Recent experimental results on 2nd order conserved charge fluctuations

Mesut Arslandok

Yale University

subtraction in heavy-ion collisions

CPOD 2024 - 15th Workshop on Critical Point and Onset of Deconfinement

22 May 2024, Lawrence Berkeley National Laboratory, Berkeley, USA

Nature of QCD phase diagram

- Pseudocritical features at the crossover due to massless modes
- Long range correlations & increased fluctuations
- > Non-monotonic energy dependence
- ≻ ...

- Pseudocritical features at the crossover due to massless modes
- Long range correlations & increased fluctuations
- Non-monotonic energy dependence
- ≻ ...

Bridge experimental data to LQCD calculations

Theory

Experiment

Fluctuating V

...

CPOD, 22.05.2024

Mesut Arslandok,

LQCD \leftrightarrow Experiment

LQCD \leftrightarrow Experiment

LQCD \leftrightarrow Experiment

Outline

- Experimental challenges: Particle identification, efficiency correction, effect of event pileup, volume fluctuations ...
- Theoretical/phenomenological challenges: Effect of resonances, charge conservation, effect of magnetic field, cluster formation, baryon annihilation, excluded volume ...

Outline

- Experimental challenges: Particle identification, efficiency correction, effect of event pileup, volume fluctuations ...
- Theoretical/phenomenological challenges: Effect of resonances, charge conservation, effect of magnetic field, cluster formation, baryon annihilation, excluded volume ...

- How do we measure cumulants of conserved charges?
- How do we interpret the results?
- What have we learned so far from 2nd order cumulants?
 Net-[π, K, p, Λ, Ξ] and cross-cumulants and correlations
- What to expect from future?

How do we measure cumulants?

Main challenge: Particle identification (PID)

Cut-based approach (track counting) and Identity method (probability counting)

Main challenge: Particle identification (PID)

Cut-based approach (track counting) and Identity method (probability counting)

<u>A. Rustamov, M. Gazdzicki, M. I. Gorenstein, PRC 86, 044906 (2012), PRC 84, 024902 (2011)</u> A. Rustamov, M. Arslandok, Nucl. Instrum. A946 (2019) 162622}

Mesut Arslandok, Yale University

Identity method vs cut-based approach

Identity method vs cut-based approach

How do we interpret?

To keep in mind!

To keep in mind!

IG S

detection

baryon conserv. arXiv:1612.00702 syst. uncert. HIJING, AMPT

syst. uncert.

Resonance decays

Net-π and net-K are strongly dominated by resonance contributions
 Net-[p, Λ, Ξ] are free from resonance contributions

Baryon annihilation

What did we learn?

2nd order cumulants of net-p

> Deviation from Skellam baseline is due to **baryon number conservation**

ALICE

Reminder: Strangeness enhancement/suppression

2^{nd} order cumulants of Net- Ξ & Net- Ξ – net-K correlations

Canonical picture describes the data with <u>correlation volume of about 3dV/dy</u>
 → Indication of large volume (early production) for strangeness (as in case of baryon number)

2^{nd} order cumulants of Net- Ξ & Net- Ξ – net-K correlations

- Canonical picture describes the data with <u>correlation volume of about 3dV/dy</u>
 → Indication of large volume (early production) for strangeness (as in case of baryon number)
- Event generators based on string fragmentation fails for the second order

2^{nd} order cumulants of Net- Λ

Canonical picture describes the data with correlation volume of about 3dV/dy

2^{nd} order cumulants of Net- Λ

Canonical picture describes the data with correlation volume of about 3dV/dy How about off-diagonal cumulants?

$$\chi^{lmn}_{\rm B,S,Q} = \frac{1}{VT^3} \sigma^{lmn}_{\rm B,S,Q}$$

Proxies: Charge: K, π, p | Baryon: p | Strangeness: K

Cross cumulants in view of correlation volume

- Q, B and S conserved within a correlation volume
 - <u>V. Vovchenko *et al.,* Phys. Rev. C 100, 054906 (2019)</u>
- Simultaneous description leads to $V_c = \sim 2.64 dV/dy !!!$

Cross cumulants: energy dependence

> Monotonic decrease of the correlations with increasing energy

- How much of this because of conservation?
- What are the other possible contributions?

Cross cumulants: Volume independent normalization

Sensitivity to V_c is gone but there is a deviation

 \rightarrow What is the underlying physics?

Light nuclei production in view of correlation volume

Simple coalescence Z. Fecková *et al.*, PRC 93, 054906 (2016)

- Model A: correlated nucleons
- Model B: independent nucleons
- Improved coalescence K.-J. Sun et al., PLB, 840, 137864 (2023)
 - MUSIC + UrQMD + Coalescence: No initial correlation between protons and neutrons
- Canonical Statistical Model V. Vovchenko et al., PLB 785, (2018) 171
 - Correlation volume, V_c

Different correlation volume than for B and S

Stay tuned for SQM $\rightarrow \overline{d}\Delta\Lambda$ correlations

Pushing 2nd net-p to the limits with Identity Method

- ated to thermodynamic susceptibilities which can peot-p
- principles in lattice QCD (LQCD) [1]

$$\frac{n^{n}(P(\mu_{B})/T^{4})}{\partial(\mu_{B}/T)^{n}}\bigg|_{\mu_{B}=0} = \chi_{n}^{B} = \frac{\kappa_{n}(\Delta N_{B})}{VT^{3}}$$

to the limits with Identity Method

18

second or der carrialants

Pushing 2nd net-p to the limits

ipheral and larger momentum

Conclusions

• Trend at peripheral collisions for high momentum protons is consistent with LOCD expectation with strong magnetic field

ersity

Pushing 2nd net-p to the management of the man

Conclusions

 Trend at peripheral collisions for high momentum protons is consistent with LOCD expectation with strong magnetic field

the magnetic field produced in per

ly statistical fluctuations, the second order survivant of the

Pushing 2nd net-p to the limits

 κ_n

Conclusions

 Trend at peripheral collisions for high momentum protons is consistent with LOCD expectation with strong magnetic field

the magnetic field produced in per

ly statistical fluctuations, the second order survivant of the

Pushing 2nd net-p to the limits

 κ_n

Concluster formation, magnetic field effect agnetic field produced in per

 Trend at peripheral collisions for high momentum protons is consistent with LOCD expectation with strong magnetic field

by statistical fluctuations, the second order sumulant of the

What can we learn? (ALICE 3)

Future beyond early 2030s: ALICE 3

- ✓ High statistics → O (10⁹) billion events
- $\checkmark \ \ \, \text{Large acceptance} \ \ \, \rightarrow |\eta| {<} \, 4$
- ✓ High PID purity → 0.3 GeV/c
- ✓ High efficiency → \sim 95%
- ✓ **Excellent vertexing** → O (3µm) resolution

ALICE, CERN-LHCC-2022-009

2nd order cumulants of net-p in ALICE 3

> More differential and high precision to disentangle:

Thermal blurring, Initial-state fluctuations, baryon annihilation, excluded volume effects, baryon number conservation ...

(0.3

BACKUP

Example case: $\mu_B \approx 0$

 $\chi_2 \chi_2 =$

 VT_{VT}^{3}

 κ_{21}

- **Baseline:** Difference between two independent Poissonian distributions (Skellam distr.) $\Rightarrow \kappa_n/\kappa_2$ is 0 (n odd) or 1 (n even)
- ➢ Holy grail: Critical behavior as from 6th order ⇒ 4th order ~30%, 6th order ~150%

Efficiency correction

Binomiality of the detector response is important for the efficiency correction

Slight deviation from the binomial efficiency loss

- Event and track selection
- TPC dE/dx calibration in particular for the events with pileup M. Arslandok, E. Hellbär, M. Ivanov, R.H. Münzer and J. Wiechula, Particles 2022, 5(1), 84-95
- Realistic detector simulation

Efficiency correction

Very good closure despite the slight deviation from binomial loss

Efficiency correction with binomial assumption:

T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017)

Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)

A Large Ion Collider Experiment

Main detectors used:

CPOD, 22.05.2024

ALI-PERF-27125

p (GeV/c)

Identity method vs cut-based approach

Identity Method

- Gives folded multiplicity distribution
- Maximal efficiency & no PID contamination
- Cut based approach
 - Additional detector || reject a given phase space
 - Low efficiency & PID contamination

Phase transition

CPOD, 22.05.2024

of charm quarks leads to a fugaoitesuitAthanSibkWaleUniversity

Future of ALICE

ALICE 2 (2022-2030)

- ✓ Continuous readout:
 - \rightarrow ~ 50kHz Pb–Pb min. bias
 - $\rightarrow \sim$ 5 pileup events within the TPC
- ✓ Improved vertexing
- ✓ High tracking efficiency at low p_{T}

ALICE 3 (beyond early 2030s)

- **High statistics** \rightarrow O (10⁹) billion events
- $\checkmark \quad \text{Large acceptance} \quad \rightarrow |\eta| < 4$
- ✓ **High PID purity** → $0.3 < p_T < 10 \text{ GeV/c}$
- ✓ High efficiency → \sim 95%
- ✓ Excellent vertexing → O (3µm) resolution

Criticality search in ALICE 2 and 3

Simulation of the Critical Fluctuations (CF) is based on PQM model <u>G. A. Almasi, B. Friman, and K. Redlich, Phys. Rev.D96 (2017), 014027</u>

> ALICE 2:

- \rightarrow More than 5 billion central Pb-Pb collisions is required
- \succ ALICE 3:
 - \rightarrow x3 larger statistics: >4 σ significance with ALICE 2 acceptance

What kind of a system we are talking about?

CPOD, 22.05.2024

3rd order cumulants of net-p

- **Data agree with Skellam baseline "0"** $\rightarrow \mu_B$ is very close to 0 (<u>ALICE Collaboration, arXiv:2311.13332v2</u>)
- EPOS and HIJING deviate from "0"
 - They conserve global charge but p/\overline{p} deviates from unity: 1.025±0.004 (EPOS), 1.008±0.002 (HIJING)
 - Volume fluctuations for 2nd and 3rd order cumulants are not negligible

Acceptance effect

2nd order cumulants of net-p: Acceptance dependence

Consistent with the baryon number conservation picture

- Increase in fraction of accepted p, \overline{p} -> stronger constraint of fluctuations due to baryon number conservation
- EPOS & HIJING show this drop qualitatively

Net-baryon vs Net-p \geq

Due to **isospin randomization** at $\sqrt{s_{NN}}$ > 10 GeV net-baryon fluctuations \geq can be easily obtained from corresponding net-proton measurements M. Kitazawa, and M. Asakawa, Phys. Rev. C86 (2012)

Ρ

protons

Experimental Effects

Volume fluctuations

Volume fluctuations: TOY model at LHC

CPOD, 22.05.2024

Volume fluctuations: TOY model at LHC

Volume fluctuations: TOY model at RHIC

At lower energies none of these terms cancel

Volume fluctuations: CBWC vs centrality resolution

Centrality dependent resolution or centrality bias \rightarrow Can this have an impact on the performance of CBWC

Volume fluctuations at LHC energies

- For the 2nd and 3rd order cumulants it cancels out at LHC
- Strongly depends on the particle multiplicity within the kinematic acceptance and the underlying physics

Volume fluctuations at LHC energies

- For the 2nd and 3rd order cumulants it cancels out at LHC
- Strongly depends on the particle multiplicity within the kinematic acceptance and the underlying physics
- > LQCD expectation \rightarrow for the 4th order the effect can be more than an order of magnitude larger than the signal
- VIItimate solution → R. Holzmann, V. Koch, A. Rustamov, J. Stroth arXiv:2403.03598

Experimental challenges: E.g. effect of event pileup

M. Arslandok, E. Hellbär, M. Ivanov, R.H. Münzer and J. Wiechula, Particles 2022, 5(1), 84-95}

Effect of in-bunch pileup

Light nuclei production

Reduction in small systems due either to baryon conservation (CSM) or to source vs. deuteron size (coalescence)

Correlation and cumulant of net-particles

Charged kaons and Ξ baryons

- Same- and opposite-charge correlations → 2 species
- No autocorrelation
 - Negligible resonance feeddown
- Negligible uncorrelated weak feeddown from Ω
- Experimentally → high purity via PID (K) and machine learning selections (Ξ)

Net-kaon net-xi correlation

- Includes both same and opposite strangeness
- Cancellation of initial volume fluctuation

<u>A. Rustamov et al., Nucl. Phys. A 960 (2017) 114-130</u>

 $\varrho(\Delta \Xi, \Delta \mathsf{K}) = \kappa_{11}(\Delta \Xi, \Delta \mathsf{K}) / \sqrt{(\kappa_2(\Delta \Xi)\kappa_2(\Delta \mathsf{K}))}$

with $\Delta \Xi$ = $\Xi^{\scriptscriptstyle +}$ - $\Xi^{\scriptscriptstyle -}$ and ΔK = $K^{\scriptscriptstyle +}$ - $K^{\scriptscriptstyle -}$

 $\kappa_{11}(\Delta \Xi, \Delta \mathsf{K}) = \kappa_{11}(\Xi^+, \,\mathsf{K}^+) + \kappa_{11}(\Xi^-, \,\mathsf{K}^-) - \kappa_{11}(\Xi^-, \,\mathsf{K}^+) - \kappa_{11}(\Xi^+, \,\mathsf{K}^-)$

 $\kappa_2(\Delta n) = \kappa_2(n^+) + \kappa_2(n^-) - 2\kappa_{11}(n^+, n^-)$

Net-xi cumulant ratio

• E-by-e fluctuations of $\Delta \Xi$ multiplicity distribution

 $\kappa_2 \ / \ \kappa_1(\Delta \Xi) = \kappa_2(\Delta \Xi) \ / \ \kappa_1(\Xi^+ + \Xi^-)$

Canonical statistical model

