above, 
this stems from the negative values of κ3(NW) and κ4(NW). However, this also depends on the 
mean number of particles or net-particles. To show this explicitly we present, in Figs. 10 and 11, 
cumulants of net-protons for Au+Au collisions at 

√
sNN = 39 GeV. Mean values of protons 

and antiprotons are taken from [20]. For the second cumulants of net-protons we observe quite 
small contributions from participant fluctuations. However, for the third and fourth cumulants 
these contributions are significant. Moreover, even for the most central bin κ4(p − p̄)/κ2(p − p̄)

deviates from unity if participant fluctuations are included.

5. Global conservation laws

In this section we will demonstrate a procedure for selecting an “optimized” acceptance for 
fluctuation analysis. For clarity we will focus on net-baryon fluctuations, though our approach 
is valid for any conserved charges. We remind at this point that critical net-particle fluctuations 
are predicted within the Grand Canonical Ensemble (GCE) formulation of thermodynamics. In 
this formulation, the net-baryon number is not conserved in each micro-state, hence it fluctuates. 

Ø At	lower	energies	none	of	these	terms	cancel

		k4 p− p( ) = Nw k4 n−n( )+3k2 n−n( )2k2 Nw( )+ n−n ...( )
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Volume	fluctuations:	CBWC	vs	centrality	resolution

Centrality	dependent	resolution	or	centrality	bias	→ Can	this	have	an	impact	on	the	performance	of	CBWC
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Figure 9: Left panel: Fourth cumulants of net-protons for Au+Au Collisions at
p
sNN =

7.7 GeV. Right panel: Ratio of fourth and second cumulants. Red points correspond to
fixed number of wounded nucleons while, for the black points, the fluctuations of wounded
nucleons are included. The centrality bin width is 2.5% for the blue points, while for the
black points variable bin widths (see Fig. 1) are used. The lines (black and blue) are
calculated using eqs. 22 and 24.

the centrality determination are not removed entirely. We note, in this con-
text, that a significant contribution to net-proton fluctuations will originate
from fluctuations of the number of net � baryons. This will introduce strong
pion-proton correlations into the sample implying that a part of the auto-
correlation problem survives, even if one excludes protons and antiprotons
from the data used for centrality determination.

Like in case of protons at
p
sNN = 2.76 TeV (see the left panel of Fig. 6),

we observe small e↵ects of the participant fluctuations for the most cen-
tral bin in Fig. 9. As explained above, this stems from the negative values of
3(NW ) and 4(NW ). However, this also depends on the mean number of par-
ticles or net-particles. To show this explicitly we present, in Figs. 10 and 11,
cumulants of net-protons for Au+Au collisions at

p
sNN=39 GeV. Mean val-

ues of protons and antiprotons are taken from [20]. For the second cumulants
of net-protons we observe quite small contributions from participant fluctu-
ations. However, for the third and fourth cumulants these contributions are
significant. Moreover, even for the most central bin 4(p � p̄)/2(p � p̄)
deviates from unity if participant fluctuations are included.
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ALI-SIMUL-564459

Ø For	the	2nd and	3rd order	cumulants	it	cancels	out	at	LHC
Ø Strongly	depends	on	the	particle	multiplicity	within	the	kinematic	acceptance	and	the	underlying	physics

Volume	fluctuations	at	LHC	energies
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ALI-SIMUL-564459

3

For	a	thermal	system	in	a	fixed	volume	V	within	the	Grand	Canonical	Ensemble

Mesut	Arslandok,	Heidelberg	(PI)

  

F. Karsch, Quark Matter  2017 F. Karsch, Quark Matter  2017 18

– – agreement between HRG and QCD will start to deteriorate for T>150 MeVagreement between HRG and QCD will start to deteriorate for T>150 MeV

– – net baryon-number fluctuations in QCD always smaller than in HRG fornet baryon-number fluctuations in QCD always smaller than in HRG for
      T>150 MeVT>150 MeV
      

for simplicity:

HRG vs. QCDHRG vs. QCD
net baryon-number fluctuations  net baryon-number fluctuations  

Phys.	Rev.	D	95	(2017),	0545042nd 4th 6th

Why	net-baryon fluctuations?

Cumulants

P
T 4 =

1
VT 3 lnZ V ,T ,µB ,Q ,S( ) χ̂n

N=B ,S ,Q =
∂n P T 4

∂ µN T( )
n

Susceptibilities

χ̂4
B

χ̂2
B=κ 4 ΔNB( )

κ 2 ΔNB( )χ̂2
B =

κ 2 ΔNB( )
VT 3

Higher	orders	
P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel

Nuclear	Physics	A	960	(2017)	114–130

Ø At	4th order	LQCD	shows	a	deviation from	Hadron	Resonance	Gas	(HRG)	

SQM,	11.06.2019

~
30%

Ø For	the	2nd and	3rd order	cumulants	it	cancels	out	at	LHC
Ø Strongly	depends	on	the	particle	multiplicity	within	the	kinematic	acceptance	and	the	underlying	physics
Ø LQCD	expectation	→ for	the	4th order	the	effect	can	be	more	than	an	order	of	magnitude	larger	than	the	signal
Ø Ultimate	solution	→ R.	Holzmann,	V.	Koch,	A.	Rustamov,	J.	Stroth arXiv:2403.03598

Volume	fluctuations	at	LHC	energies



Experimental	challenges:	E.g.	effect	of	event	pileup

M.	Arslandok,	E.	Hellbär,	M.	Ivanov,	R.H.	Münzer	and	J.	Wiechula,	Particles 2022,	5(1),	84-95}
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Effect	of	in-bunch	pileup

5

chosen to be 33 mb. The number of participant nucleons, Npart, and binary collisions, Ncoll, are obtained. In order to
propagate Npart and Ncoll to the multiplicity, we define the number of sources, Nsc as

Nsc = (1� x)Npart + xNcoll, (29)

where x is the fraction of the hard component. We choose x = 0.1 for the simulation. Particles are then generated
from each source Nsc based on the negative binomial distribution:

Pµ,k(N) =
�(N + k)

�(N + 1)�(k)
·

(µ/k)N

(µ/k + 1)N+k
, (30)

where µ is the mean value of particles generated from one source, and k corresponds to the inverse of width of the
distribution. µ = 1.0 and k = 1.0 are chosen for the simulation. In order to simulate the pileup events as well as
normal single-collision events, multiplicities from two collision events are randomly superimposed with the probability
↵ = 0.05. In this way, 10 million Au+Au collision events are processed. We note that in this model the pileup
probabilities wi,j and ↵m are given by Eqs. 5 and 6 by construction.
The resulting multiplicity distribution is shown by the black line in Fig. 1. The blue squares show the multiplicity

distribution from single-collision events, while those from pileup events are shown by the red circles. It is found that,
due to the pileup events, the measured distribution has the tail on top of the distribution from the single-collision
events. The inset panel shows ↵m, i.e. the ratio of the pileup events at multiplicity m. From the panel one finds that
↵m grows with increasing m. This behavior suggests that the e↵ect of pileup events are more problematic in central
collisions rather than peripheral collisions.
In Fig. 2, we plot the multiplicity distribution of single-collision events T (m) and the number of sub-pileup events

(i, j) normalized by total simulated events, ↵T (i)T (j). From these results wi,j and ↵m are constructed according to
Eqs. 5 and 6. These parameters are used in the following two subsections.
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FIG. 1. The multiplicity distribution generated from the Glauber and two component model. The black line includes the
contribution from pileup events with ↵ = 0.05 (measured distribution). The red open circles are the distribution from pileup
events, and the blue squares are from the normal single collision events. The bands indicate 0-5%, 5-10% and 70-80% centralities.
The inset panel shows the ratio of pileup to measured distributions as a function of multiplicity (↵m).

B. Simple case

In this and next subsections, we discuss the pileup correction for two model distributions P t
m(N) with the multiplicity

distribution obtained in Sec. III A. In this subsection, we consider a simple model where the particle number N obeys
the Poisson distribution with the mean value of 10 at all the multiplicity bin. We emphasize that this model is totally
impractical, because 10 particles on average are created at both m = 0 and m = 300. However, this model is suitable
to demonstrate the validity of the recursive correction procedures. The more realistic model will be discussed in the
next subsection.
Figure 3 shows the particle distribution for the first 4 multiplicity bins (m = 0, 1, 2, 3). The red circles show pileup

events, and the blue squares show the single-collision events. The measured distribution given by the sum of these
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FIG. 5. Particle number distributions for (a) 70-80%, (b) 40-50%, (c) 10-20% and (d) 0-5% centralities in the realistic model
in Sec. III C. The red circles shows the pileup events, and the blue squares are for single-collision events. The black solid line is
for measured events.
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Ø In-bunch	pileup
→ Significant	impact	on	the	higher	order	cumulants
→ Less	then	0.1%	→ negligible	

Ø Out-of-bunch	pileup
→ Significant	impact	on	the	detector	response
→ Effect	is	corrected	to	a	large	extend

Y.	Zhang,	Y.,	T.	Nonaka,	X.	Luo,	arXiv:2108.10134
T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Nucl.Instrum.Meth.	A984	(2020)
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What	if	efficiency	loss	is	not	binomial?

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix

Draw	N	balls	from	the	urn	
without	returning	balls	to	

the	urn

In	each	draw,	when	one	draws	
a	white	ball,	two	white	balls	are	

returned	to	the	urn	

T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Nucl.Instrum.Meth.	A906	(2018)	10-17
T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Phys.	Rev.	C	95,	064912	(2017)
Adam	Bzdak,	Volker	Koch,	Phys.	Rev.	C86,	044904	(2012)

What	if	efficiency	loss	is	not	binomial?

Efficiency	correction



49Mesut	Arslandok,	Yale	UniversityCPOD,	22.05.2024

Light	nuclei	production

17Quark Matter 2023 – Houston, September 5th, 2023mario.ciacco@cern.ch

Light nuclei production

Coalescence → nuclei formed by nucleons 
emitted by freeze-out hypersurface

○ Short-range interaction bind 
nucleons into nuclei

Deuteron/proton ratio → described by both 
approaches
● Reduction in small systems due either 

to baryon conservation (CSM) or to 
source vs. deuteron size 
(coalescence)

JHEP 01, 106 (2023)

K.-J. Sun et al., Phys. Lett. B 792, (2019) 132

I. Vorobyev - Sept. 6th, h. 8.50

C. Pinto - Sept. 6th, h. 12.40

Reduction	in	small	systems	due	either	to	
baryon	conservation	(CSM)	or	to	source	vs.	deuteron	size	(coalescence)	
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Correlation	and	cumulant	of	net-particles
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Observables

6

Charged kaons and Ξ baryons
● Same- and opposite-charge 

correlations → 2 species

● No autocorrelation
○ Negligible resonance 

feeddown

● Negligible uncorrelated weak 
feeddown from Ω

● Experimentally → high purity 
via PID (K) and machine 
learning selections (Ξ)

Net-kaon net-xi correlation
● Includes both same and opposite strangeness
● Cancellation of initial volume fluctuation

𝝆(ΔΞ, ΔK) = 𝜅11(ΔΞ, ΔK) / √(𝜅2(ΔΞ)𝜅2(ΔK))

with ΔΞ = Ξ+ - Ξ– and ΔK = K+ - K–

𝜅11(ΔΞ, ΔK)= 𝜅11(Ξ+, K+) + 𝜅11(Ξ–, K–) - 𝜅11(Ξ–, K+) - 𝜅11(Ξ+, K–)

𝜅2(Δn) = 𝜅2(n+) + 𝜅2(n–) - 2𝜅11(n+, n–)

Net-xi cumulant ratio
● E-by-e fluctuations of ΔΞ multiplicity distribution 

𝜅2 / 𝜅1(ΔΞ) = 𝜅2(ΔΞ) / 𝜅1(Ξ+ + Ξ–)

A. Rustamov et al., Nucl. Phys. A 960 (2017) 114-130
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Canonical	statistical	model	

Hadronization models
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R. Nayak et al., Phys. Rev. D 100, 074023 (2019)

→ Both models describe the ratio of yields to charged π
→ How are fundamental conservation laws treated by the two mechanisms?

Lund string fragmentation (PYTHIA)Canonical statistical model
V. Vovchenko et al., Phys. Rev. C 100, 054906 (2019)

V.	Vovchenko
et	al.,	PRC	100,	054906	(2019)


